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Abstract

We study some aspects of the global dynamics of an n-dimensional Lotka-Volterra system with infinite
delay and patch structure, such as extinction, persistence, existence and global attractivity of a positive
equilibrium. Both the cases of an irreducible and reducible linear community matrix are considered,
and no restriction on the signs of the intra- and inter-specific delayed terms is imposed. Although
the system is not cooperative, our approach often uses comparison results applied to an auxiliary
cooperative system. Some models in recent literature are generalised, and results improved.
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1. Introduction

In recent years, mathematicians and biologists have been analysing biological models given by dif-
ferential equations with time-delays and patch-structure. Models with patch-structure are frequently
quite realistic, to account for heterogeneous environments and other biological features, where single or
multiple species are distributed over several different patches or classes, with migration among them.
Time-delays are very often present in models from population dynamics, neurosciences, ecology, epi-
demiology, chemistry and other sciences. Moreover, infinite delays have been considered in equations
used in population dynamics since the works of Volterra, to translate the cumulative effect of the
past history of a system. Typically, the “memory functions” appear as integral kernels and, although
defined in the entire past, the delay should be introduced in such a way that its effect diminishes when
going back in time.

In this paper, the following patch-structured Lotka-Volterra system with both infinite distributed
and discrete delays is considered:

x′i(t) = xi(t)

(
bi − µixi(t)−

n∑

j=1

aij

∫ ∞

0

Kij(s)xj(t− s)ds

)

+

n∑

j 6=i,j=1

(εijαijxj(t− τij)− αjixi(t)), i = 1, 2, . . . , n.

(1.1)

Here, µi > 0, bi, aij ∈ R, and, for i 6= j, αij ≥ 0, τij ≥ 0, εij ∈ (0, 1], i, j = 1, . . . , n; the kernels
Kij : [0,∞) → [0,∞) are L1 functions, normalized so that

∫ ∞

0

Kij(s) ds = 1, for i, j = 1, . . . , n. (1.2)
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Moreover, we suppose that for all i the linear operators defined by Lii(ϕ) =
∫∞

0
Kii(s)ϕ(−s) ds, for

ϕ : (−∞, 0] → R bounded, are non-atomic at zero, which amounts to have Kii(0) = Kii(0
+).

System (1.1) serves as a population model for the growth of single or multiple species distributed
over n patches or classes: xi(t) is the density of the population on patch i, with bi and µi as its usual
Malthusian growth rate and (instantaneous) self-limitation coefficient, respectively, aii and aij (i 6= j)
are respectively the intra- and inter-specific delayed acting coefficients; αij (i 6= j) are the dispersal
rates of populations moving from patch j to patch i, and τij the times taken during this dispersion;
the coefficients εij ∈ (0, 1] appear to account for some lost of the populations during migration from
one patch to another. Frequently, one takes εij = e−γijτij for some γij > 0, i, j = 1, . . . , n, i 6= j, cf.
e.g. [19]. Denoting

dij := εijαij for i 6= j, βi := bi −
∑

j 6=i

αji,

(1.1) is written as

x′i(t) = xi(t)

(
βi − µixi(t)−

n∑

j=1

aij

∫ ∞

0

Kij(s)xj(t− s)ds

)

+

n∑

j 6=i,j=1

dijxj(t− τij), i = 1, 2, . . . , n,

(1.3)

where βi ∈ R, µi > 0, aij ∈ R, dij ≥ 0, τij ≥ 0 and the kernels Kij are as above.
With model (1.1) in mind, in the present paper some aspects of the asymptotic behaviour of

solutions to delayed Lotka-Volterra systems (1.3) are analysed. Although not very meaningful in
biological terms, actually all the techniques and results in this paper apply to systems with several
bounded delays or even infinite delays in the migration terms, which leads to more general systems of
the form

x′i(t) = xi(t)

(
βi − µixi(t)−

n∑

j=1

aij

∫ ∞

0

Kij(s)xj(t− s)ds

)

+
n∑

j 6=i,j=1

m∑

p=1

d
(p)
ij xj(t− τ

(p)
ij ), i = 1, 2, . . . , n,

(1.4)

with d
(p)
ij , τ

(p)
ij ≥ 0, or

x′i(t) = xi(t)

(
βi − µixi(t)−

n∑

j=1

aij

∫ ∞

0

Kij(s)xj(t− s)ds

)

+

n∑

j 6=i,j=1

dij

∫ ∞

0

Gij(s)xj(t− s)ds, i = 1, 2, . . . , n,

(1.5)

with the kernels Gij ≥ 0 being L1 functions with L1-norm one. Moreover, our method can be easily
addapted to Lotka-Volterra systems with continuous coefficients and discrete delays depending on t.

Due to the biological interpretation of the model, only positive or non-negative solutions should be
considered admissible. On the other hand, there are natural constraints on admissible phase spaces
for functional differential equations (FDEs) with infinite delay (cf. Section 2). To deal with such kind
of equations, a careful choice of a so-called ‘fading memory space’ as phase space is in order, see e.g.
[10, 11], and one must consider bounded initial conditions. Thus, our framework accounts only for
solutions of (1.3) with initial conditions of the form

xi(θ) = ϕi(θ), θ ∈ (−∞, 0], ϕi(0) > 0, i = 1, . . . , n, (1.6)

where ϕi are non-negative and bounded continuous functions on (−∞, 0].

2



There is an immense literature on FDEs of Lotka-Volterra type, and it is impossible to mention
all the relevant contributions. The present investigation was motivated by several papers, among
them those of Takeuchi et al. [18, 19], Liu [14], and Faria [3, 4]. For other related papers, we refer to
[2, 5, 15, 20], also for further references.

In [14], Liu considered a cooperative model for a species following a delayed logistic law, with the
population structured in several classes and no delays in the migration terms, of the form

x′i(t) = xi(t)
[
bi − µixi(t) +

m∑

p=1

c
(p)
i xi(t− σ

(p)
i )

]
+

n∑

j=1

dijxj(t), i = 1, . . . , n, (1.7)

where µi > 0, bi > 0 and c
(p)
i , dij , σ

(p)
i ≥ 0 for i, j = 1, . . . , n, p = 1, . . . ,m. Moreover, in [14] only

the case D = [dij ] an irreducible matrix was studied, and the further quite restrictive conditions

(bi +
∑n

j=1 dij)/(µi −
∑m

p=1 c
(p)
i ) = k for 1 ≤ i ≤ n (k a positive constant) were imposed. On the

other hand, Takeuchi et al. [19] studied the system

x′i(t) = xi(t)
(
bi − µixi(t)

)
+

n∑

j 6=i,j=1

(
e−γijτijαijxj(t− τij)− αjixi(t)

)
, i = 1, . . . , n, (1.8)

where µi > 0, bi ∈ R and αij , τij , γij ≥ 0 for i, j = 1, . . . , n, j 6= i. Note that (1.1) is a natural
generalization of (1.8), obtained by the addition of interacting terms with infinite delay. Again, only
the case of an irreducible matrix D = [dij ], where now dij = e−γijτijαij , was studied in [19].

In [4], the author analyses several aspects of the asymptotic behaviour of solutions to the more
general cooperative system

x′i(t) = xi(t)
[
bi − µixi(t) +

m∑

p=1

c
(p)
i xi(t− σ

(p)
i )

]
+

n∑

j=1

m∑

p=1

d
(p)
ij xj(t− τ

(p)
ij ), i = 1, . . . , n, (1.9)

where: bi ∈ R, µi > 0 and c
(p)
i , d

(p)
ij , σ

(p)
i , τ

(p)
ij ≥ 0, for i, j = 1, . . . , n, p = 1, . . . ,m. The situations of

D = [dij ] an irreducible or a reducible matrix were both addressed. Note that models (1.7) and (1.8)
are particular cases of (1.9).

For the patch structured Lotka-Volterra models (1.3), (1.4) or (1.5), for simplicity we write A =

[aij ] and D = [dij ], with dii := 0, and where dij :=
∑m

p=1 d
(p)
ij for (1.4). The matrix M(0) =

diag (β1, . . . , βn)−D, i.e.,

M(0) =




β1 d12 · · · d1n
d21 β2 · · · d2n
...

...
. . .

...
dn1 dn2 · · · βn


, (1.10)

may be interpreted as the linear community matrix. For coefficients aij ∈ R, we shall use the standard
notation

a−ij = max(0,−aij), a+ij = max(0, aij).

Throughout the paper, together with M(0) we shall consider the matrix

N0 = diag (µ1, . . . , µn)− [a−ij ]. (1.11)

The algebraic properties of M(0) and N0 will play a crucial role in the global dynamics of the system.

For simplicity, this paper deals with system (1.3), rather than (1.4) or (1.5), and addresses its
global asymptotic behaviour, in what concerns its dissipativity and persistence, extinction of the
populations, and the existence and global attractivity of a positive equilibrium. As in the cited papers
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[14, 19], most papers dealing with patch structured models only analyse the situation of an irreducible
linear community matrix. Here, both the cases of M(0) irreducible and reducible are considered.
Of course, if M(0) is irreducible, sharper criteria can be obtained, namely a threshold criterion of
exchanging of global attractivity between the trivial solution and a positive equilibrium. Rather
than Lyapunov functional techniques, the approach exploited here is based on comparison results and
monotone techniques (see [16]) applied to an auxiliary cooperative system, coupled with theory of
M-matrices.

The contents of the paper are now briefly described. Section 2 is a preliminary section, where
an abstract formulation to deal with (1.3) is set, and some notation and auxiliary results are given,
including some known properties from matrix theory; also we prove some important estimates used
throughout the paper. Section 3 provides criteria for the local stability and global attractivity of the
trivial equilibrium – in biological terms, the latter translates as the extinction of the populations in
all patches. In Section 4, we consider the particular case of (1.3) with all coefficients aij ≤ 0, thus a
cooperative Lotka-Volterra system, and investigate its persistence and global asymptotic convergence
to an equilibrium. Finally, Section 5 is devoted to the study of the persistence, the existence and the
global attractivity of a positive equilibrium for the general model (1.3).

2. Preliminaries: abstract framework, notation and auxiliary results

In this preliminary section, we first set an abstract framework to deal with system (1.3). In view of
the unbounded delays, the problem must be carefully formulated by defining an appropriate Banach
phase space where the problem is well-posed.

Let g be a function satisfying the following properties:

(g1) g : (−∞, 0] → [1,∞) is a non-increasing continuous function, g(0) = 1;

(g2) lim
u→0−

g(s+ u)

g(s)
= 1 uniformly on (−∞, 0];

(g3) g(s) → ∞ as s→ −∞.

For n ∈ IN, define the Banach space UCg = UCg(R
n) :=

{
φ ∈ C((−∞, 0];Rn) : sups≤0

|φ(s)|
g(s) <

∞, φ(s)
g(s) is uniformly continuous on (−∞, 0]

}
, with the norm

‖φ‖g = sup
s≤0

|φ(s)|

g(s)
,

where | · | is a chosen norm in R
n. Consider also the space BC = BC(Rn) of bounded continuous

functions φ : (−∞, 0] → R
n. It is clear that BC ⊂ UCg.

The space UCg is an admissible phase space for n-dimensional FDEs with infinite delay (cf. [10, 11])
written in the abstract form

ẋ(t) = f(t, xt), (2.1)

where f : D ⊂ R × UCg → R
n is continuous and, as usual, segments of solutions in the phase space

UCg are denoted by xt, xt(s) = x(t+s), s ≤ 0. When f is regular enough and the initial conditions are
bounded, it is known that the initial value problem is well-posed, in the sense that there exists a unique
solution x(t) of the problem ẋ(t) = f(t, xt), xσ = ϕ ∈ BC, denoted by x(t;σ, ϕ) in R

n or xt(σ, ϕ)
in UCg; for autonomous systems ẋ(t) = f(xt) and ϕ ∈ BC, the solution of ẋ(t) = f(xt), x0 = ϕ is
simply denoted by x(t;ϕ) ∈ R

n and xt(ϕ) ∈ UCg. Moreover, bounded positive orbits of (2.1) are
precompact in UCg [10, 11].

An appropriate formulation for problem (1.3)-(1.6) is set as follows. From Lemma 4.1 in [7], for
any δ > 0 there is a continuous function g satisfying (g1)–(g3) and such that

∫ ∞

0

g(−s)Kij(s) ds < 1 + δ, i, j = 1, . . . , n. (2.2)
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Whenever it is necessary, one fixes a positive δ and inserts the problem into the phase space UCg, where
g is any function satisfying the above conditions (g1)-(g3) and (2.2). Of course, if one considers the
more general system (1.5), one should demand that g also satisfies the conditions

∫∞

0
g(−s)Kij(s) ds <

1 + δ, i, j = 1, . . . , n.
In the space UCg, a vector c is identified with the constant function ψ(s) = c for s ≤ 0. A vector c

in R
n is said to be positive (respectively non-negative) if all its components are positive (respectively

non-negative). We use the notation R
n
+ = {x ∈ R

n : x ≥ 0}, and BC+ = BC+(Rn) = {(ϕ, ψ) ∈ BC :
ϕ(s), ψ(s) ≥ 0 for all s ≤ 0}. In view of the biological meaning of (1.3), the framework is restricted
to positive or non-negative initial conditions. As a set of admissible initial conditions for (1.3), we
take the subset BC+

0 of BC+, BC+
0 = {(ϕ, ψ) ∈ BC+ : ϕ(0) > 0, ψ(0) > 0}. It is easy to see that all

the coordinates of solutions with initial conditions in BC+, respectively BC+
0 , remain non-negative,

respectively positive, for all t ≥ 0 whenever they are defined (see e.g. [16]).
A system (2.1) is said be cooperative if it satisfies the quasi-monotonocity condition in p. 78 of

Smith’s monograph [16]: whenever ϕ, ψ ∈ BC+, ϕ ≤ ψ and ϕi(0) = ψi(0) holds, then fi(ϕ) ≤ fi(ψ),
for 1 ≤ i ≤ n. Hence, system (1.3) is cooperative if and only if aij ≤ 0 for all i, j = 1, . . . , n.

The following crucial estimates will be used throughout the paper. For similar arguments, cf. [5].

Lemma 2.1 Let x : R → R
n be a continuous function with x0 = ϕ ∈ BC. For each j ∈ {1, . . . , n},

suppose that there are constants M ∈ R and t0 > 0 such that xj(t) ≤ M , respectively xj(t) ≥ M , for
t ≥ t0. Then, for any ε > 0 there exists T0 ≥ t0 such that

∫ ∞

0

Kij(s)xj(t− s) ds ≤M + ε, t ≥ T0, 1 ≤ i ≤ n,

respectively ∫ ∞

0

Kij(s)xj(t− s) ds ≥M − ε, t ≥ T0, 1 ≤ i ≤ n.

Proof. Suppose that xj(t) ≤M for t ≥ t0. Fix ε > 0, and take g satisfying conditions (g1)-(g3) and
(2.2) with 0 < δ(1 + δ) ≤ ε. Since xj(t) is bounded from above on (−∞,∞), take K > 0 such that
supt∈R

xj(t) ≤ K, and choose T > 0 such that K/g(−T ) < δ. For t ≥ T0 := T + t0, from (1.2) and
(2.2) we have

∫ ∞

0

Kij(s)xj(t− s) ds =

∫ T

0

Kij(s)xj(t− s)ds+

∫ ∞

T

Kij(s)xj(t− s)ds

≤M

∫ T

0

Kij(s) ds+

∫ ∞

T

g(−s)Kij(s)
K

g(−s)
ds

≤M

∫ T

0

Kij(s) ds+

∫ ∞

T

g(−s)Kij(s)
K

g(−T )
ds

≤M

∫ T

0

Kij(s) ds+ δ

∫ ∞

T

g(−s)Kij(s) ds

≤M + δ(1 + δ) ≤M + ε.

The other inequality is proven in a similar way.

We now recall some notation and results from matrix theory. An n× n matrix M = [mij ] is said
to be cooperative if all its off-diagonal entries are nonnegative: mij ≥ 0 for i 6= j.

Let σ(M) be the spectrum of M . The spectral bound s(M) of M is defined as

s(M) = max{Reλ : λ ∈ σ(M)}.

It is well-know that if M is cooperative and irreducible, then s(M) ∈ σ(M) and there is a positive
eigenvector associated with s(M) (see e.g. [1, 8]).

A square matrix M is said to be an M-matrix (respectively non-singular M-matrix) if all its off-
diagonal entries are non-positive and all its eigenvalues have a non-negative (respectively positive)
real part.
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Lemma 2.2 For a square matrix M = [mij ] with mij ≤ 0 for i 6= j, the following conditions are
equivalent:

(i) M is a non-singular M-matrix;
(ii) M is an M-matrix and is non-singular;
(iii) all principal minors of M are positive;
(iv) there is a positive vector v such that Mv > 0;
(v) M is non-singular and M−1 ≥ 0.

There are many other equivalent ways of defining non-singular M-matrices, as well as M-matrices,
see [1, 8] for a proof of Lemma 2.2 and further properties of these matrices. In [8], non-singular
M-matrices and M-matrices are also designated by matrices of classes K and K0, respectively. The
notation is far from being uniform, and many authors call M-matrices the matrices defined here as
non-singular M-matrices.

From these definitions, it is apparent that for a cooperative matrix M , s(M) ≤ 0 (respectively
s(M) < 0) if and only if −M is an M-matrix (respectively a non-singular M-matrix).

For (1.3), the matrix M(0) defined in (1.10) is cooperative. If D = [dij ] is irreducible, then M(0)
is irreducible as well. For cooperative and irreducible matrices, the following lemma is useful.

Lemma 2.3 If M = [mij ] is a cooperative and irreducible matrix, then s(M) > 0 if and only if there
exists a positive vector v such that Mv > 0.

Proof. Let M = [mij ] be cooperative and irreducible. Then s(M) is an eigenvalue of M with a
positive associated eigenvalue v, thus s(M) > 0 implies that Mv = s(M)v > 0 for some positive
vector v (cf. [1]).

Conversely, let v be a positive vector such that Mv > 0, and for the sake of contradiction suppose
that s(M) ≤ 0. Then −M is an M-matrix, or, in other words, for any δ > 0 the matrix δI −M is a
non-singular M-matrix [8]; this implies that (δI −M)−1 ≥ 0. Choose δ > 0 small so that Mv > δv.
Then we have v = (δI −M)−1(δI −M)v ≤ 0, a contradiction.

3. Stability of the trivial equilibrium

The standard notions of stability and attractivity used here are always defined in the context of
the set BC+

0 of admissible initial conditions, as recalled below.

Definition 3.1. An equilibrium x∗ ≥ 0 of (1.3) is said to be stable if for any ε > 0 there is δ = δ(ε) > 0
such that ‖xt(ϕ) − x∗‖g < ε for all ϕ ∈ BC+

0 with ‖ϕ− x∗‖g < δ and t ≥ 0; x∗ is said to be globally
attractive if x(t) → x∗ as t→ ∞, for all solutions x(t) of (1.3) with initial conditions x0 = ϕ ∈ BC+

0 ;
and x∗ is globally asymptotically stable (GAS) if it is stable and globally attractive.

In this section, we address the stability and attractivity of the trivial equilibrium. When (1.3)
refers to a population model, the global attractivity of 0 means the extinction of the populations in
all patches.

Theorem 3.1 For system (1.3), (i) if s(M(0)) < 0, then the equilibrium 0 is hyperbolic and locally
asymptotically stable; (ii) if s(M(0)) > 0, then 0 is unstable.

Proof. We have already observed that s(M(0)) < 0 if and only if −M(0) is a non-singular M-matrix.
(i) Assume that s(M(0)) < 0. The linearization of (1.3) at zero is given by

x′i(t) = βixi(t) +
∑

j 6=i

dijxj(t− τij), i = 1, 2, . . . , n. (3.1)

Denote B = diag (β1, . . . , βn). The characteristic equation for (3.1) is

det∆(λ) = 0, where ∆(λ) =M(λ)− λI (3.2)

6



and

M(λ) =




β1 d12e
−λτ12 · · · d1ne

−λτ1n

d21e
−λτ21 β2 · · · d2ne

−λτ2n

...
...

. . .
...

dn1e
−λτn1 dn2e

−λτn2 · · · βn


 =: B +D(λ).

Since −M(0) is a non-singular M-matrix, from a result in [6] (which can be generalised to linear FDEs
with infinite delay) x = 0 is asymptotically stable as a solution of (3.1), for all values of the delays.

(ii) Assume now that s(M(0)) > 0.
First consider the case of D = D(0) an irreducible matrix. Observe that ∆(0) = M(0) and

∆(λ1) > ∆(λ2) for 0 ≤ λ1 < λ2. Since the matrices ∆(λ), 0 ≤ λ <∞, are irreducible and cooperative,
then s(∆(λ)) ∈ σ(∆(λ)), and λ 7→ s(∆(λ)) is continuous and strictly decreasing on [0,∞). Clearly,
s(∆(λ)) → −∞ as t → ∞; together with the condition s(∆(0)) > 0, this implies the existence of
a unique λ∗ > 0 such that s(∆(λ∗)) = 0. But s(∆(λ∗)) ∈ σ(∆(λ∗)), or, in other words, λ∗ is a
characteristic root for (3.1). This proves that (3.1) is unstable, hence 0 is unstable as a solution of
(1.3).

Next, consider the case of D reducible. After a simultaneous permutation of rows and columns,
for each λ ≥ 0 the matrix D(λ) is written in a triangular form as

D(λ) =



D11(λ) · · · D1ℓ(λ)

. . .

0 · · · Dℓℓ(λ)


,

where Dlm(λ) are nl × nm matrices, with Dll(λ) irreducible blocks and
∑ℓ

l=1 nl = n. Only to prove
the result for ℓ = 2 is needed, since the general case will follow by induction.

For λ ≥ 0, let D(λ) =

[
D11(λ) D12(λ)

0 D22(λ)

]
, where D11(λ), D22(λ) are irreducible, and write

M(λ),∆(λ) in the form

M(α) = B +D(λ) =

[
M11(λ) M12(λ)

0 M22(λ)

]
,

∆(λ) =M(λ)− λIn =

[
M11(λ)− λIn1

M12(λ)
0 M22(λ)− λIn2

]
.

We have σ(M(0)) = σ(M11(0)) ∪ σ(M22(0)) and σ(∆(λ)) = σ(M11(λ) − λIn1
) ∪ σ(M22(λ) − λIn2

).
Hence, s(Mii(0)) > 0 either for i = 1 or i = 2, and by the irreducible case we deduce that there exists
λ∗ > 0 such that 0 ∈ σ(Mii(λ

∗) − λ∗Ini
). This shows that λ∗ > 0 is a solution of the characteristic

equation (3.2), and thus 0 is unstable.

In the case of cooperative systems, we shall prove that if M(0) is irreducible, then s(M(0)) > 0 is
a sharp criterion for persistence, conf. Theorem 4.1. For the moment, a result for the extinction of all
populations is given.

Theorem 3.2 Consider (1.3), and assume that N0 is a non-singular M-matrix. Then, all positive
solutions of (1.3) are bounded. Moreover, if there exists a positive vector q = (q1, . . . , qn) which
satisfies the conditions

µiqi −
n∑

j=1

cijqj > 0,

βiqi +
∑

j 6=i

dijqj ≤ 0, i = 1, . . . , n,
(3.3)

then all the populations go extinct in every patch, i.e., all positive solutions x(t) of (1.3) satisfy
x(t) → 0 as t→ ∞.
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Proof. Consider the following auxiliary cooperative system:

x′i(t) = xi(t)

(
βi − µixi(t) +

n∑

j=1

a−ij

∫ +∞

0

Kij(s)xj(t− s)ds

)
,

+
∑

j 6=i

dijxj(t− τij) =: fi(xt), i = 1, 2, . . . , n,
(3.4)

where as before a−ij = max(0,−aij), and observe that the solutions of (1.3) satisfy

x′i(t) ≤ xi(t)

(
βi − µixi(t) +

n∑

j=1

a−ij

∫ ∞

0

Kij(s)xj(t− s) ds

)
,

+
∑

j 6=i

dijxj(t− τij), i = 1, 2, . . . , n.

By Theorem 5.1.1 of [16], the solution x(t) of each initial value problem (1.3)-(1.6) satisfies x(t) ≤
X(t), t ≥ 0, where X(t) is the solution of (3.4)-(1.6). Therefore, it is enough to prove the statements
of the theorem for (3.4).

Since N0 is a non-singular M-matrix, there is q = (q1, . . . , qn) > 0 such that N0q > 0, i.e.,
µiqi −

∑n

j=1 a
−
ijqj > 0, i = 1, . . . , n (cf. Lemma 2.2). For L > 0 sufficiently large, we have

fi(Lq) = Lqi

[
βi − L(µiqi −

n∑

j=1

a−ijqj)
]
+ L

∑

j 6=i

dijqj < 0, i = 1, . . . , n. (3.5)

Consider solutions x(t) = x(t;ϕ) of (3.4)-(1.6). From Smith’s results (cf. Corollary 5.2.2 in [16]),
and since bounded positive orbits in UCg are precompact, this implies that

x(t;ϕ) ≤ x(t;Lq) ց x∗ for ϕ ≤ Lq,

where x∗ = (x∗1, . . . , x
∗
n) is necessarily an equilibrium of (3.4) (recall that ω-limit sets are invariant

sets). In particular, this proves that all positive solutions of (3.4) are bounded.

Next, we assume (3.3) and prove that Li := lim sup
t→∞

xi(t)
qi

= 0 for all i.

Let Li = maxj Lj . If Li > 0, by the fluctuation lemma there is a sequence (tk), tk → ∞, with
xi(tk) → Liqi, x

′
i(tk) → 0. For ε > 0 small and k large, the application of Lemma 2.1 yields

x′i(tk) ≤ xi(tk)[βi − µixi(tk) +
∑

j

a−ijqj(Li + ε)] + (Li + ε)
∑

j 6=i

dijqj . (3.6)

By letting k → ∞, ε→ 0+, the above formula and (3.3) lead to

0 ≤ Liqi

[
βi − Li(µiqi −

n∑

j=1

a−ijqj)
]
+ Li

∑

j 6=i

dijqj

= Li

[
βiqi +

∑

j 6=i

dijqj − Liqi(µiqi −
n∑

j=1

a−ijqj)
]
< 0.

(3.7)

This is a contradiction, and the proof is complete.

Remark 3.1 Condition (3.3) reads as

M(0)q ≤ 0 and N0 q > 0, (3.8)

whereM(0) andN0 are given by (1.10) and (1.11); this is equivalent to saying thatN0 is a non-singular
M-matrix and

M(0)N−1
0 v ≤ 0
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for some positive vector v. Clearly, (3.8) also implies that −M(0) is an M-matrix [8]; this condition
also translates as s(M(0)) ≤ 0. Note however that the converse is not true: in fact, even if M(0) is
an irreducible matrix with s(M(0)) ≤ 0 and N0 is a non-singular M-matrix, then there exist positive
vectors v and q such thatM(0)v ≤ 0 and N0 q > 0, but one cannot conclude that there is one positive
vector q satisfying simultaneously M(0)q ≤ 0 and N0 q > 0, and the extinction of the populations
cannot be derived. This is illustrated below by a counter-example.

Example 3.1 Consider the system (1.3) with n = 2, β1 = β2 = −2, d12 = 1, d21 = 7
2 and µ1 =

−a12 = 1, µ2 = 13
45 , a21 = − 1

10 , a11 = a22 = 0:

x′1(t) = x1(t)

(
−2− x1(t) +

∫ ∞

0

K12(s)x2(t− s) ds

)
+ x2(t− τ1)

x′2(t) = x2(t)

(
−2−

13

45
x2(t) +

1

10

∫ ∞

0

K21(s)x1(t− s) ds

)
+

7

2
x1(t− τ2).

(3.9)

with delays τ1, τ2 ≥ 0 and positive kernels K12,K21 satisfying (1.2). With the previous notation,

M(0) =

[
−2 1
7
2 −2

]
, N0 =

[
1 −1

− 1
10

13
45

]
.

Clearly N0 is a non-singular M-matrix and s(M(0)) < 0. The positive vectors v = (1, v2) satisfying
M(0)v ≤ 0 are the ones for which 7

4 ≤ v2 ≤ 2; a positive vector q = (1, q2) satisfies N0q > 0 if and
only if 9

26 < q2 < 1. Hence there is no vector q > 0 satisfying both conditions (3.8). In this example,
the trivial equilibrium is not a global attractor, since (1, 32 ) is a positive equilibrium of (3.9).

The next result follows clearly from the the proof of Theorem 3.1.

Theorem 3.3 If there exists a positive vector q = (q1, . . . , qn) satisfying M(0)q < 0 and N0 q ≥ 0,
then the equilibrium 0 of (1.3) is GAS.

The case of no patch structure, has been studied by the author in [3] (see also Faria and Oliveira
[6]), where the local stability and attractivity of a positive equilibrium was investigated, but not the
extinction, for which sufficient conditions are given below.

Corollary 3.1 Consider (1.1) with αij = 0 for 1 ≤ i, j ≤ n (no patch structure):

x′i(t) = xi(t)

(
bi − µixi(t)−

n∑

j=1

aij

∫ ∞

0

Kij(s)xj(t− s) ds

)
, i = 1, . . . , n,

where all the coefficients and kernels are as in (1.1). As in (1.11), denote N0 = diag (µ1, . . . , µn)−[a−ij ].
If either (i) N0 is a non-singular M-matrix and bi ≤ 0, 1 ≤ i ≤ n, or (ii) N0q ≥ 0 for some positive
vector q, and bi < 0, 1 ≤ i ≤ n, then all positive solutions satisfy x(t) → 0 as t→ ∞.

In the case of competitive systems, the next corollary generalises and improves Theorem 3.3 in [4].

Corollary 3.2 Consider (1.3), with µi > a−ii and aij ≥ 0 for j 6= i, i, j = 1, . . . , n. If there is a
positive vector q such that M(0)q ≤ 0, then the equilibrium 0 is globally attractive. In particular, this
holds if either s(M(0)) < 0, or s(M(0)) = 0 and M(0) is irreducible.

Proof. In this situation, N0 reads as N0 = diag (µ1 − a−11, . . . , µn − a−nn). The first assertion follows
immediately from Theorem 3.2. If s(M(0)) < 0, then there is a vector q > 0 such that M(0)q < 0.
Moreover, if M(0) is irreducible, since it is also cooperative, then s(M(0)) = 0 implies the existence
of a positive vector q such that M(0)q = 0 [8].
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4. Persistence and stability for the cooperative Lotka-Volterra system

In this section, attention is devoted to the cooperative case of (1.3), written here as

x′i(t) = xi(t)

(
βi − µixi(t) +

n∑

j=1

cij

∫ ∞

0

Kij(s)xj(t− s) ds

)

+
n∑

j 6=i,j=1

dijxj(t− τij), i = 1, 2, . . . , n,

(4.1)

where cij = −aij ≥ 0 for i, j = 1, . . . , n. For (4.1), the matrix N0 given in (1.11) is rewritten as
N0 = diag (µ1, . . . , µn)− [cij ].

For the definitions of persistence and dissipativity used below, see e.g. [13, 17].

Definition 4.1. A system x′(t) = f(xt) with S ⊂ BC as set of admissible initial conditions is said
to be persistent if any solution x(t;ϕ) with initial condition ϕ ∈ S is bounded away from zero, i.e.,

lim inf
t→∞

xi(t;ϕ) > 0, 1 ≤ i ≤ n,

for any any ϕ ∈ S; and the system is said to be dissipative if there is a positive constant K such that,
given any ϕ ∈ S, there exists t0 = t0(ϕ) such that

|xi(t, ϕ)| ≤ K, for 1 ≤ i ≤ n, t ≥ t0.

Clearly, S = BC+
0 for (1.3).

Theorem 4.1 If there is a positive vector v such that M(0)v > 0, then (4.1) is persistent; moreover,
there is a positive equilibrium. In particular, this is the case if s(M(0)) > 0 and M(0) is irreducible.

Proof. Write (4.1) in the form
x′i(t) = fi(xt), i = 1, . . . , n.

For v = (v1, . . . , vn) > 0 such that M(0)v > 0 and l > 0 small, we obtain

fi(lv) = l

(
βivi +

∑

j 6=i

dijvj

)
− l2vi

(
µvi −

n∑

j=1

cijvj

)
> 0, i = 1, . . . , n.

Hence, there exists a positive equilibrium x∗ with x(t; lv) ր x∗; moreover, since the system (4.1)
is cooperative, x(t;ϕ) ≥ x(t; lv) if l > 0 is sufficiently small so that ϕ ≥ lv [16]. This shows the
persistence of (4.1). The last assertion of the theorem follows from Lemma 2.3.

A criterion for the global attractivity of a positive equibrium for (4.1) is now established.

Theorem 4.2 Assume there is a vector v > 0 such that M(0)v > 0 and N0 = diag (µ1, . . . , µn)− [cij ]
is a non-singular M-matrix. If x∗ is a positive equilibrium (whose existence is given by Theorem 4.1)
and M(0)x∗ > 0, then x∗ is the unique positive equilibrium of system (4.1) and is globally attractive.

Proof. Consider vectors q > 0, v > 0 such that N0q > 0,M(0)v > 0. Using the above notation, for
L >> 1 and 0 < l << 1, we have fi(Lq) < 0 and fi(lv) > 0, 1 ≤ i ≤ n. Thus there exist positive
equilibria x∗, y∗, with

x(t; lv) ր x∗, x(t;Lq) ց y∗, for 0 < l << 1 << L,

and
x(t; lv) ≤ x(t;ϕ) ≤ x(t;Lq), for lv ≤ ϕ ≤ Lq.
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In particular, all positive solutions of (4.1) are bounded and bounded away from zero. To show the
uniqueness and global attractivity of a positive equilibrium, it is sufficient to prove the following:

Claim: if x∗ = (x∗1, . . . , x
∗
n) is a positive equilibrium of (4.1), then any positive solution x(t) =

(x1(t), . . . , xn(t)) of (4.1) satisfies

lim inf
t→∞

xi(t) ≥ x∗i , i = 1, . . . , n.

First observe that a positive equilibrium x∗ of (4.1) satisfies

x∗i

[
βi − µix

∗
i +

∑

j

cijx
∗
j

]
+
∑

j 6=i

dijx
∗
j = 0, 1 ≤ i ≤ n, (4.2)

or, in other words,
M(0)x∗ = x∗ ⊗N0x

∗, (4.3)

where we use the notation u ⊗ v = (u1v1, . . . , unvn) for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ R
n. By

assumption M(0)x∗ > 0, or equivalently N0x
∗ > 0.

To prove the claim, effect the changes of variables x̄i(t) = xi(t)/x
∗
i in (4.1), and define ℓi :=

lim inft→∞ x̄i(t) > 0.
Choose i such that ℓi = minj ℓj . We now drop the bars for simplicity, and consider a sequence

tk → ∞ with x′i(tk) → 0 and xi(tk) → ℓi. For any ε ∈ (0, ℓi) and k sufficiently large, from Lemma 2.1
we get

x′i(tk) ≥ xi(tk)
[
βi −

(
µix

∗
i xi(tk)− (ℓi − ε)

∑
cijx

∗
j

)]
+ (ℓi − ε)

1

x∗i

∑

j 6=i

dijx
∗
j .

By taking limits k → ∞, ε→ 0+, we obtain

0 ≥ ℓi(1− ℓi)
(
βi +

1

x∗i

∑

j 6=i

dijx
∗
j

)
= ℓi(1− ℓi)(N0x

∗)i.

This yields ℓi ≥ 1, which proves the claim.

Corollary 4.1 Assume that N0 = diag (µ1, . . . , µn)− [cij ] is a non-singular M-matrix and βi > 0 for
1 ≤ i ≤ n. Then, there is a positive equilibrium of system (4.1), which is a global attractor.

Proof. If βi > 0 for 1 ≤ i ≤ n, then M(0)v > 0 for v = (1, . . . , 1). Moreover, if x∗ is a positive
equilibrium of (4.1), then by (4.3) we have N0x

∗ > 0. The result follows from Theorem 4.2.

We now treat the generalisation of model (1.9) obtained by introducing infinite delay.

Corollary 4.2 Consider

x′i(t) = xi(t)

(
βi − µixi(t) + ci

∫ ∞

0

Ki(s)xi(t− s) ds

)
+
∑

j 6=i

m∑

p=1

d
(p)
ij xj(t− τ

(p)
ij ), i = 1, . . . , n,

(4.4)

where: βi ∈ R, µi > 0 and ci, d
(p)
ij , τ

(p)
ij ≥ 0; Ki : [0,∞) → [0,∞) are in L1 with L1-norm equal to 1,

1 ≤ i, j ≤ n. Consider M(0) given by (1.10), where dij =
∑m

p=1 d
(p)
ij . If µi > ci for 1 ≤ i ≤ n, then:

(i) if there is a positive vector q such that M(0)q ≤ 0, the equilibrium 0 is a global attractor; (ii)
if there is a positive vector q such that M(0)q > 0, there exists a positive equilibrium x∗ which is a
global attractor.

When M(0) is irreducible, a threshold criterion for (4.4) is as follows:
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Corollary 4.3 Consider (4.4) with M(0) irreducible and µi > ci for 1 ≤ i ≤ n. Then: (i) if
s(M(0)) ≤ 0, the equilibrium 0 is a global attractor; (ii) if s(M(0)) > 0, there exists a positive
equilibrium x∗ which is a global attractor.

Remark 4.1 System (4.4) generalizes both (1.7) and (1.9). Not only the model is more general,
but also Corollaries 4.2 and 4.3 provide stronger criteria than the ones in [4, 14]. In fact, for (1.7),
Liu [14] assumed that [dij ] is irreducible, µi, bi > 0, all the other coefficients are non-negative with

µi >
∑m

p=1 c
(p)
i , and proved that if the constants α∗

i := (bi+
∑n

j=1 dij)/(µi−
∑m

p=1 c
(p)
i ), 1 ≤ i ≤ n, are

all equal to some constant k, then the equilibrium x∗ = (k, . . . , k) is a global attractor of all positive
solutions; while in Faria [4] the existence and global attractivity of a positive equilibrium was proven

simply under the assumptions of µi >
∑m

p=1 c
(p)
i and bi +

∑n

j=1 dij > 0, 1 ≤ i ≤ n.

5. Persistence and stability for the general Lotka-Volterra system

We now return to the general case of the Lotka-Volterra model (1.3) with no prescribed signs for
the interaction coefficients aij , whose extinction was already studied in Section 2. Sufficient conditions
for dissipativeness, persistence, and global attractivity of a positive equilibrium will be given.

In what follows, M(0) and N0 are as in (1.10) and (1.11). For the case of M(0) irreducible, first
observe that there are no non-trivial equilibria on the boundary of the non-negative cone Rn

+; moreover,
if the system is dissipative and 0 is unstable, this implies the existence of a positive equilibrium. A
more exact result is stated in the lemma below.

Lemma 5.1 If s(M(0)) > 0 and (1.3) is dissipative, then (1.3) has a non-trivial equilibrium x∗ ≥ 0.
If in addition M(0) is an irreducible matrix, (1.3) has a positive equilibrium x∗.

Proof. Consider the ODE system associated with (1.3), given by

x′i(t) = xi(t)

(
βi − µixi(t)−

n∑

j=1

aijxj(t)

)
+
∑

j 6=i

dijxj(t), i = 1, . . . , n. (5.1)

Clearly, (1.3) and (5.1) share the same equilibria. By assumption, (5.1) is dissipative. Since the
non-negative cone R

n
+ is forward invariant for (5.1), by [12] (5.1) has at least a saturated equilibrium

x∗ ≥ 0. The linearization of (5.1) at 0 is given by

x′i(t) = βixi(t) +
∑

j 6=i

dijxj(t), i = 1, 2, . . . , n.

With s(M(0)) > 0, this linear system is unstable (cf. Theorem 3.1), and therefore the equilibrium 0
is not saturated, hence x∗ 6= 0. If in addition M(0) is irreducible, 0 is the only equilibrium of (5.1) on
the boundary of Rn

+: otherwise (after a permutation of variables) there is an equilibrium of the form
x∗ = (0, . . . , 0, x∗k+1, . . . , x

∗
n) for some k ∈ {1, . . . , n− 1}, then

∑n

j=k+1 dijx
∗
j = 0 for 1 ≤ i ≤ k, hence

dij = 0 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ n, and [dij ] is not irreducible. Therefore, we conclude that there is
an equilibrium of (5.1) in the interior of Rn

+.

Remark 5.1 Through the remainder of this section, for the matrix M(0) in (1.10) we shall assume
that there is some positive vector v such that M(0)v > 0. In the case of M(0) an irreducible matrix,
this condition can be simply replaced by the assumption s(M(0)) > 0 (cf. Lemma 2.3).

By comparison with the cooperative system (3.4), clearly Theorem 4.2 provides an immediate
criterion for dissipativeness.
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Theorem 5.1 Suppose that M(0)v > 0 for some positive vector v, and let X∗ = (X∗
1 , . . . , X

∗
n) be a

positive equilibrium for (3.4), whose existence is given by Theorem 4.1. Assume that N0 is a non-
singular M-matrix, and that M(0)X∗ > 0. Then, system (1.3) is dissipative; to be more precise, all
positive solutions x(t) of (1.3) satisfy

lim sup
t→∞

xi(t) ≤ X∗
i , i = 1, . . . , n. (5.2)

If in addition M(0) is irreducible, system (2.1) has a positive equilibrium x∗.

Next, we study the persistence of (1.3). The notion of persistence in Section 3 means that the
population persists on each patch. We start with the discussion of persistence of the total population,
therefore we refer to the more general concept of ρ-persistence as in the monograph of Smith and
Thieme [17]. Namely, with ρ(ϕ) =

∑n
i=1 ϕi(0), ρ-persistence means persistence of the total population.

Theorem 5.2 Assume that (1.3) is dissipative. If M(0)v > 0 for some positive vector v, then the
total population is (weakly) persistent, i.e.,

lim sup
t→∞

n∑

i=1

xi(t) > 0

for all positive solutions x(t) of (1.3). Furthermore, if βi > 0 for i = 1, . . . , n, then the total population
is (strongly) uniformly persistent; i.e., there exists θ > 0 such that

lim inf
t→∞

n∑

i=1

xi(t) > θ

for all positive solutions x(t) of (1.3).

Proof. Let x(t) be a solution of (1.3). Since the system is dissipative,

x̄i := lim sup
t→∞

xi(t) <∞, i = 1, . . . , n.

Choose i ∈ {1, . . . , n} such that x̄i = max1≤j≤n x̄j . We first claim that x̄i > 0.
If x̄i = 0, then xj(t) → 0 as t → ∞ for all components j. Take a positive vector v such that

M(0)v > 0, and choose ε > 0 small enough so that (M(0) − εI)v > 0. From Lemma 2.1, if t is
sufficiently large we have

x′i(t) ≥ xi(t)[βi − ε− µixi(t)] +
∑

j 6=i

dijxj(t− τij), i = 1, . . . , n.

From Theorem 4.2, the cooperative system

u′i(t) = ui(t)[βi − ε− µiui(t)] +
∑

j 6=i

dijuj(t− τij), i = 1, . . . , n,

has a globally asymptotically stable equilibrium u∗ > 0. By comparison results [16], we now obtain
lim inft→∞ xi(t) ≥ u∗i > 0, which is not possible. Therefore, x̄i > 0.

Now, suppose that βi > 0 for all i. By the fluctuation lemma there exists a sequence (tk) with
tk → ∞, xi(tk) → x̄i and x

′
i(tk) → 0. Again from Lemma 2.1, for any ε > 0, if k is sufficiently large

we obtain
x′i(tk) ≥ xi(tk)

[
βi − µixi(tk)− (x̄i + ε)

∑
a+ij

]
,
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By letting k → ∞ and ε→ 0+, we obtain x̄i ≥
βi

µi+
∑

a
+

ij

> 0. These arguments also show that

lim sup
t→∞

n∑

j=1

xj(t) ≥ min
1≤i≤n

βi

µi +
∑
a+ij

=: θ1 > 0.

Note that the lower bound θ1 does not depend on the particular solution x(t). This means that the
total population

∑n
j=1 xj(t) is uniformly weakly persistent (see [17] for a definition). On the other

hand, since (1.3) is dissipative, it has a compact global attractor [9], and the hypotheses of Theorem
4.5 of [17] are satisfied. This allows to conclude the strong uniform persistence of the total population.

Corollary 5.1 Assume that βi > 0 for all i, and that N0 is a non-singular M-matrix. Then (1.3) is
dissipative, the total population uniformly persists, and there exists a non-trivial equilibrium x∗ ≥ 0.

Conditions for the persistence of the population on each patch are given below. To simplify the
notation, denote

N̂ = diag (µ1, . . . , µn)−
[
|aij |

]
.

Theorem 5.3 Assume that M(0)v > 0 for some positive vector v and that N0 is a non-singular M-

matrix. If in addition N̂X∗ > 0, where X∗ is the positive equilibrium of (3.4), then (1.3) is persistent
and there is a positive equilibrium.

Proof. The existence of X∗, the unique positive equilibrium of (3.4), is guaranteed by Theorem 4.1.

Condition N̂X∗ > 0 translates as

µiX
∗
i −

∑

j

|aij |X
∗
j > 0, i = 1, . . . , n, (5.3)

and in particular implies that M(0)X∗ = X∗ ⊗N0X
∗ > 0, i.e.,

µiX
∗
i −

∑

j

a−ijX
∗
j > 0, i = 1, . . . , n.

Theorem 5.1 provides the upper bounds x̄i := lim supt→∞ xi(t) ≤ X∗
i , for all i and all solutions x(t)

of (1.3). Now, define the matrix

M̃(0) = diag (γ1, . . . , γn) + [dij ],

where γi = βi −
∑

j a
+
ijX

∗
j , 1 ≤ i ≤ n. From (5.3),

(M̃(0)X∗)i = X∗
i

[
βi −

∑
j a

+
ijX

∗
j

]
+
∑

j 6=i dijX
∗
j

= X∗
i

[
µiX

∗
i −

∑
j |aij |X

∗
j

]
> 0, 1 ≤ i ≤ n.

(5.4)

From Lemma 2.1, for each ε > 0 there exists t0 > 0 such that
∫∞

0
Kij(s)xj(t− s) ds ≤ (1 + ε)X∗

j

for any i, j = 1, . . . , n and t ≥ t0. Thus, for t ≥ t0,

x′i(t) ≥ xi(t)

(
βi − (1 + ε)

∑

j

a+ijX
∗
j − µixi(t) +

∑

j

a−ij

∫ ∞

0

Kij(s)xj(t− s)ds

)

+
∑

j 6=i

dijxj(t− τij), i = 1, 2, . . . , n.

In virtue of (5.4), we can choose ε > 0 small enough so that M̃ε(0)X
∗ > 0, where

M̃ ε(0) = diag (γε1 , . . . , γ
ε
n) + [dij ], for γεi = βi − (1 + ε)

∑

j

a+ijX
∗
j .
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From Theorem 4.1, observe that the cooperative system

u′i(t) = ui(t)

(
γεi − µiui(t) +

∑

j

a−ij

∫ ∞

0

Kij(s)uj(t− s)ds

)
+
∑

j 6=i

dijuj(t− τij), i = 1, 2, . . . , n,

(5.5)
is persistent. Comparing the solutions of (1.3) with the solutions of (5.5), we deduce that (1.3) is
persistent as well. Now, from the persistence and Theorem 5.1, there is a positive equilibrium.

We finally present a criterion for the global asymptotic stability of a positive equilibrium for (1.3).

Theorem 5.4 Assume that (1.3) is dissipative, persistent and has an equilibrium x∗ > 0. If in

addition N̂x∗ > 0, then x∗ is globally attractive.

Proof. By the change of variables y(t) = x(t) − x∗, (1.3) becomes

y′i(t) = −(yi(t) + x∗i )

(
µiyi(t) +

∑

j

aij

∫ ∞

0

Kij(s)yj(t− s)ds

)

−yi(t)
1

x∗i

∑

j 6=i

dijx
∗
j +

∑

j 6=i

dijyj(t− τij), i = 1, 2, . . . , n.
(5.6)

Define uj = lim supt→∞ yj(t),−vj = lim inft→∞ yj(t), and

U = max
j

uj
x∗j
, V = max

j

vj
x∗j
, L = max(U, V ).

Clearly L ≥ 0. Moreover, from the persistence vj < x∗j for all components j, and therefore V < 1.
It suffices to show that L = 0. We argue by contradiction, so assume L > 0.
Consider first the case of L = U , and choose i such that U = ui

x∗
i

. Take a sequence tk → ∞ such

that yi(tk) → ui and y
′
i(tk) → 0. Applying Lemma 2.1 to (5.6), for any ε > 0, if k is sufficiently large

we obtain

y′i(tk) ≤ −(yi(tk) + x∗i )

(
µiyi(tk)− (1 + ε)L

∑

j

|aij |x
∗
j

)
− yi(tk)

1

x∗i

∑

j 6=i

dijx
∗
j

+(1 + ε)L
∑

j 6=i,

dijx
∗
j .

By letting k → ∞ and ε→ 0+, we get

0 ≤ −(L+ 1)x∗i

(
µix

∗
i −

n∑

j=1

|aij |x
∗
j

)
L < 0, (5.7)

a contradiction. Now, consider the case L = V = vi
x∗
i

for some i. Then, there is a sequence tk → ∞

with yi(tk) → −vi = −Lx∗i > −x∗i and y′i(tk) → 0. We proceed as in the above case and instead of
(5.7) obtain

0 ≥ (−L+ 1)x∗i

(
µix

∗
i −

n∑

j=1

|aij |x
∗
j

)
L > 0, (5.8)

which is again a contradiction. The proof is complete.

By Theorems 5.1, 5.3 and 5.4, we immediately get:

Corollary 5.2 Assume that M(0)v > 0 for some positive vector v, N0 is a non-singular M-matrix,

and N̂X∗ > 0, where X∗ is the positive equilibrium of (3.4). Then there exists an equilibrium x∗ > 0

of (1.3). If in addition N̂x∗ > 0, then x∗ is globally attractive.
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IfM(0) is a positive matrix, the assumption N̂X∗ > 0 can be dropped in the above criterion, since
one can use the persistence of the total population, rather than the persistence on each patch.

Theorem 5.5 Assume that N0 is a non-singular M-matrix, and βi, dij > 0 for all i, j = 1, . . . , n. If

the equilibrium x∗ > 0 of (1.3) (whose existence is given in Theorem 5.1) satisfies N̂x∗ > 0, then x∗

is globally attractive.

Proof. Under the assumption βi, dij > 0 for all i, j, by Theorems 5.1 and 5.2, system (1.3) is dissi-
pative, the total population is uniformly persistent, and there is an equlibrium x∗ > 0.

We now use the same notation and proceed as in the proof of Theorem 5.4, noting however that
V ≤ 1, but the situation V = 1 is possible. In fact, vj ≤ x∗j for all j, and vj < x∗j for at least one
component j, because of the persistence of the total population. By repeating that proof, we only
have to further assure that the case of L = V = 1 is not possible.

Let L = V = vi
x∗
i

= 1 for some i. Consider a sequence tk → ∞ with yi(tk) → −vi = −x∗i and

y′i(tk) → 0. Applying Lemma 2.1 to (5.6), for any ε > 0, if k is sufficiently large we obtain

y′i(tk) ≥ −(yi(tk) + x∗i )

(
µiyi(tk) + (1 + ε)

∑

j

|aij |x
∗
j

)

−yi(tk)
1

x∗i

∑

j 6=i

dijx
∗
j + (1 + ε)

∑

j 6=i

dijvj .

By letting k → ∞ and ε→ 0+, we obtain a contradiction, since 0 ≥ −
∑

j 6=i dijx
∗
j +

∑
j 6=i dijvj > 0.

Example 5.1 Consider the following system of the form (1.3) with n = 2:

x′1(t) = x1(t)

(
β1 − µ1x1(t)− a11

∫ ∞

0

K11(s)x1(t− s) ds

−a12

∫ ∞

0

K12(s)x2(t− s) ds

)
+ d1x2(t− τ1)

x′2(t) = x2(t)

(
β2 − µ2x2(t)− a21

∫ ∞

0

K21(s)x1(t− s) ds

−a22

∫ ∞

0

K22(s)x2(t− s) ds

)
+ d2x1(t− τ2).

(5.9)

with delays τ1, τ2 ≥ 0 and coefficients di > 0, aij ≥ 0 and βi ∈ R, i, j = 1, 2. For this system, and with
the previous notation,

M(0) =

[
β1 d1
d2 β2

]
, N0 =

[
µ1 0
0 µ2

]
.

Note that M(0) is irreducible. We have s(M(0)) ≤ 0 if and only if β1 ≤ 0, β2 ≤ 0 and β1β2 ≥ d1d2,
in which case the trivial equilibrium is a global attractor of all positive solutions (cf. Theorem 3.2);
otherwise, Theorem 5.1 assures that there exists a positive equilibrium.

As an illustration, now take (5.9) subject to the constraints

µ1 > a11 + a12, µ2 > a12 + a22,

β1 + d1
µ1 + a11 + a12

=
β2 + d2

µ2 + a12 + a22
=: c > 0.

(5.10)

Under these conditions, one easily verifies that s(M(0)) > 0, and that x∗ = (c, c) is an equilibria of

(5.9). The matrix N̂ reads as N̂ =

[
µ1 − a11 −a12
−a21 µ2 − a22

]
, so N̂x∗ > 0. Hence, if β1 > 0, β2 > 0,

Theorem 5.5 implies that x∗ = (c, c) is a global attractor of all positive solutions of (5.9).
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For the situation β1 ≤ 0 or β2 ≤ 0, together with (5.10) if we now assume

β1 + d1
µ1

=
β2 + d2
µ2

=: γ,

then X∗ = (γ, γ) is a globally attractive equilibrium for the cooperative system associated with (5.9):

x′1(t) = x1(t)(β1 − µ1x1(t)) + d1x2(t− τ1)
x′2(t) = x2(t)(β2 − µ2x2(t)) + d2x1(t− τ2).

(5.11)

Since N̂X∗ > 0, from Corollary 5.2 then x∗ = (c, c) globally attracts the positive solutions of (5.9).

Remark 5.2 The requirements N̂X∗ > 0 and N̂x∗ > 0 in Theorems 5.3, 5.4 and 5.5 are expressed in
terms of the positive equilibria X∗ of (3.4) and x∗ of (1.3). It would be therefore relevant to improve
the above criteria, in the sense of achieving sufficient conditions for the uniform persistence of (1.3)
and the global attractivity of x∗ involving only the coefficients of the system. The theorem below is
a first attempt to establish such type of criteria.

Theorem 5.6 Suppose that, for all i, j = 1, . . . , n,

µi >
∑

j a
−
ij ,

βi ≥Ma+ii , dij ≥Ma+ij , i 6= j
(5.12)

with βi +
∑

j 6=i dij > M
∑

j a
+
ij, where

M = max
1≤i≤n

βi +
∑

j 6=i dij

µi −
∑

j a
−
ij

. (5.13)

Then (1.3) is dissipative and persistent. If, for all i, j = 1, . . . , n,

µi >
∑

j a
−
ij ,

βi ≥ 2Ma+ii , dij ≥ 2Ma+ij, i 6= j
(5.14)

with βi +
∑

j 6=i dij > 2M
∑

j a
+
ij, then (1.3) has an equilibrium x∗ > 0 which is globally attractive.

Proof. If (5.12) holds, we have M(0)q > 0 and N0q > 0, for q = (1, . . . , 1). From Theorem 4.2, we
derive that there exists a positive equilibrium X∗ = (X∗

1 , . . . , X
∗
n) of (3.4), with M(0)X∗ > 0. For

X∗
i = max1≤j≤nX

∗
j , one easily checks that X∗

i ≤
βi+

∑
j 6=i

dij

µi−
∑

j
a
−
ij

, and hence the estimates X∗
j ≤ M for

M defined in (5.13). To conclude the persistence of (1.3), from Theorem 5.3 it is sufficient to show

that N̂X∗ > 0. From the identities

βiX
∗
i +

∑

j 6=i

dijX
∗
j = X∗

i (µiX
∗
i −

∑

j

a−ijX
∗
j ), i = 1, . . . , n,

we deduce that

X∗
i (N̂X

∗
i )i = X∗

i

(
µiX

∗
i −

∑
j |aij |X

∗
j

)

= X∗
i

(
µiX

∗
i −

∑
j a

−
ijX

∗
j −

∑
j a

+
ijX

∗
j

)

= (βi − a+iiX
∗
i )X

∗
i +

∑
j 6=i(dij − a+ijX

∗
i )X

∗
j

≥ (βi −Ma+ii)X
∗
i +

(
min

1≤j≤n
X∗

j

)∑
j 6=i

(
dij −Ma+ij

)
> 0.

Next, suppose that the stronger conditions (5.14) hold. The components of the positive equilib-
rium x∗ = (x∗1, . . . , x

∗
n) of (1.3) also satisfy the estimates x∗i ≤ M, i = 1, . . . , n, for M as in (5.13).

Proceeding as above, N̂x∗ > 0, hence the conclusion follows from Theorem 5.5. Details are omitted.

Example 5.2 Consider again the system (5.9), with all coefficients being positive. If µ1 ≥ β1 +
d1, µ2 ≥ β2 + d2, β1 > 2a11, β2 > 2a22, d1 ≥ 2a12, d2 ≥ 2a21, then M ≤ 1 for M as in (5.13) and the
constraints (5.14) are fulfilled, hence there is a positive equilibrium which is a global attractor.
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