
ar
X

iv
:1

20
9.

14
15

v2
  [

m
at

h.
N

A
]  

22
 D

ec
 2

01
3

Locally Linearized Runge Kutta method of Dormand
and Prince

J.C. Jimeneza,b, A. Sotolongoc, J.M. Sanchez-Bornotd

aInstituto de Cibernética, Matemática y Física, La Habana, Cuba. e-mail: jcarlos@icimaf.cu
bThe Institute of Statistical Mathematics, Tokyo, Japan

cUniversidad de la Habana, La Habana, Cuba. e-mail: alina.sotolongo@yahoo.com
dCentro de Neurociencias de Cuba, La Habana, Cuba. e-mail: bornot@gmail.com

Abstract

In this paper, the effect that produces the local linearization of the embedded
Runge-Kutta formulas of Dormand and Prince for initial value problems is stud-
ied. For this, embedded Locally Linearized Runge-Kutta formulas are defined and
their performance is analyzed by means of exhaustive numerical simulations. For
a variety of well-known physical equations with different dynamics, the simula-
tion results show that the locally linearized formulas exhibit significant higher ac-
curacy than the original ones, which implies a substantial reduction of the number
of time steps and, consequently, a sensitive reduction of the overall computation
cost of their adaptive implementation.

Keywords: Dynamical Systems; Differential equation; Local Linearization;
Runge-Kutta; Numerical integrator

1. Introduction

It is well known (see, e.g., [3, 25, 21]) that conventional numerical schemes
such as Runge-Kutta, Adams-Bashforth, predictor-corrector and others produce
misleading dynamics when integrating Ordinary Differential Equations (ODEs).
Typical problems are, for instance, the convergence to spurious steady states,
changes in the basis of attraction, appearance of spurious bifurcations, etc. This
might yield serious mistakes in the interpretation and analysis of the processes
under consideration in practical control engineering or inapplied sciences. The
essence of such difficulties is that the dynamic of the numerical schemes (consid-
ered as discrete dynamical systems) is far richer than that of its continuous coun-
terparts. Contrary to the popular belief, drawbacks of thistype may no be solved

Preprint submitted to to a journal November 18, 2017

http://arxiv.org/abs/1209.1415v2


by reducing the stepsize of the numerical method. Therefore, it is highly desir-
able the development of numerical integrators that preserve, as much as possible,
the dynamical properties of the underlaying dynamical system for all step sizes or
relative big ones. In this direction, some modest advances has been achieved by a
number of relative recent integrators of the class of Exponential Methods, which
are characterized by the explicit use of exponentials to obtain an approximate so-
lution. An example of such integrators are the High Order Local Linearization
(HOLL) methods based on Runge-Kutta schemes [4, 5, 13].

HOLL integrators are obtained by splitting, at each time step, the solution
of the original ODE in two parts: the solution of a linear ODE plus the solu-
tion of an auxiliary ODE. The linear equation is solved by a Local Linearization
(LL) scheme [14, 15] in such a way that A-stability is ensured, whereas the so-
lution of the auxiliary one can be approximated by any conventional numerical
integrator, preferably a high order explicit scheme. Originally, HOLL methods
were introduced as a flexible approach for increasing the order of convergence
of the order-2 LL method but, in addition, they can be thoughtas a strategy for
constructing high order A-stable explicit schemes based onconventional explicit
integrators. For this reason, if we focus on the conventional integrator involved
in a particular HOLL scheme, then it is natural to say that thefirst one has been
locally linearized. In this way, if a Runge Kutta scheme is used to approximate
the above mentioned auxiliary ODE, the resulting HOLL scheme are indistinctly
called Local Linearization - Runge Kutta (LLRK) scheme or Locally Linearized
Runge Kutta (LLRK) scheme.

In [5], general results on the convergence, stability and dynamical properties
of the Locally Linearized Runge Kutta method were studied. Specifically, it was
demonstrated that: 1) the LLRK approach defines a general class of high order A-
stable explicit integrators that preserve the convergencerate of the involved (not
A-stable) explicit RK schemes; 2) in contrast with others A-stable explicit meth-
ods (such as Rosenbrock or the Exponential integrators), the RK coefficients in-
volved in the LLRK integrators are not constrained by any stability condition and
they just need to satisfy the usual, well-known order conditions of RK schemes,
which makes the LLRK approach more flexible and simple; 3) LLRK integra-
tors have a number of convenient dynamical properties such as the linearization
preserving and the conservation of the exact solution dynamics around hyper-
bolic equilibrium points and periodic orbits; and 4) because of the flexibility
in the numerical implementation of the LLRK discretizations, specific-purpose
LLRK schemes can be designed for certain classes of ODEs, e.g., for moderate or
large systems of equations. On the other hand, simulation studies carried out in

2



[4, 5, 22] have shown that, for a variety of test equations, LLRK schemes of order
3 and 4 preserve much better the stability and dynamical properties of the actual
solutions than their corresponding conventional RK schemes.

However, the accuracy and computational efficiency of the Local Lineariza-
tion methods have been much less considered up to now, being the dynamical
properties of such schemes the focus of previous studies andthe main reason for
the development of these methods. The few available resultsare the following.
On an identical time partition [5], the LLRK scheme based on the classical order-
4 RK scheme displays better accuracy than the order-5 RK formula of Dormand
& Prince [7] in the integration of a variety of ODEs. On different time partitions
[22], similar results are obtained by an adaptive implementation of the mentioned
LLRK scheme in comparison with the Matlab code ode45, which provides an
adaptive implementation of the embedded RK formulas of Dormand & Prince.
However, this is achieved at expense of additional evaluations of the vector field,
and with larger overall computational time. With this respect, the main draw-
back of that adaptive LLRK scheme is the absence of a computationally efficient
strategy based on embedded formulas.

The main purpose of this work is introducing an adaptive LLRKscheme based
on the embedded RK formulas of Dormand & Prince and evaluating, with simu-
lations, its accuracy and computational efficiency in orderto study the effect that
the local linearization produces on these known RK formulas. The Matlab code
developed with this goal is, same as the Matlab code ode45, addressed to low
dimensional non stiff initial value problems for medium to low accuracies.

The paper is organized as follows. In the Section 2, a basic introduction on the
Local Linearization - Runge Kutta (LLRK) schemes is presented. In the Section
3, the embedded Locally Linearized Runge-Kutta formulas are defined, and an
adaptive implementation of them is described. In the last two sections, the results
of a variety of exhaustive numerical simulations with well-known test equations
are presented and discussed respectively.

2. Notations and preliminaries

Let D ⊂ R
d be an open set. Consider thed-dimensional differential equation

dx(t)
dt

= f (t,x(t)) , t ∈ [t0,T] (1)

x(t0) = x0, (2)

3



wherex0 ∈ D is a given initial point, andf : [t0,T]×D −→ R
d is a differentiable

function. Lipschitz and smoothness conditions on the function f are assumed in
order to ensure a unique solution of this equation inD .

Let (t)h = {tn : n= 0,1, . . . ,N} be a time discretization with maximum step-
sizeh defined as a sequence of times that satisfy the conditionst0 < t1 < · · · <
tN = T and sup

n
(hn)≤ h< 1, wherehn = tn+1− tn for n= 0, . . . ,N−1.

For a given(tn,yn), letvn+1= yn+Λ1 (tn,yn;hn) be an order-γ1 approximation
to solution of the linear ODE

dz1(t)
dt

= Bnz1(t)+bn(t) , t ∈ [tn, tn+1], (3)

z1(tn) = yn (4)

at tn+1, and letwn+1 = Λyn
2 (tn,0;hn) be an order-γ2 Runge-Kutta scheme approx-

imating the solution of the nonlinear ODE

dz2(t)
dt

= q(tn,yn; t,z2(t)), t ∈ [tn, tn+1], (5)

z2(tn) = 0 (6)

at tn+1, whereBn = fx (tn,yn) is ad×d constant matrix, and

bn(t) = ft (tn,yn)(t− tn)+ f (tn,yn)−Bnyn

and

q(tn,yn;s,ξ ) = f(s,yn+Λ1(tn,yn;s− tn)+ξ )− fx(tn,yn)Λ1(tn,yn;s− tn)

−ft (tn,yn)(s− tn)− f (tn,yn)

ared-dimensional vectors. Here,fx and ft denote the partial derivatives respect
to x and t, respectively. Note that the vector field of the equation (5) not only
depends on the point(tn,yn) but also of the numerical flow used to approximate
z1(t).

Definition 1. ([4, 13, 5]) A Local Linearization - Runge Kutta (LLRK) scheme for
the ODE (1)-(2) is defined by the recursive expression

yn+1 = yn+Λ1 (tn,yn;hn)+Λyn
2 (tn,0;hn) (7)

for all tn ∈ (t)h, starting withy0 = x0.

4



Local truncation error, rate of convergence and various dynamical properties
of the general class of Local Linearization - Runge Kutta schemes (7) has been
studied in [5].

According to the Definition1, a variety of LLRK schemes can be derived. In
previous works [4, 5] , the Local Linearization scheme based on Padé approxima-
tions [14, 15] has been used to integrate the linear ODE (3)-(4), whereas the so
calledfour order classicalRunge-Kutta scheme [2] has been applied to integrate
the nonlinear ODE (5)-(6). This yields the order-4 LLRK scheme

yn+1 = yn+u4+
hn

6
(2k2+2k3+k4), (8)

where
u j = L(P6,6(2

−κ j Dnc jhn))
2κ j

r

and

k j = f
(
tn+c jhn,yn+u j +c jhnk j−1

)
− f (tn,yn)− fx (tn,yn)u j − ft (tn,yn)c jhn,

with k1 ≡ 0 andc =
[

0 1
2

1
2 1

]
. Here,Pp,q(·) denotes the(p,q)-Padé ap-

proximation for exponential matrices [18], and κ j the smallest integer number
such that

∥∥2−κ j Dnc jhn
∥∥≤ 1

2. The matricesDn, L andr are defined as

Dn =




fx(tn,yn) ft(tn,yn) f(tn,yn)
0 0 1
0 0 0


 ∈ R

(d+2)×(d+2),

L =
[

Id 0d×2
]

andr⊺ =
[

01×(d+1) 1
]

for non-autonomous ODEs; and as

Dn =

[
fx(yn) f(yn)

0 0

]
∈ R

(d+1)×(d+1),

L =
[

Id 0d×1
]

andr⊺ =
[

01×d 1
]

for autonomous equations.
On an identical time partition [5], LLRK formula (8) displays better accuracy

than the order-5 RK formula of Dormand & Prince in the integration of a variety
of ODEs. On different time partitions [22], similar results are obtained by an
adaptive implementation of LLRK formula (8) in comparison with the Matlab
ode45 code, which provides an adaptive implementation of the embedded RK
formulas of Dormand & Prince. However, this is achieved at expense of additional

5



evaluations of the vector fieldf, and with larger overall computational time. This
cost can be sensitively reduced by using the(2,2)-Padé approximations instead of
the order(6,6) one used in formula (8), preserving the order of convergence and
without significant lost of accuracy [22].

Local truncation error, rate of convergence, A-stability and various dynamical
properties of the LLRK schemes based on Padé approximationshas also been
studied in [5].

For a precise comparison of the Local Linearization - Runge Kutta method
with well-known integration methods such as Rosenbrock, Exponential Integra-
tors, Splitting Methods and others, the interested reader might read [5] or [13].

3. Numerical scheme

3.1. Embedded Locally Linearized Runge-Kutta formulas

In view of the Definition1, new integration formulas can be obtained as fol-
lows. Similarly to the LLRK scheme (8), the Local Linearization scheme based
on Padé approximations [14, 15] is used for integrating the linear ODE (3)-(4) but,
instead of the classical order-4 RK scheme, the embedded Runge-Kutta formulas
of Dormand & Prince [7] is now applied to integrate the nonlinear ODE (5)-(6).
This yields the embedded Locally Linearized Runge-Kutta formulas

yn+1 = yn+us+hn

s

∑
j=1

b jk j and ŷn+1 = yn+us+hn

s

∑
j=1

b̂ jk j , (9)

wheres= 7 is the number of the stages,

u j = L(Pp,q(2
−κ j Dnc jhn))

2κ j
r (10)

and

k j = f(tn+c jhn,yn+u j +hn

s−1

∑
i=1

a j ,ik i)− f (tn,yn)− fx (tn,yn)u j − ft (tn,yn)c jhn,

with k1 ≡ 0 and Runge-Kutta coefficientsa j ,i, b j , b̂ j andc j defined in the Table
1. Here,Pp,q(·) denotes the(p,q)-Padé approximation for exponential matrices
with p+q> 4. The numberκ j and the matricesDn, L andr are defined as in the
previous section.

6



0

1
5

1
5

3
10

3
40

9
40

4
5

44
45 −56

15
32
9

8
9

19372
6561 −25360

2187
64448
6561 −212

729

1 9017
3168 −355

33
46732
5247

49
176 − 5103

18656

1 35
384 0 500

1113
125
192 −2187

6784
11
84

y 35
384 0 500

1113
125
192 −2187

6784
11
84 0

ŷ 5179
57600 0 7571

16695
393
640 − 92097

339200
187
2100

1
40

Table 1: Coefficients tableau for the embedded formulas.

The local truncation error, the rate of convergence and the A-stability of the
LLRK formulas (9) will be consider in what follows. With this purpose, these
formulas are rewritten as

yn+1 = yn+hnϕ(tn,yn;hn) and ŷn+1 = yn+hnϕ̂(tn,yn;hn),

and the following additional notations are introduced. LetD be an open subset
of Rd, M an upper bound for‖fx‖ on [t0,T]×D , andL the Lipschitz constant
of the functionq(t,x(t); ·) (which exists for allt ∈ [t0,T] because Lemma 6 in
[5] under regular conditions forf). Denote byLn+1 the local truncation error of
the Local Linearization schemeyn+1 = yn+ u4 when it is applied to the linear
equation (3)-(4), for which the inequality

Ln+1 ≤Chp+q+1

holds with positive constantC [15]. Further, denote byL1
n+1 andL2

n+1 the local
truncation errors of the classical embedded Runge-Kutta formulas of Dormand
and Prince when they are applied to the nonlinear equation (5)-(6), for which the
inequalities

L1
n+1 ≤C1h6 and L2

n+1 ≤C2h5

hold with positive constantsC1 andC2 [7, 8].

7



Theorem 1. Let x be the solution of the ODE (1)-(2) with vector fieldf six times
continuously differentiable on[t0,T]×D . Then, the embedded Locally Linearized
Runge-Kutta formulas (9) have local truncation errors

‖x(tn+1)−x(tn)−hnϕ(tn,x(tn);hn)‖ ≤ Khp+q+1
n +C1h6

n

and
‖x(tn+1)−x(tn)−hnϕ̂(tn,x(tn);hn)‖ ≤ Khp+q+1

n +C2h5
n;

and global errors
‖x(tn+1)−yn+1‖ ≤ M1hmin{p+q,5}

and
‖x(tn+1)− ŷn+1‖ ≤ M2hmin{p+q,4}

for all tn+1 ∈ (t)h and h small enough, where K=C(1+ M

L
(eL −1)) is a positive

constant, and M1 and M2 as well. In addition, the embedded Locally Linearized
Runge-Kutta formulas (9) are A-stable if in the involved(p,q)-Padé approxima-
tion the inequality p≤ q≤ p+2 holds.

Proof. The local truncation errors and the global errors are a straightforward
consequence of Theorem 15 in [5], whereas the A-stability is a direct result of
Theorem 17 in [5]. �

Clearly, according to this result, the Locally Linearized Runge-Kutta formulas
(9) preserve the convergence rate of the classical embedded Runge-Kutta formulas
of Dormand and Prince if the inequalityp+q> 4 holds. Further, note that these
Locally Linearized formulas not only preserve the stability of the linear ODEs
whenp≤ q≤ p+2, but they are also able to "exactly" (up to the precision of the
floating-point arithmetic) integrate this class of equations whenp+ q = 12 (for
the numerical precision of the current personal computers [18]).

In addition, and trivially, the embedded Locally Linearized Runge-Kutta for-
mulas (9) inherit the dynamical properties derived in [5] for the general class of
Local Linearization - Runge Kutta methods.

3.2. Adaptive strategy

In order to write a code that automatically adjust the stepsizes for achieving a
prescribed tolerance of the local error at each step, an adequate adaptive strategy
is necessary. At glance, the automatic stepsize control forthe embedded RK for-
mulas of Dormand & Prince seems to fit well for the embedded LLRK formulas

8



(9). In what follows, the adaptive strategy of the Matlab code ode45 for these
formulas is described.

Once the values for the relative and absolute tolerancesRTol andATol, and
for the maximum and minimum stepsizeshmax andhmin are set, the basic steps of
the algorithm are:

1. Estimation of the initial stepsize

h0 = min{hmax,max{hmin,∆}}

where

∆ =

{ 1
rh

if hmax· rh > 1
hmax otherwise

with

rh =
1

0.8 ·RTol1/5
max

i=1...d

{
f i(y0)

max
{
|yi

0|, tr
}
}

andtr = ATol
RTol. Initialize f ail = 0.

2. Evaluation of the embedded formula (9)
3. Estimation of the error

error = ||
yn+1− ŷn+1

max
i=1,...,d

{
|yi

n|, | yi
n+1|, tr

}||∞

4. Estimation of a new stepsize

hnew= min{hmax,max{hmin,∆}}

where

∆ =





0.8 · (RTol
error )

1/5 ·h if error ≤ RTol

max{0.1,0.8 · (RTol
error)

1/5
} ·h if error > RToland f ail = 0

0.5 ·h if error > RToland f ail = 1

5. Validation ofyn+1: if error ≤ RTol, then acceptyn+1 as an approximation
to x at tn+1 = tn+h. Otherwise, return to 2 withhn = hnew and f ail = 1.

6. Control of the final step: iftn + h = T, stop. If tn+ h+ hnew> T, then
redefinehnew= T − (tn+h).

7. Return to 2 withn= n+1, hn = hnew, and f ail = 0.

9



j/i 1 2 3 4
1 1 −183/64 37/12 −145/128
2 0 0 0 0
3 0 1500/371 −1000/159 1000/371
4 0 −125/32 125/12 −375/64
5 0 9477/3392 −729/106 25515/6784
6 0 −11/7 11/3 −55/28
7 0 3/2 −4 5/2

Table 2: Values of the coefficientαi, j involved in the continuous LLRK formula
(11) .

3.3. Continuous formula

Continuous formulas of RK methods are usually defined for computing the
solutions on a dense set of time instants with minimum computational cost. Typi-
cally [8], they are constructing by means of a polynomial interpolation of the RK
formulas between two consecutive timestn, tn+1 ∈ (t)h.

By a simple combination of the LLRK formulas (9) with the continuous for-
mulas of the Dormand & Prince RK method [8] for (5)-(6), a continuous 7-stage
LLRK formula can be defined as

y(tn+θhn) = yn+u(θhn)+hn

7

∑
j=1

b j(tn+θhn)k j , 0< θ < 1, (11)

for all tn, tn+1 ∈ (t)h, where

u(θhn) = L(Pp,q(2
−κ j Dnθhn))

2κ j
r (12)

is ad-dimensional vector, and

b j(δ ) =
4

∑
i=1

αi, jδ i

is a polynomial with coefficientsαi, j . Here, the functionk j , the matricesDn, L
andr , and the numberκ j are defined as in (9), as well as the(p,q)-Padé approx-
imationPp,q. The coefficientsαi, j , defined in Table2, coincide with those of the
continuous RK formula implemented in the Matlab code ode45.

10



3.4. LLDP45 code

This subsection describes a Matlab2007b(32bits) implementation of the adap-
tive scheme described above, which will be denoted as LLDP45code.

In order to make a fair comparison between the linearized andthe nonlin-
earized RK formulas, the LLDP45 code is an exact copy of the ode45 one with
the exception of the program lines corresponding to the embedded and continuous
formulas of Dormand and Prince, which are replaced by the formulas (9) and (11)
respectively. We recall that the code ode45 implements the adaptive strategy of
the subsection3.2for the embedded RK formulas of Dormand & Prince, which is
considered by many authors the most recommendable code to beapplied as first
try for most problems [19].

Note that, the embedded LLRK formulas (9) require the computation of six
Padé approximationsPp,q at each integration step, which increases the computa-
tional cost of the original embedded RK formulas. Nevertheless, this number of
Padé approximations can be reduced by taking in to account that: a)(Pp,q(2−κDnc jhn))

2κ

gives an approximation to exponential matrixeDnc jhn; and b) the flow property of
the exponential operator. Indeed, this can be carried out intwo steps:

1. approximatingeDnhn/90 by the matrixM1/90= (Pp,q(2−κDnhn/90))2κ
, where

κ is the smallest integer number such that‖2−κDnhn/90‖ ≤ 1
2; and

2. the successive computation of the matrices

M2/90 = M1/90M1/90 M4/90 = M2/90M2/90

M8/90 = M4/90M4/90 M16/90 = M8/90M8/90

M32/90 = M16/90M16/90 M80/90 = M32/90M16/90M32/90

M1/10 = M8/90M1/90 M1/5 = M1/10M1/10

M2/5 = M1/5M1/5 M4/5 = M2/5M2/5

M3/10 = M1/10M1/5 M1 = M4/5M1/5.

Consequently, the matrixMc j corresponding to each RK coefficientc j pro-
vides an approximation toeDnc jhn, for all j = 1, ..,6. In this way, at each inte-
gration step, the code LLDP45 performs six evaluation off (same than the ode45
code), one Jacobian matrix and one matrix exponential.

The matrixM1/90 is computed by means of the function "expmf", which pro-
vides a C++ implementation of the classical(p,q)-Padé approximations algorithm
for exponential matrices with scaling and squaring strategy [18], andp= q= 3.

11



4. Numerical simulations

In this section, the performance of the LLDP45 and ode45 codes is compared
by means of numerical simulations. To do so, a variety of ODEsand simulation
types were selected. For all of them, the Relative Error

RE= max
i=1,...,d; t j∈(t)h

∣∣∣∣
xi(t j)−yi(t j)

xi(t j)

∣∣∣∣ (13)

between the "exact" solutionx and its approximationy is evaluated.
The simulations with the code ode45 were carried out with a wide range of

tolerances: crude withRTol= 10−3 andATol = 10−6, mild with RTol= 10−6

andATol= 10−9, and refined withRTol= 10−9 andATol= 10−12. The Matlab
code ode15s with refined toleranceRTol= 10−13 andATol= 10−13 was used to
compute the "exact" solutionx in all simulations.

4.1. Test examples

The first four examples have the semi-lineal form

dx
dt

= Ax +g(x), (14)

whereA is a square matrix andg is a function ofx. The vector field of the first
two examples have Jacobian with eigenvalues on or near the imaginary axis, which
made these equations difficult to be integrated by conventional schemes [19]. The
other two are also hard for conventional explicit schemes since they are examples
of stiff equations [19]. Example4 has an additional complexity for a number of
integrators that do not update the Jacobian of the vector field at each integration
step [19, 12]: the Jacobian of the linear term has positive eigenvalues,which
results a problem for the integration in a neighborhood of the stable equilibrium
pointx = 1.

Example 1. Periodic linear [5]

dx
dt

= A(x+2),

with

A =

[
i 0
0 −i

]
,

12



x(t0) = (−2.5,−1.5) and [t0,T] = [0,4π ].

Example 2. Periodic linear plus nonlinear term [5]

dx
dt

= A(x+2)+0.1x2,

where the matrixA is defined as in the previous example,x(t0) = (1,1), and
[t0,T] = [0,4π ].

Example 3. Stiff linear [5]

dx
dt

=−100H(x+1),

whereH is the 12-dimensional Hilbert matrix (with conditioned number 1.69×
1016), xi(t0) = 1, i = 1. . .12, and[t0,T] = [0,1].

Example 4. Stiff linear plus nonlinear term [5]

dx
dt

= 100H(x−1)+100(x−1)2−60(x3−1),

whereH is the 12-dimensional Hilbert matrix,xi(t0) = −0.5, i = 1. . .12, and
[t0,T] = [0,1].

The following examples are well known nonlinear test equations. This include
highly oscillatory, non stiff and mild stiff equations.

Example 5. Fermi–Pasta–Ulam equation defined by the Hamiltonian system [10]

H(p,q) =
1
2

3

∑
i=1

(p2
2i−1+p2

2i)+
w2

4

3

∑
i=1

(q2i −q2i−1)
2+

3

∑
i=0

(q2i+1−q2i)
2

with w= 50, initial conditions1,1,1/w,1 for the four first variables and zero for
the remainder eight, and[t0,T] = [0,15].

Example 6. Brusselator equation [8]:

dx1

dt
= 1+x2

1x2−4x1

dx2

dt
= 3x1−x2

1x2,

13



where(x1(t0),x2(t0)) = (1.5,3) and[t0,T] = [0,20].

Example 7. Rigid body equation [8]:

dx1

dt
= x2x3

dx2

dt
= −x1x3

dx3

dt
= −0.51x1x2

with (x1(t0),x2(t0),x3(t0)) = (0,1,1) over [t0,T] = [0,12].

Example 8. Chemical reaction [19]:

dx1

dt
= 1.3(x3−x1)+10400k(x1)x2

dx2

dt
= 1880(x4−x2(1+k(x1)))

dx3

dt
= 1752−269x3+267x1

dx4

dt
= 0.1+320x2−321x4

where k(x1) = e
(20.7− 1500

x1
)
. With initial condition(50,0,600,0.1) over [t0,T] =

[0,1], this is mild stiff equation.

Example 9. Van der Pol equation [9]:

dx1

dt
= x2

dx2

dt
= ε(1−x2

2)x1+x2

with (x1(t0),x2(t0)) = (2,0). Withε = 1 andε = 102, this is a non stiff and a mild
stiff equation on the intervals[t0,T] = [0,20] and [t0,T] = [0,300], respectively.

As illustration, Figure1 shows the first component of the solution of each ex-
ample, which will be consecutively named asPerLin, PerNoLin, StiffLin, StiffNo-
Lin, fpu, bruss, rigid, chm, vdp1 and vdp100.

14



PerLin PerNoLin StiffLin

StiffNoLin fpu bruss

rigid chm vdp1

vdp100

Figure 1: Path of the first components of the solution in each example.

15



4.2. Simulation A: integration over same time partition

This simulation is designed to compare the accuracy of the order-5 formulas of
the codes LLDP45 and ode45 over identical time partitions. First, the ode45 code
integrates all the examples with the crude tolerancesRTol= 10−3 andATol =
10−6. This defined, for each example, a time partition(t)h over which the order-5
formula of the LLDP45 code is evaluated as well. That is, the formula

yn+1 = yn+us+hn

s

∑
j=1

b jk j (15)

with u j = L(P3,3(2−κ j Dnc jhn))
2κ j r for the LLDP45 code. Tables3 and4 present,

respectively, the Relative Error (13) of the order-5 formula of each code in the
integration of the four semilinear and six nonlinear examples defined above. The
number of accepted time steps is shown as well. This comparison is repeated
twice but with the mild and refined tolerancesRTol= 10−6,ATol = 10−9 and
RTol= 10−9,ATol= 10−12. The results are also shown in Tables3 and4.

Example Tol
Time
steps

Relative Error
DP formulas

Relative Error
LLDP formulas

PerLin
Crude
Mild

Refined

147
598
2394

1.01
2.6×10−2

2.7×10−5

2.0×10−6

3.2×10−7

1.3×10−6

PerNoLin
Crude
Mild

Refined

105
411
1634

1.3×10−2

2.6×10−5

1.2×10−7

4.9×10−5

6.9×10−8

1.4×10−9

StiffLin
Crude
Mild

Refined

60
78
173

1.1×10−3

1.1×10−6

8.0×10−10

2.7×10−12

2.7×10−12

2.7×10−12

StiffNoLin
Crude
Mild

Refined

104
133
294

1.4×10−2

1.5×10−5

1.4×10−8

9.7×10−5

6.8×10−8

1.3×10−8

Table 3: Relative error of the order-5 formula of each code when integrate the
semilinear examples over identical time partition.

Note that, in general, the ode45 code is able to adequately integrate the test
equations with the tree specified tolerances. Exceptions are the highly oscilla-
tory fpu equation and the moderate stiff equationvpd100at crude tolerances, for
which the relative error is high or unacceptable, respectively. Observe that, the
order-5 locally linearized formula (15) is able to integrate the first equation with
an adequate relative error, but fail to integrate the secondone on the time partition
generated by the ode45 code. In this last case, the Padé algorithm fails to compute

16



the exponential matrix at some point of the mentioned time partition and, because
of that, the place corresponding to this information in Table4 is empty.

Example Tol
Time
steps

Relative Error
DP formulas

Relative Error
LLDP formulas

fpu
Crude
Mild

Refined

964
4474
19190

1.9×102

8.1
1.7×10−2

1.5×10−2

2.9×10−3

1.7×10−2

rigid
Crude
Mild

Refined

19
66
256

2.7×10−2

7.5×10−5

2.0×10−7

1.5×10−3

4.0×10−6

1.8×10−8

chm
Crude
Mild

Refined

679
723
1520

1.1×10−3

1.1×10−6

1.2×10−8

5.5×10−7

2.5×10−7

1.2×10−8

bruss
Crude
Mild

Refined

46
148
558

7.7×10−2

8.7×10−6

1.5×10−8

2.4×10−2

3.5×10−7

1.2×10−9

vdp1
Crude
Mild

Refined

59
204
785

2.0
2.8×10−4

5.6×10−7

0.14
1.5×10−5

3.1×10−8

vdp100
Crude
Mild

Refined

16916
17516
31254

1.9×104

0.42
1.2×10−3

−
9.2×10−2

8.1×10−4

Table 4: Relative error of the order-5 formula of each code when integrate the
nonlinear examples over identical time partition.

4.3. Simulation B: integration with same tolerance

This simulation is designed to compare the performance the codes LLDP45
and ode45 with the same tolerances. As a difference with Simulation A, here each
codes use a different time partition defined by their own adaptive strategy.

Tables5 and6 summarize the results of each code in the integration of each
example for the three sets of tolerances specified above. Thecolumn "Time" in
these tables presents the relative overall time of each numerical scheme with re-
spect to that of the ode45 code on the whole interval[t0,T]. This overall time ratio
works as simple indicator to compare the total computational cost of each code.
In addition, the tables show the number of accepted and failed steps, the number
of evaluations off and fx, and the number of exponential matrices computed in
the integration of each example.

17



Example Code Tol
Time
steps

Failed
steps

f exp(fx) Time
Relative

Error

PerLin ode45
Crude
Mild

Refined

147
598
2394

0
0
0

883
3589
14365

0
0
0

1
1
1

10.2
2.6×10−2

2.7×10−5

LLDP45
Crude
Mild

Refined

14
14
15

0
0
0

85
85
91

14
14
15

0.27
0.08
0.01

2.0×10−9

3.0×10−9

2.0×10−9

PerNoLin ode45
Crude
Mild

Refined

105
411
1634

0
0
0

631
2467
9805

0
0
0

1
1
1

1.3×10−2

2.6×10−5

1.2×10−7

LLDP45
Crude
Mild

Refined

42
137
534

0
0
0

253
823
3205

42
137
534

0.74
0.62
0.57

2.2×10−3

3.6×10−6

2.1×10−9

StiffLin ode45
Crude
Mild

Refined

60
78
172

6
1
6

397
475
1069

0
0
0

1
1
1

1.1×10−3

1.1×10−6

8.0×10−10

LLDP45
Crude
Mild

Refined

14
14
15

0
0
0

85
85
91

14
14
15

0.33
0.34
0.15

2.5×10−12

2.3×10−12

2.3×10−12

StiffNoLin ode45
Crude
Mild

Refined

104
133
294

4
5
2

649
829
1777

0
0
0

1
1
1

1.4×10−2

1.5×10−5

1.4×10−8

LLDP45
Crude
Mild

Refined

21
43
132

0
0
2

127
259
805

21
43
134

0.32
0.53
0.68

8.0×10−4

1.6×10−6

9.2×10−9

Table 5: Code performance in the integration of the semilinear examples with the
same tolerances.

4.4. Simulation C: integration with similar accuracy

In this type of simulation, the tolerancesRTol andATol of the LLDP45 code
is changed until its relative error in the integration of each example achieves sim-
ilar value to that corresponding to the code ode45. This simulation is carried out
three times, changing the tolerances of the ode45 from the crude values to the re-
fined values specified above. Tables7 and8 summarize the performance of each
code in the integration of each example. As in the previous two tables, this in-
cludes the relative overall time, number of accepted and failed steps, the number
of evaluations off and fx, and the number of exponential matrices computed in
the integration of each example.

18



Example Code Tol
Time
steps

Failed
steps

f exp(fx) Time
Relative

Error

fpu ode45
Crude
Mild

Refined

964
4474
19190

2
60
45

5797
27205
115411

0
0
0

1
1
1

1.9×102

8.1
1.7×10−2

LLDP45
Crude
Mild

Refined

377
1496
6021

48
125
86

2551
9727
36643

425
1621
6107

0.81
0.67
0.49

17.4
2.0×10−2

1.7×10−2

rigid ode45
Crude
Mild

Refined

19
66
256

2
4
1

127
421
1543

0
0
0

1
1
1

2.7×10−2

7.5×10−5

2.0×10−7

LLDP45
Crude
Mild

Refined

16
53
201

0
5
0

97
349
1207

16
58
201

1.18
1.55
1.48

3.3×10−3

8.6×10−6

3.1×10−8

chm ode45
Crude
Mild

Refined

679
723
1521

47
16
1

4357
4435
9133

0
0
0

1
1
1

1.1×10−3

1.1×10−6

1.2×10−8

LLDP45
Crude
Mild

Refined

152
357
859

1
2
57

919
2155
5497

153
359
916

0.43
1.05
1.18

8.4×10−4

9.2×10−7

1.2×10−8

bruss ode45
Crude
Mild

Refined

46
148
558

12
13
4

349
967
3373

0
0
0

1
1
1

7.7×10−2

8.7×10−6

1.5×10−8

LLDP45
Crude
Mild

Refined

36
105
396

7
14
11

259
715
2443

43
119
407

1.32
1.47
1.38

6.2×10−3

5.4×10−6

4.8×10−9

vdp1 ode45
Crude
Mild

Refined

59
204
785

10
32
19

415
1417
4825

0
0
0

1
1
1

2.24
2.8×10−4

5.7×10−7

LLDP45
Crude
Mild

Refined

44
162
609

10
38
12

325
1201
3727

54
200
621

1.23
1.45
1.24

1.95
5.8×10−5

1.4×10−7

vdp100 ode45
Crude
Mild

Refined

16916
17516
31253

1074
1540

9

107941
114337
187573

0
0
0

1
1
1

1.9×104

0.41
1.2×10−3

LLDP45
Crude
Mild

Refined

3866
7893
19887

120
19
568

23917
47473
122731

3986
7912
20455

0.35
0.69
1.02

16.1
2.1×10−3

5.6×10−4

Table 6: Code performance in the integration of the nonlinear examples with the
same tolerances.

19



Example Code Tol
Time
steps

Failed
steps

f exp(fx) Time
Relative

Error

PerLin ode45
Crude
Mild

Refined

147
598
2394

0
0
0

883
3589
14365

0
0
0

1
1
1

10.1
2.6×10−2

2.7×10−5

LLDP45
100×Crude
100×Crude
100×Crude

13
13
13

0
0
0

79
79
79

13
13
13

0.23
0.06
0.01

2.0×10−9

2.0×10−9

2.0×10−9

PerNoLin ode45
Crude
Mild

Refined

105
411
1634

0
0
0

361
2467
9805

0
0
0

1
1
1

1.2×10−2

2.6×10−5

1.2×10−7

LLDP45
7.5×Crude

7×Mild
80×Refined

32
95
224

0
0
0

193
571
1345

32
95
224

0.55
0.44
0.24

1.2×10−2

1.5×10−5

1.2×10−7

StiffLin ode45
Crude
Mild

Refined

60
78
172

6
1
6

397
475
1069

0
0
0

1
1
1

1.1×10−3

1.1×10−6

8.0×10−10

LLDP45
100×Crude
100×Crude
100×Crude

13
13
13

0
0
0

79
79
79

13
13
13

0.35
0.28
0.12

2.6×10−12

2.6×10−12

2.6×10−12

StiffNoLin ode45
Crude
Mild

Refined

104
133
294

4
5
2

649
829
1777

0
0
0

1
1
1

1.4×10−2

1.5×10−5

1.4×10−8

LLDP45
9×Crude
40×Mild

8.45×Refined

24
28
90

2
0
0

157
169
541

26
28
90

0.38
0.35
0.46

1.3×10−2

1.1×10−5

1.0×10−8

Table 7: Code performance in the integration of the semilinear examples with
similar accuracy.

4.5. Simulation D: evaluation of the dense output

This simulation is designed to compare the accuracy of the continuous formu-
las of the codes LLDP45 and ode45 over their dense output. Forthis, both codes
are applied first to each example with the same crude tolerances RTol= 10−3

andATol= 10−6 but, the relative error of each code is now computed on its re-
spective dense output instead on the time partition(t)h defined by the adaptive
strategy. Tables9 and10 present these relative errors. The number of accepted
time steps and dense output times are also shown. This comparison is repeated
twice but with the mild and refined tolerancesRTol= 10−6,ATol = 10−9 and
RTol= 10−9,ATol= 10−12. The results are also shown in Tables9 and10.

20



Example Code Tol
Time
steps

Failed
steps

f exp(fx) Time
Relative

Error

fpu ode45
Crude
Mild

Refined

964
4474
19190

2
60
45

5797
27205
115411

0
0
0

1
1
1

1.9×102

8.1
1.7×10−2

LLDP45
10×Crude
100×Mild

10×Refined

242
567
3783

29
39
107

1627
3637
23341

271
606
3890

0.49
0.26
0.37

1.0×102

5.2
1.1×10−2

rigid ode45
Crude
Mild

Refined

19
66
256

2
4
1

127
421
1543

0
0
0

1
1
1

2.7×10−2

7.5×10−5

2.0×10−7

LLDP45
30×Crude
22×Mild

19.7×Refined

15
30
111

0
2
1

91
193
673

15
32
112

1.14
0.93
0.83

1.8×10−2

3.3×10−5

1.3×10−7

chm ode45
Crude
Mild

Refined

679
723
1521

47
16
1

4357
4435
9133

0
0
0

1
1
1

1.1×10−3

1.1×10−6

1.3×10−8

LLDP45
1.5×Crude
1.4×Mild

2.0×Refined

146
341
789

1
2
58

883
2059
5083

147
343
847

0.41
1.00
1.10

1.1×10−3

1.0×10−6

1.0×10−8

bruss ode45
Crude
Mild

Refined

46
148
558

12
13
4

349
967
3373

0
0
0

1
1
1

7.7×10−2

8.7×10−6

1.5×10−8

LLDP45
4.6×Crude
1.2×Mild

3.5×Refined

28
101
309

7
13
8

211
685
1903

35
114
330

1.16
1.27
1.05

7.5×10−2

8.1×10−6

1.3×10−8

vdp1 ode45
Crude
Mild

Refined

59
204
785

10
32
19

415
1417
4825

0
0
0

1
1
1

2.0
2.8×10−4

5.6×10−7

LLDP45
3.2×Crude
3.2×Mild

4.0×Refined

42
128
461

10
26
10

313
925
2827

52
154
471

1.21
1.12
0.95

1.47
2.4×10−4

4.1×10−7

vdp100 ode45
Crude
Mild

Refined

16916
17516
31253

1074
1540

9

107941
114337
187573

0
0
0

1
1
1

1.9×104

0.42
1.2×10−3

LLDP45
10×Crude
39×Mild

98.5×Refined

3780
5026
10719

24
731
37

22825
34543
64537

3804
5757
10756

0.34
0.50
0.53

1.9×104

0.26
1.1×10−3

Table 8: Code performance in the integration of the nonlinear examples with sim-
ilar accuracy.

5. Discussion

The results of the previous section show the following: 1) onthe same time
partition (Tables3 and4), the embedded LLRK formulas are significantly much
accurate than the classical embedded RK formulas of Dormand& Prince. 2) with
identical tolerances and adaptive strategy (Tables5 and6), the LLDP45 code is

21



more accurate than the ode45 code and requires much less timesteps for inte-
grating the whole intervals. For highly oscillatory, stifflinear, stiff semilinear
and mildly stiff nonlinear problems the overall time of the adaptive LLDP45 code
is lower than that of the ode45 code, whereas it is similar or bigger for equa-
tions with smooth solution; 3) for reaching similar - but always lower - accuracy
(Tables7 and8), the LLDP45 code also requires much less time steps than the
ode45 code for integrating the whole intervals. In this situation, the overall time
of the adaptive LLDP45 code is again much lower than that of the ode45 code for
highly oscillatory, stiff linear, stiff semilinear and mildly stiff nonlinear problems,
whereas it is slightly bigger only for two equations with smooth solution (bruss
and vdp1 examples); and 4) the accuracy of the dense output ofthe LLDP45 code
is, in general, higher than the accuracy of the ode45 code (Tables9 and10).

Example Code Tol
Time
steps

Dense
OutPut

Relative
Error

PerLin ode45
Crude
Mild

Refined

147
598
2394

589
2393
9577

10.2
2.6×10−2

1.6×10−3

LLDP45
Crude
Mild

Refined

14
14
15

57
57
61

2.0×10−9

3.0×10−9

4.1×10−9

PerNoLin ode45
Crude
Mild

Refined

105
411
1634

313
1169
4625

4.8×10−3

3.0×10−6

2.7×10−9

LLDP45
Crude
Mild

Refined

42
137
534

101
293
1073

1.5×10−3

8.7×10−7

9.2×10−10

StiffLin ode45
Crude
Mild

Refined

60
78
172

241
313
689

1.1×10−3

1.1×10−6

8.1×10−10

LLDP45
Crude
Mild

Refined

14
14
15

53
57
61

2.7×10−12

2.7×10−12

2.7×10−12

StiffNoLin ode45
Crude
Mild

Refined

104
133
294

417
533
1177

1.4×10−2

3.0×10−5

2.6×10−8

LLDP45
Crude
Mild

Refined

21
43
132

85
173
525

6.4×10−3

2.9×10−5

7.3×10−8

Table 9: Relative error of the continuous formulas of the codes over their dense
output after integrating the semilinear examples.

22



Example Code Tol
Time
steps

Dense
OutPut

Relative
Error

fpu ode45
Crude
Mild

Refined

964
4474
19190

3857
17897
76761

9.5×102

19.0
0.86

LLDP45
Crude
Mild

Refined

377
1496
6021

1497
5985
24085

33.8
2.8×10−2

0.15

rigid ode45
Crude
Mild

Refined

19
66
256

77
265
1025

0.31
3.4×10−4

1.1×10−6

LLDP45
Crude
Mild

Refined

16
53
201

65
213
805

0.19
1.7×10−4

2.3×10−7

chm ode45
Crude
Mild

Refined

679
723
1521

2717
2893
6085

1.1×10−3

1.1×10−6

5.7×10−8

LLDP45
Crude
Mild

Refined

152
357
859

609
1429
3409

9.4×10−4

9.2×10−7

5.8×10−8

bruss ode45
Crude
Mild

Refined

46
148
558

185
593
2233

8.8×10−2

1.0×10−5

1.7×10−8

LLDP45
Crude
Mild

Refined

36
105
396

145
421
1585

6.2×10−3

2.4×10−5

1.1×10−8

vdp1 ode45
Crude
Mild

Refined

59
204
785

237
817
3141

2.9×102

6.9×10−4

4.3×10−6

LLDP45
Crude
Mild

Refined

44
162
609

177
649
2437

2.25
2.3×10−4

1.9×10−7

vdp100 ode45
Crude
Mild

Refined

16916
17516
31253

67665
70065
125013

2.0×104

0.47
4.4×10−3

LLDP45
Crude
Mild

Refined

3866
7893
19887

15457
31573
79509

2.0×104

4.1×10−2

2.1×10−3

Table 10: Relative error of the continuous formulas of the codes over their dense
output after integrating the nonlinear examples.

These simulations results clearly shown that, in the ten examples, the local
linearization of the embedded Runge-Kutta formulas of Dormand and Prince pro-
duces a significant improvement of the accuracy of the classical formulas. How-
ever, this is clearly not a result that could be expected according to the local trun-
cation errors given in Theorem1. This indicates that, most likely, sharper error
estimates could be obtained for the locally linearized formulas, which is certainly
an important open problem to solve.

Note that the significantly better accuracy of the locally linearized formulas
implies a substantial reduction of the number of time steps and, consequently, a

23



sensitive reduction of the overall computation cost in eight of the ten test equations
(see Tables7 and 8). This indicates that, for various classes of equations, the
additional computational cost of computing the exponential of a Jacobian matrix
at each time step is compensated for the gain of accuracy. This result certainly
agrees with previous reports in the same direction as that given in [19]: "supplying
a function for evaluating the Jacobian can be quite advantageous, both with respect
to reliability and cost".

Further, note that three of the eight test equations for which the application of
locally linearized formulas yields a sensitive reduction of the overall computation
cost are systems of twelve equations. This illustrates the usefulness of these in-
tegrators for low dimensional problems in general. However, because the locally
linearized formulas (9) are expressed in terms of the Padé algorithm for computing
exponential matrices, it is expected that they are unable tointegrate moderately
large system of ODE with a rational computational cost. In this case, because of
the flexibility in the numerical implementation of the LLRK methods mentioned
in the introduction, the local linearization of the embedded Runge Kutta formu-
las of Dormand and Prince can be easily formulated in terms ofthe Krylov-type
methods for exponential matrices. In effect, this can be done just by replacing
the Padé formula in (10) and (12) by the Krylov-Padé formula as performed in
[5, 16, 17] for the local linearizations schemes for ordinary, randomand stochas-
tic differential equations. In this way, the Locally Linearized formulas of Dor-
mand and Prince could be applied to high dimensional ODEs with a reasonable
computational cost [23].

On the other hand, we recall that, in order to study the effectof the local
linearization on the conventional RK scheme of Dormand and Prince, the LLDP45
code considered in this work is an exact copy of the code ode45with the exception
of the program lines corresponding to the embedded and continuous formulas. In
this way, the LLDP45 code does not include a number of convenient modifications
that might improve its performance. Some of they are the following:

• the initialh at t0, which can be estimated by means the exact second deriva-
tive of the solutionx with no extra cost (as in [22]);

• online smoothness and stiffness control for estimating thenewh at each step
(as, e.g., in [9]);

• the automatic detection of constant Jacobian matrix (as in [6, 24, 26]);

• option for using exact, numerical or automatic Jacobian matrices (as in [19,
20, 1]);

24



• faster algoritms to compute the Padé approximation to exponential matrix
(as, e.g., in [11])

• a parallel implementation of matrix multiplications involved in the expo-
nential matrix evaluations for taking advantage of the multi core technology
available in the current microprocessors;

• increase the number of times of the dense outputs: a) up to twelve per each
pair of consecutive times of the partition(t)h with no extra computation of
exponential matrices; or b) up to ninety with some few extra matrix multi-
plications;

• a new continuous formula that replace the current one based on the continu-
ous RK formula by other based on a polynomial interpolation of the LLRK
formula itself (i.e, derived from the standard way of constructing continuous
RK formulas as in [8]); and

• change ofhmax, which seems to be too short for semilinear equations.

6. Conclusions

In this paper, embedded Locally Linearized Runge-Kutta formulas for initial
value problems were introduced and their performance analyzed by means of ex-
haustive numerical simulations. In this way, the effect that produces the local
linearization of the classical embedded Runge-Kutta formulas of Dormand and
Prince were studied. It was shown that, for a variety of well-known physical equa-
tions usually taken in simulations studies as test equations, the local linearization
of the embedded Runge-Kutta formulas of Dormand & Prince produces a signifi-
cant improvement of the accuracy of classical formulas, which implies a substan-
tial reduction of the number of time steps and, consequently, a sensitive reduction
of the overall computation cost of their adaptive implementation.

Acknowledgment

The first author thanks to Prof. A. Yoshimoto for his invitation to the Institute
of Statistical Mathematics, Japan, where the manuscript and its revised version
were completed.

25



Bibliography

[1] Bischof C., Lang B. and Vehreschild, Automatic differentiation for Matlab
programs, Proc. Appl. Math. Mech., 2 (2003) 50-53.

[2] Butcher J.C, Numerical methods for Ordinary Differential Equations, 2nd
Edition, John Wiley, 2008.

[3] Cartwright J.H.E. and Piro O., The dynamics of Runge-Kutta methods, Int.
J. Bifurc. & Chaos, 2 (1992) 427-449.

[4] de la Cruz H., Biscay R.J., Carbonell F., Jimenez J.C. andOzaki T, Local
Linearization-Runge Kutta (LLRK) methods for solving ordinary differen-
tial equations, In: Lecture Note in Computer Sciences 3991,Springer-Verlag
2006, 132-139.

[5] de la Cruz H., Biscay R.J., Jimenez J.C. and Carbonell F.,Local Lineariza-
tion - Runge Kutta Methods: a class of A-stable explicit integrators for dy-
namical systems, Math. Comput. Modell., 57 (2013) 720-740.

[6] Deuflhard P., Recent progress in extrapolation methods for ordinary differ-
ential equations, SIAM Rev., 27 (1985)505-535.

[7] Dormand, J. R. and Prince P. J, A family of embedded Runge-Kutta formu-
lae, J. Comp. Appl. Math., Vol. 6, (1980) 19-26.

[8] Hairer E., Norsett S. P. and Wanner G, Solving Ordinary Differential Equa-
tions I, 2nd ed., Springer-Verlag: Berlin, 1993.

[9] Hairer E. and Wanner G, Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems, 3th ed., Springer-Verlag Berlin, 1996.

[10] Hairer E., Lubich C. and Wanner G., Geometric numericalintegration,
Springer-Verlag, 2006.

[11] Higham N.J., The scaling and squaring method for the matrix exponential
revisited. SIAM J. Matrix Anal. Appl., 26 (2005) 1179-1193.

[12] Hochbruck M., Ostermann A. and Schweitzer J., Exponential Rosenbrock
type methods, SIAM J. Numer. Anal. 47 (2009) 786–803.

26



[13] Jimenez J.C., Local Linearization methods for the numerical inte-
gration of ordinary differential equations: An overview. Interna-
tional Center for Theoretical Physics, Trieste, Preprint 2009-035.
http://users.ictp.it/~pub_off/preprints-sources/2009/IC2009035P.pdf.

[14] Jimenez J.C., Biscay R., Mora C. and Rodriguez L.M., Dynamic properties
of the Local Linearization method for initial-value problems, Appl. Math.
Comput., 126 (2002) 63-81.

[15] Jimenez J.C., Carbonell F, Rate of convergence of locallinearization
schemes for initial-value problems, Appl. Math. Comput., 171 (2005) 1282-
1295.

[16] Jimenez J.C. and Carbonell F., Rate of convergence of local linearization
schemes for random differential equations, BIT, 49 (2009) 357–373.

[17] Jimenez J.C. and de la Cruz H., Convergence rate of strong Local Lineariza-
tion schemes for stochastic differential equations with additive noise, BIT,
52 (2012) 357-382.

[18] C. Moler and C. Van Loan, Nineteen dubious ways to compute the exponen-
tial of a matrix, twenty-five years later. SIAM Review, 45 (2003) 3-49.

[19] Shampine L.F. and Reichelt M.W, The Matlab ODE suite. SIAM J. Scient.
Comput., 18 (1997) 11-22.

[20] Shampine L.F., Accurate Numerical Derivatives in MATLAB, ACM Trans-
actions on Mathematical Software, 33 (2007) 26:1–26:17.

[21] Skufca J. D., Analysis still matters: a surprising instance of failure of Runge–
Kutta–Felberg ODE solvers. SIAM Review, 46 (2004) 729–737.

[22] Sotolongo A., Study of some adaptive Local Linearization codes for ODEs.
B.S. Dissertation, Havana University, July 2011.

[23] Sotolongo A. and Jimenez J.C., Locally Linearized Runge Kutta formulas of
Dormand and Prince for large systems of differential equations. In prepara-
tion.

27

 http://users.ictp.it/~pub_off/preprints-sources/2009/IC2009035P.pdf


[24] Steihaug T. and Wolfbrabdt A., An attempt to avoid exactJacobian and
non-linear equations in the numerical solution of stiff differential equations,
Math. Comp., 33 (1979) 521-534.

[25] Stewart I., Numerical methods: Warning-handle with care!, Nature, 355
(1992) 16-17.

[26] Zedan H., Avoiding the exactness of the Jacobian matrixin Rosenbrock for-
mulae. Comput. Math. Appl. 19 (1990) 83Ű89.

28


	1 Introduction
	2 Notations and preliminaries
	3 Numerical scheme
	3.1 Embedded Locally Linearized Runge-Kutta formulas
	3.2 Adaptive strategy
	3.3 Continuous formula
	3.4 LLDP45 code

	4 Numerical simulations
	4.1 Test examples
	4.2 Simulation A: integration over same time partition
	4.3 Simulation B: integration with same tolerance
	4.4 Simulation C: integration with similar accuracy
	4.5 Simulation D: evaluation of the dense output

	5 Discussion
	6 Conclusions
	Bibliography

