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Abstract

Explicit evaluations of matrix-variate gamma and beta integrals in the complex
domain by using conventional procedures is extremely difficult. Such an evaluation
will reveal the structure of these matrix-variate integrals. In this article, explicit
evaluations of matrix-variate gamma and beta integrals in the complex domain
for the order of the matrix p = 1, 2 are given. Then fractional integral operators
of the Kober type are given for some specific cases of the arbitrary function. A
formal definition of fractional integrals in the complex matrix-variate case was
given by the author earlier as the M-convolution of products and ratios, where
Kober operators become a special class of fractional integral operators.
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1. Introduction

There is intensified activity in the area of fractional calculus in recent years due
to its many applications in engineering, physical, biological and social sciences.
Solutions coming out of fractional differential equations are seen to describe real-
life and experimental situations much better compared to the solutions of conven-
tional differential equations. The reason seems to be that fractional derivatives
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are certain types of integrals and thereby describe global activity whereas con-
ventional derivatives describe local activity. Fractional calculus in the scalar and
matrix-variate case in the complex domain was not available in the literature but
recently given in [8],[9]. Fractional calculus for the real scalar variable case is
available in many books and articles, see for example [1],[2],[4],[11],[14]. Solutions
of fractional differential equations in the real scalar case is available in many books
and journals, see for example, [3]. Fractional integral operators in the scalar and
real matrix-variate cases may be seen from [7],[12]. A pathway extension may be
seen from [6],[10].

This author has given a formal definition of fractional integrals in the real and
complex matrix-variate case recently as M-convolutions of products and ratios,
see [8], [9]. Let X̃1 and X̃2 be p × p hermitian positive definite matrices and let

Ũ1 = X̃2

1
2 X̃1X̃2

1
2 and Ũ2 = X̃2

1
2 X̃1

−1
X̃2

1
2 . Then Ũ1 is called the product and Ũ2

is called the ratio. M-convolutions correspond to Mellin convolutions of products
and ratios in the scalar variable cases. Product will lead to type-2 or right-
sided fractional integrals and the ratio will lead to type-1 or left-sided fractional
integrals. Fractional integrals of the Kober type or Kober operators are denoted
by K−α

2,Ũ
f and K−α

1,Ũ
f respectively, where α indicates the order of the integrals.

As per the new definition introduced, these Kober operators have the following
representations:

K−α

2,Ũ
f =

|det(Ũ)|β
Γ̃p(α)

∫

Ṽ >Ũ

|det(Ṽ )|−β−α|det(Ṽ − Ũ)|α−pf(Ṽ )dṼ . (1.1)

K−α

1,Ũ
f =

|det(Ũ)|−α−β

Γ̃p(α)

∫

Ṽ <Ũ

|det(Ṽ )|β|det(Ũ − Ṽ )|α−pf(Ṽ )dṼ . (1.2)

In this paper we will examine (1.1) and (1.2) for many cases of the arbitrary
function f after evaluating matrix-variate gamma and beta integrals explicitly for
the cases p = 1, 2 in the complex domain. Explicit evaluations of matrix-variate
integrals are difficult and the evaluations given in this article reveal the structure
of these matrix-variate integrals in the real and complex cases.

We will use the following standard notations. All matrices appearing are
p× p with elements in the complex domain unless otherwise stated. Determinant
of (·) will be denoted by det(·) and |det(·)| will denote the absolute value of the
determinant of (·). Matrices in the complex domain will be written with a tilde, X̃ .
Constant matrices will not be written with a tilde whether in the real or complex
domain. tr(X) is the trace of X , (dX̃) = (dx̃ij) is the matrix of differentials dx̃ij ’s.
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Let X̃ = X1+ iX2 where X1 and X2 are real m×n matrices and i =
√
−1. Then

dX̃ = dX1 ∧ dX2 where

dX1 =

m
∏

i=1

n
∏

j=1

∧dxij1 and dX2 =

m
∏

i=1

n
∏

j=1

∧dxij2

where xij1 and xij2 are the (i, j)− th elements in X1 and X2 respectively, and ∧
denotes the wedge product. For any p × p matrix B = B1 + iB2 in the complex
domain, the determinant will be a complex number of the form det(B) = b + ic

where b and c are real scalar quantities. Then the absolute value of the determi-
nant will be of the form |det(B)| = [(b+ ic)(b− ic)]

1
2 = [b2 + c2]

1
2 . Note that the

conjugate of B1 + iB2 is B1 − iB2.

We need a few basic results on Jacobians of matrix transformations in the
complex domain. These results, other results and properties may be seen from
[5]. The results that we need will be listed here as lemmas.

Lemma 1.1. Let X̃ and Ỹ be m× n matrices in the complex domain. Let A be

m×m and B be n × n nonsingular constant matrices in the sense of free of the

elements in X̃ and Ỹ . Let C be a constant m× n matrix. Then

Ỹ = AX̃B + C, det(A) 6= 0, det(B) 6= 0 ⇒ dỸ = |det(AA∗)|n|det(BB∗)|mdX̃,

(1.3)
where A∗ and B∗ denote the conjugate transposes of A and B respectively.

When A = A∗, where A∗ denotes the conjugate transpose of A, then it is called
a hermitian matrix. The next result is about the transformation of a hermitian
matrix to a hermitian matrix.

Lemma 1.2. Let X̃ and Ỹ be p×p hermitian matrices and let A be a nonsingular

constant matrix. Then

Ỹ = AX̃A∗ ⇒ dỸ =

{

|det(A)|2pdX̃
|det(AA∗)|pdX̃

(1.4)

The next result is on a decomposition of the hermitian positive definite matrix
X̃ = X̃∗ > O.

Lemma 1.3. Let X̃ be a p × p hermitian positive definite matrix. Let T̃ be a

p× p lower triangular matrix with diagonal elements tjj’s being real and positive.
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Consider the unique representation X̃ = T̃ T̃ ∗. Then

X̃ = T̃ T̃ ∗ ⇒ dX̃ = 2p{
p
∏

j=1

t
2(p−j)+1
jj }dT̃ . (1.5)

Next we define a complex matrix variate gamma function, denoted by Γ̃p(α)
and defined as

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α− 1)...Γ(α− p+ 1), ℜ(α) > p− 1, (1.6)

with the following integral representation:

Γ̃p(α) =

∫

Ỹ >O

|det(Ỹ )|α−pe−tr(Ỹ )dỸ . (1.7)

By using Lemma 1.3 and (1.6) we can evaluate the integral in (1.7). Then a
matrix-variate gamma density, in the complex domain, can be defined as follows:

f(X̃) =
|det(B)|α
Γ̃p(α)

|det(X̃)|α−pe−tr(BX̃), X̃ = X̃∗ > O, ℜ(α) > p− 1 (1.8)

and f(X̃) = 0 elsewhere, where B = B∗ > O is a constant hermitian positive
definite matrix.

Lemma 1.4. Let X̃ be a nonsingular matrix and let Ỹ = X̃−1. Then

Ỹ = X̃−1 ⇒ dỸ =

{

|det(X̃X̃∗)|−2pdX̃ for a general X̃

|det(X̃X̃∗)|−p for X̃ = X̃∗ or X̃ = −X̃∗.
(1.9)

We need complex matrix variate beta function and its integral representations.
The complex matrix variate beta function will be denoted and defined as follows:

B̃p(α, β) =
Γ̃p(α)Γ̃p(β)

Γ̃p(α+ β)
,ℜ(α) > p− 1,ℜ(β) > p− 1 (1.10)

=

∫

O<X̃<I

|det(X̃)|α−p|det(I − X̃)|β−pdX̃ (1.11)

=

∫

Ũ>0

|det(Ũ)|α−p|det(I + Ũ)|−(α+β)dŨ (1.12)

for ℜ(α) > p− 1,ℜ(β) > p− 1 where, in general,
∫

A<X̃<B
f(X̃)dX̃ will mean the

integral of a real-valued scalar function f(X̃) of complex matrix argument X̃ and
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the integral is taken over all X̃ such that A = A∗ > O,B = B∗ > O, X̃ = X̃∗ >

O, X̃ −A > O,B − X̃ > O, where A and B are constant matrices.

2. Explicit Evaluations of Gamma and Beta Integrals in the Matrix

Variate Case in the Complex Domain

We will try to evaluate explicitly matrix-variate gamma and beta integrals
in the complex domain by using conventional procedures. This will reveal the
structure of the integrals. When the real p×p matrix X is symmetric and positive
definite then for p = 1 it reduces to a real scalar positive variable x > 0. If the
matrix X̃ is in the complex domain and if it is hermitian positive definite then also
for p = 1 it reduces to a real scalar positive variable x > 0. Hence for p = 1 the
matrix-variate gamma and beta integrals in the real positive definite or hermitian
positive definite cases reduce to the ordinary gamma and beta integrals in the real
scalar case.

2.1. Matrix-Variate Gamma in the Real Case, p = 2

For p = 2

Γ2(α) = π
1
2Γ(α)Γ(α− 1

2
) =

∫

X>O

|X|α− 3
2 e−tr(X)dX.

Let

X =

[

x1 x2

x2 x3

]

> O ⇒ x1 > 0, x3 > 0, x1x3 − x2
2 > 0.

Hence we have to evaluate a triple integral over x1, x2, x3 subject to the conditions
x1 > 0, x3 > 0, x1x3 − x2

2 > 0. The integral, denoted by Γ2 is the following:

Γ2 =

∫ ∫ ∫

[x1x3 − x2
2]
α− 3

2 e−(x1+x3)dx1 ∧ dx2 ∧ dx2.

Let x2 =
√
x1x3 r for fixed x1, x3, then the Jacobian is

√
x1x3. The integral

becomes

Γ2 =

∫ ∫ ∫

(x1x3)
α− 3

2 (1− r2)α−
3
2 e−(x1+x3)

√
x1x3dx1 ∧ dx3 ∧ dr

for −1 < r < 1, x1 > 0, x3 > 0. Integral over r gives
∫ 1

−1

(1− r2)α−
3
2dr = 2

∫ 1

0

(1− r2)α−
3
2dr, u = r2

=
Γ(1

2
)Γ(α− 1

2
)

Γ(α)
=

√
π
Γ(α− 1

2
)

Γ(α)
.
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But
∫

x1>0

xα−1
1 e−x1dx1 =

∫

x3>0

xα−1
3 e−x3dx3 = Γ(α).

Hence the integral is

Γ2 = [Γ(α)]2π
1
2
Γ(α− 1

2
)

Γ(α)

= π
1
2Γ(α)Γ(α− 1

2
), ℜ(α) > 1

2
= Γ2(α)

and hence the result is verified.

2.2. Matrix-Variate Gamma Integral in the Complex Case, p = 2

From our notation

Γ̃2(α) = πΓ(α)Γ(α− 1), ℜ(α) > 1.

Consider the matrix

X̃ =

[

x1 x2 + iy2
x2 − iy2 x3

]

= X̃∗

where * denotes the conjugate transpose. When X̃ > O or hermitian positive
definite then we have x1 > 0, x3 > 0, x1x3 − (x2

2 + y22) > 0. Hence integration is
to be done under these conditions. Let the integral be denoted by Γ̃2. Then

Γ̃2 =

∫

X̃>O

|det(X̃)|α−2e−tr(X̃)dX̃

=

∫ ∫ ∫ ∫

[x1x3 − (x2
2 + y22)]

α−2e−(x1+x3)dx1 ∧ dx3 ∧ dx2 ∧ dy2.

Let x2 =
√
x1x3 r cos θ, y2 =

√
x1x3 r sin θ then the Jacobian is x1x3 r and the

quadruple integral becomes

Γ̃2 =

∫ 2π

θ=0

∫ 1

r=0

∫

x1>0

∫

x3>0

(x1x3)
α−1r(1− r2)α−2e−(x1+x3)dx1 ∧ dx3 ∧ dr ∧ dθ.

Integral over θ gives 2π. Put u = r2. Integral over r gives

2

∫ 1

0

r(1− r2)α−2dr =

∫ 1

0

(1− u)α−2du =
Γ(1)Γ(α− 1)

Γ(α)
.
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Integrals over x1 and x3 give one Γ(α) each. Then the quadruple integral gives

π[Γ(α)]2
Γ(1)Γ(α− 1)

Γ(α)
= π Γ(α)Γ(α− 1) = Γ̃2(α)

for ℜ(α) > 1 which verifies the result.

2.3. Matrix-Variate Beta Integral in the Real Case, p = 2

The general definition of real matrix-variate beta function and an integral
representation are the following:

Bp(α, β) =
Γp(α)Γp(β)

Γp(α + β)
=

∫ I

O

|X|α− p+1
2 |I −X|β− p+1

2 dX

for X > O,ℜ(α) > p−1
2
,ℜ(β) > p−1

2
. As mentioned earlier, for p = 1 the real and

complex matrix-variate cases coincide with the real scalar variable case. Hence
we look into the case p = 2.

B2(α, β) =
Γ2(α)Γ2(β)

Γ2(α+ β)

= π
1
2
Γ(α)Γ(α− 1

2
)Γ(β)Γ(β − 1

2
)

Γ(α+ β)Γ(α+ β − 1
2
)

for ℜ(α) > 1
2
,ℜ(β) > 1

2
. Let

X =

[

x1 x2

x2 x3

]

then I −X =

[

1− x1 −x2

−x2 1− x3

]

and the integral representation becomes

∫ I

O

|X|α− 3
2 |I−X|β− 3

2dX =

∫ I

O

[x1x3−x2
2]

α− 3
2 [(1−x1)(1−x3)−x2

2]
β− 3

2dx1∧dx3∧dx2.

But

(x1x3 − x2
2)

α− 3
2 = x

α− 3
2

3 [x1 −
x2
2

x3
]α−

3
2

which means that x1 >
x2
2

x3
. Now,

[(1− x1)(1− x3)− x2
2]
β− 3

2 = (1− x3)
β− 3

2 [1− x1 −
x2
2

1− x3

]β−
3
3
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which means that x1 < 1− x2
2

1−x3
. That is,

x2
2

x3
< x1 < 1− x2

2

1− x3

which means that 0 < u < b where u = x1 − x2
2

x3
, b = 1 − x2

2

x3(1−x3)
. Then the

integrand will reduce to the following factors:

x
α− 3

2
3 (1− x3)

β− 3
2uα− 3

2 bβ−
3
2 [1− u

b
]β−

3
2

= x
α− 3

2
3 (1− x3)

β− 3
2 vα−

3
2 (1− v)β−

3
2 bα+β−2

where v = u
b
. Put z = x2√

x3(1−x3)
for fixed x3. The integral over z gives

∫

z

(1− z2)α+β−2dz = 2

∫

z>0

(1− z2)α+β−2dz

=

∫

w>0

w
1
2
−1(1− w)α+β−2dw,w = z2

=
Γ(1

2
)Γ(α + β − 1)

Γ(α + β − 1
2
)

,ℜ(α+ β) > 1.

Now the integrals over x3, v and w give the following:

∫ 1

0

xα−1
3 (1− x3)

β−1dx3 =
Γ(α)Γ(β)

Γ(α + β)
,ℜ(α) > 0,ℜ(β) > 0

∫ 1

0

vα−
3
2 (1− v)β−

3
2dv =

Γ(α− 1
2
)Γ(β − 1

2
)

Γ(α + β − 1)
,ℜ(α) > 1

2
,ℜ(β) > 1

2

2

∫

z>0

(1− z2)α+β−2dz =
Γ(1

2
)Γ(α + β − 1)

Γ(α + β − 1
2
)

.

Hence the total integral, by taking the product, is

π
1
2
Γ(α)Γ(α− 1

2
)Γ(β)Γ(β − 1

2
)

Γ(α + β)Γ(α+ β − 1
2
)

=
Γ2(α)Γ2(β)

Γ2(α + β)
= B2(α, β).

Hence the result is verified for the real case. Explicit evaluations for p ≥ 3 will be
difficult and it is simpler to use matrix methods directly starting from p ≥ 2.

2.4. Matrix-variate Beta Integral in the Complex Case: p = 2
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Let

X̃ =

[

x1 x2 + iy2
x2 − iy2 x3

]

, x1 > 0, x3 > 0

and

|det(X̃)|α−2 = [x1x3 − (x2
2 + y22)]

α−2

|det(I − X̃)|β−2 = [(1− x1)(1− x3)− (x2
2 + y22)]

β−2.

Steps parallel to the ones in the real case will go through and we have the factors

xα−2
3 (1− x3)

β−2vα−2(1− v)β−2bα+β−3, b = 1− (x2
2 + y22)

x3(1− x3)
.

Put z1 = x2√
x3(1−x3)

, z2 = y2√
x3(1−x3)

for fixed x3. Then b = 1 − (z21 + z22). Put

z1 = r cos θ, z2 = r sin θ, 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. The Jacobian is r.

∫

z1

∫

z2

bα+β−3dz1 ∧ dz2 =

∫ 2π

0

∫ 1

r=0

r(1− r2)α+β−3dr ∧ dθ

= π

∫ 1

0

2r(1− r2)α+β−3dr

= π
Γ(1)Γ(α+ β − 2)

Γ(α + β − 1)
,ℜ(α+ β) > 2.

Now, the integral over x3, v, z1, z2 give

∫ 1

0

xα−1
3 (1− x3)

β−1dx3 =
Γ(α)Γ(β)

Γ(α + β)
,ℜ(α) > 0,ℜ(β) > 0

∫ 1

0

vα−2(1− v)β−2dv =
Γ(α− 1)Γ(β − 1)

Γ(α + β − 2)
,ℜ(α) > 1,ℜ(β) > 1

∫

z1

∫

z2

bα+β−3dz1 ∧ dz2 = π
Γ(α+ β − 2)

Γ(α+ β − 1)
.

Then the product gives

π
Γ(α)Γ(α− 1)Γ(β)Γ(β − 1)

Γ(α+ β)Γ(α + β − 1)
=

Γ̃2(α)Γ̃2(β)

Γ̃2(α + β)
= B̃2(α, β)

for ℜ(α) > 1,ℜ(β) > 1, and hence the result is verified. Explicit evaluations for
p ≥ 3 will be difficult and it is simpler to use matrix methods directly starting
from p ≥ 2.
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3. Some Special Cases of Fractional Integrals in the Complex Matrix-

variate Case

Let f(Ṽ ) = |det(Ṽ )|−γ. Consider Kober operator of the second kind when
f(Ṽ ) is as given above.

K−α

2,Ũ
f =

|det(Ũ)|β
Γ̃p(α)

∫

Ṽ >Ũ

|det(Ṽ )|−β−α|det(Ṽ − Ũ)|α−pf(Ṽ )dṼ

=
|det(Ũ)|β
Γ̃p(α)

∫

Ṽ >Ũ

|det(Ṽ )|−β−α−γ|det(Ṽ − Ũ)|α−pdṼ

=
|det(Ũ)|β
Γ̃p(α)

∫

W̃>O

|det(W̃ )|α−p|det(W̃ + Ũ)|−β−α−γdW̃ , W̃ = Ṽ − Ũ

=
|det(Ũ)|−α−γ

Γ̃p(α)

∫

W̃>O

|det(W̃ )|α−p|det(I + Ũ−
1
2 W̃ Ũ−

1
2 )|−β−α−γdW̃

=
|det(Ũ)|−γ

Γ̃p(α)

∫

T̃>O

|det(T̃ )|α−p|det(I + T̃ )|−β−α−γdT̃ , T̃ = Ũ−
1
2 W̃ Ũ−

1
2

= |det(Ũ)|−γ Γ̃p(β + γ)

Γ̃p(α + β + γ)
, ℜ(α) > p− 1, ℜ(β + γ) > p− 1.

Consider Kober operator of the first kind.

K−α

1,Ũ
f =

|det(Ũ)|−α−β

Γ̃p(α)

∫

Ṽ <Ũ

|det(Ṽ )|β|det(Ũ − Ṽ )|α−pf(Ṽ )dṼ .

Special case 1: f(Ṽ ) = |det(Ṽ )|γ. Then

K−α

1,Ũ
f =

|det(Ũ)|−α−β

Γ̃p(α)

∫

Ṽ <Ũ

|det(Ṽ )|β+γ|det(Ũ)|α−p|det(I − Ũ−
1
2 Ṽ Ũ−

1
2 )|α−pdṼ

=
|det(Ũ)|γ
Γ̃p(α)

∫

O<W̃<I

|det(W̃ )|β+γ|det(I − W̃ )|α−pdW̃ , W̃ = Ũ−
1
2 Ṽ Ũ−

1
2

= |det(Ũ)|γ Γ̃p(β + γ + p)

Γ̃p(α+ β + γ + p)

for ℜ(α) > p− 1,ℜ(β + γ) > −1, by evaluating by using a type-1 beta integral.
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Special case 2: f(Ṽ ) = |det(I − Ṽ )|γ.

K−α

1,Ũ
f =

|det(Ũ)|−α−β

Γ̃p(α)

∫

Ṽ <Ũ

|det(Ṽ )|β|det(I − Ṽ )|−γ|det(Ũ − Ṽ )|α−pdṼ

=
1

Γ̃p(α)

∫

O<W̃<I

|det(W̃ )|β|det(I − W̃ )|α−p|det(I − Ũ−
1
2W̃ Ũ−

1
2 )|−γdW̃ ,

for W̃ = Ũ−
1
2 Ṽ Ũ−

1
2 . Now, evaluating by using Example 6.4 of [5] we have

K−α

1,Ũ
f =

Γ̃p(β + p)

Γ̃p(α + β + p)
2F1(β + p, γ;α+ β + p; Ũ), O < Ũ < I

for ℜ(α) > p− 1,ℜ(β) > −1.

Special case 3: f(Ṽ ) = |det(Ṽ )|γ|det(I − Ṽ )|−δ. Then, following through the
steps in special cases 1 and 2 we have

K−α

1,Ũ
f = |det(Ũ)|γ Γ̃p(β + γ + p)

Γ̃p(α+ β + γ + p)
2F1(β + γ + p, δ;α+ β + γ + p; Ũ)

for O < Ũ < I,ℜ(α) > p− 1,ℜ(β + γ) > −1.

Special case 4: We can have a hypergeometric series for f(Ṽ ). For the meaning
of the symbol [a]K , zonal polynomial C̃K(Ṽ ) and the partition K, see for example
[5],[13]. Let

f(Ṽ ) = rFs(a1, ..., ar; b1, ..., bs; Ṽ )

=
∞
∑

k=0

∑

K

[a1]K ...[ar]K
[b1]K ...[bs]K

C̃K(Ṽ )

k!

for s ≥ r or r = s+ 1 and ‖Ṽ ‖ < 1 where ‖(·)‖ denotes a norm of (·). Then

K−α

1,Ũ
f =

∞
∑

k=0

∑

K

[a1]K ...[ar]K
[b1]K ...[bs]Kk!

|det(Ũ)|−α−β

Γ̃p(α)

×
∫

Ṽ <Ũ

|det(Ṽ )|β|det(Ũ − Ṽ )|α−pCK(Ṽ )dṼ .
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Take out Ũ from |det(Ũ − Ṽ )|α−p and make the transformation W̃ = Ũ−
1
2 Ṽ Ũ−

1
2 .

Then the integral part becomes

1

Γ̃p(α)

∫

O<W̃<I

|det(W̃ )|β|det(I − W̃ )|α−pC̃K(Ũ
1
2W̃ Ũ

1
2 )

=
Γ̃p(β + p)

Γ̃p(α + β + p)

[β + p]K
[α + β + p]K

C̃K(Ũ)

by using (6.1.21) of [5]. Now, writing the result as a hypergeometric function we
have

K−α

1,Ũ
f =

Γ̃p(β + p)

Γ̃p(α + β + p)
r+1Fs+1(a1, ..., ar, β + p; b1, ..., bs, α + β + p; Ũ)

for s ≥ r or r = s+ 1 and ‖Ũ‖ < 1.
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