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A NON-AUTONOMOUS KIND OF DUFFING EQUATION

JAUME LLIBRE AND ANA RODRIGUES

Abstract. We study the periodic solutions of the following kind of non-autonomous
Duffing differential equation ÿ +ay − εy3 = εh(t, y, ẏ), with a > 0, ε a small param-
eter and h a C2 function in its variables.

1. Introduction and statement of the main results

In 1922 Hamel [8] provided the first general results for the existence of periodic
solutions of the periodically forced pendulum equation

(1) ÿ + a sin y = b sin t.

This differential equation was the main subject of a monograph published four years
earlier by Duffing [5], who had restricted his study to the approximate determination
of the periodic solutions for the approximation

ÿ + ay − cy3 = b sin t,

of equation (1), which nowdays is known as the Duffing differential equation. For more
information on the history of these differential equations see the paper of Mawhin [13].
The almost 200 references quoted in this last paper are on the periodic solutions of
different kind of Duffing equations, and from its publication many new papers working
on these type of periodic solutions also have been published, see the papers [3, 4, 17]
and the quoted references therein. See also the non–autonomous differential equation
studied in [7].

In a recent paper (see [9]) we studied the following kind of autonomous Duffing
differential equations

(2) ÿ + ay − εy3 = εh(y, ẏ),

with a > 0, ε a small parameter and h a C2 function in its variables. A question that
naturally arises is the study of a non-autonomous version of equation (2).

In this paper we consider a non-autonomous modified Duffing equation of the form

(3) ÿ + ay − εy3 = εh(t, y, ẏ),

where again a > 0, ε a small parameter and h a C2 function in its variables.

The averaging method (see for instance [15]) gives a quantitative relation between
the solutions of some non-autonomous differential system and the solutions of its au-
tonomous averaged differential system, and in particular allows to study the periodic
solutions of the non-autonomous differential system in function of the periodic so-
lutions of the averaged one, see for more details [1, 2, 6, 10, 11, 15, 16] and mainly
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section 2 of this paper. Our aim is to apply the averaging theory to system (3) for
studying its periodic solutions.

We will write the second order differential equation (3) as the system of two differ-
ential equations of first order

(4)
ẋ = −ay + ε (y3 + h(t, x, y)) ,
ẏ = x.

We define the functions

(5)

f1(x0, y0) =
3y0(x

2
0 + ay2

0)

8a3/2
+

1

2π

∫ 2π/
√

a

0

cos(
√

a t)h(t, x̃0, ỹ0)dt,

f2(x0, y0) = −3x0(x
2
0 + ay2

0)

8a5/2
− 1

2π
√

a

∫ 2π/
√

a

0

sin(
√

a t)h(t, x̃0, ỹ0)dt,

where

x̃0 = x0 cos
√

a t − √
a y0 sin

√
a t, ỹ0 =

√
a y0 cos

√
a t + x0 sin

√
a t√

a
.

We prove the following theorem which is the main result of this paper:

Theorem 1. For ε ̸= 0 sufficiently small and for every zero (x∗
0, y

∗
0) ̸= (0, 0) of the

system f1(x0, y0) = 0, f2(x0, y0) = 0, such that

(6) det

(
∂(f1, f2)

∂(x0, y0)

∣∣∣∣
(x0,y0)=(x∗

0,y∗
0)

)
̸= 0,

the non-autonomous Duffing differential system (4) has a periodic solution (x(t, ε),
y(t, ε)) such that when ε → 0 it tends to the periodic solution

x(t) = x∗
0 cos

√
a t − √

a y∗
0 sin

√
a t, y(t) =

√
a y∗

0 cos
√

a t + x∗
0 sin

√
a t√

a

of system (4) with ε = 0. Moreover, if the eigenvalues of the Jacobian matrix
(

∂(f1, f2)

∂(x0, y0)

∣∣∣∣
(x0,y0)=(x∗

0,y∗
0)

)

are hyperbolic, then the corresponding periodic solution (x(t, ε), y(t, ε)) of system (4)
is hyperbolic and its stability or inestability type is given by those eigenvalues.

Theorem 1 is proved in section 3.

Corollary 2. For ε ̸= 0 sufficiently small the non-autonomous Duffing equation (4)
with h(t, x, y) = sin

√
a t has at least 1 periodic solution.

Corollary 3. For ε ̸= 0 sufficiently small the non-autonomous Duffing equation (4)
with h(t, x, y) = (1 + 2x + 5y − 5x2 − y2) sin t has at least 5 periodic solutions.

Corollary 4. For ε ̸= 0 sufficiently small the non-autonomous Duffing equation (4)
with h(t, x, y) = − sin(x2 + y2) sin t has at least 1 periodic solution.

The proofs of the corollaries are given in section 4.
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2. Basic results

In this section we present the basic results from the averaging theory that we shall
need for proving the main results of this paper. For a general introduction to the
averaging theory and related topics see the books [1, 6, 11, 15, 16]. But the results
that we shall use are presented in what follows.

We consider the problem of the bifurcation of T–periodic solutions from the differ-
ential system

(7) ẋ(t) = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε),

with ε = 0 to ε ̸= 0 sufficiently small. The functions F0, F1 : R × Ω → Rn and
F2 : R×Ω×(−ε0, ε0) → Rn appearing in (7), are C2 in their variables and T–periodic
in the first variable, and Ω is an open subset of Rn. One of the main assumptions is
that the unperturbed system

(8) ẋ(t) = F0(t,x),

has an open subset of Ω fulfilled of periodic solutions. A solution of this problem is
given in the following using the averaging theory.

Let x(t, z, ε) be the solution of system (7) such that x(0, z, ε) = z. We write the
linearization of the unperturbed system (8) along a periodic solution x(t, z, 0) as

(9) y′ = DxF0(t,x(t, z, 0))y,

where y is an n × n matrix. In what follows we denote by Mz(t) some fundamental
matrix of the linear differential system (9).

We assume that there exists an open set W with Cl(W ) ⊂ Ω such that for each
z ∈ Cl(W ), x(t, z, 0) is T–periodic. The set Cl(W ) is isochronous for system (7), i.e.
it is a set formed only by periodic solutions, all of them having the same period T .
Then an answer to the problem of the bifurcation of T–periodic solutions from the
periodic solutions x(t, z, 0) contained in Cl(W ) is given in the next result.

Theorem 5. (Perturbations of an isochronous set) We assume that there exists
an open and bounded set W with Cl(W ) ⊂ Ω such that for each z ∈ Cl(W ), the
solution x(t, z, 0) is T–periodic, then we consider the function F : Cl(W ) → Rn

(10) F(z) =
1

T

∫ T

0

M−1
z (t, z, 0)F1(t,x(t, z, 0))dt.

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) ̸= 0, then there exists a T–
periodic solution x(t, ε) of system (7) such that x(0, ε) → a as ε → 0. Moreover, if the
eigenvalues of the Jacobian matrix (dF/dz) (a) are hyperbolic, then the corresponding
periodic solution x(t, ε) of system (7) is hyperbolic and its stability or inestability type
is given by those eigenvalues.

Theorem 5 goes back to Malkin [13] and Roseau [14], for a shorter and easier proof
see Corollary 1 of [2].
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3. Proof of Theorem 1

We apply the averaging theory described in section 2 for studying the periodic
solutions of system (4). More precisely we shall analyze which periodic solutions of
system (4) with ε = 0 can be continued to periodic solutions of system (4) with ε ̸= 0
sufficiently small.

In [9] we studied the solution of system (4) with ε = 0. Assuming a > 0, the general
solution of system (4) with ε = 0 and with initial conditions x(0) = x0, y(0) = y0 is

(11) x(t) = x0 cos
√

a t − √
a y0 sin

√
a t, y(t) =

√
a y0 cos

√
a t + x0 sin

√
a t√

a
.

All solutions of system (4) with ε = 0 with the exception of the origin are periodic
of period 2π/

√
a.

We solve (11) with respect to cos
√

a t and sin
√

a t and we get

(12) cos
√

a t = −xx0 + ayy0

x2
0 + ay2

0

, sin
√

a t =

√
a xy0 − √

a x0y

x2
0 + ay2

0

.

using the trigonometric relation sin2 x+cos2 x = 1 we get after simplifying the ellipsis

x2 + ay2

x2
0 + ay2

0

= 1.

All the solutions of the system (4) with ε = 0 with exception of the origin are
periodic of period 2π/

√
a. These solutions of the unperturbed system fill out the

whole plane R2 except the origin. So system (4) with ε sufficiently small satisfies the
assumptions of Theorem 5.

We write system (4) into the form (7)

ẋ = F0,1(x, y) + εF1,1(x, y),

ẏ = F0,2(x, y) + εF1,2(x, y),

where F0 = (F0,1, F0,2) = (−ay, x), and

(13) F1 = (F1,1, F1,2) = (y3 + h(t, x, y), 0).

The periodic solution x(t, z, 0) of system (7) with ε = 0 now is the periodic solution
(x(t), y(t)) given by (11) of system (4) with ε = 0 and with initial conditions z =
(x0, y0). The fundamental matrix Mz(t) of the differential system (9) such that Mz(0)
is the identity matrix of R2 is

(14) Mz(t) =




cos
√

a t −√
a sin

√
a t

sin
√

a t√
a

cos
√

a t


 .

By Theorem 5 we must study the zeros (x0, y0) of the system

F(x0, y0) = (f1(x0, y0), f2(x0, y0)) ,

where according with (10) if we denote fk = fk(x0, y0) we have

(15)

[
f1

f2

]
=

∫ 2π/
√

a

0

M−1
z (t)

[
F1,1(x, y)
F1,2(x, y)

]∣∣∣∣ x = x0 cos
√

a t − √
a y0 sin

√
a t

y =

√
a y0 cos

√
a t + x0 sin

√
a t√

a

dt.
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where F1,k for k = 1, 2 are given in (13).

Now, using (13) and (14) in (15), after some simple computations we get the
expressions for f1 and f2 given in (5). Hence, Theorem 5 completes the first part of
the proof of Theorem 1.

The proof of the second part of Theorem 1 on the kind of stability of the periodic
solution (x(t, ε), y(t, ε)) follows directly from the last part of the statement of Theorem
5.

4. Proof of the corollaries

In this section we prove the corollaries of Theorem 1.

Proof of Corollary 2. We apply Theorem 1 to system (4) with h(t, x, y) = sin
√

a t.
Then, from (5) we get that

f1(x0, y0) =
3y0(x

2
0 + ay2

0)

8a3/2
, f2(x0, y0) = − 1

2a
− 3πx0(x

2
0 + ay2

0)

4a5/2
.

We compute the solutions of the system f1(x0, y0) = 0, f2(x0, y0) = 0, and we
obtain only one real solution:

(x∗
0, y

∗
0) =

(
−22/3

√
a

31/3
, 0

)
.

Now, since the determinant (6) takes the value

3 · 32/3

8 · 21/3a2
̸= 0,

the proof of the corollary follows from Theorem 1. �

Proof of Corollary 3. We apply now Theorem 1 to system (4) with h(t, x, y) = (1 +
2x + 5y − 5x2 − y2) sin t. Therefore, from (5) we obtain that

f1(x0, y0) = x0y0 +
3

8
y0(x

2
0 + y2

0),

f2(x0, y0) = −3

8
x0(x

2
0 + y2

0) +
1

2
(−1 + 2x2

0 + 4y2
0).

Then system f1(x0, y0) = 0, f2(x0, y0) = 0 has the following five solutions (x∗
0, y

∗
0):(

8

9

(
1 − cos

(
1

3
arctan

(
9
√

807

13

))
±

√
3 sin

(
1

3
arctan

(
9
√

807

13

)))
, 0

)
,

(
8

9

(
1 + 2 cos

(
1

3
arctan

(
9
√

807

13

)))
, 0

)
,

(
±

√
247

32
,− 3

32

)
.

We compute the determinant (6) for the previous five values (x∗
0, y

∗
0) and we get that

always is different from zero. �
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Figure 1. Graph of the function (18) as a function of r.

Proof of Corollary 4. We apply now Theorem 1 to system (4) with h(t, x, y) = − sin(x2+
y2) sin t, and we get that

(16)
f1(x0, y0) =

3

8
y0(x

2
0 + y2

0),

f2(x0, y0) = −3

8
x0(x

2
0 + y2

0) +
1

2
sin(x2

0 + y2
0).

In order to compute the solutions of the system f1(x0, y0) = 0, f2(x0, y0) = 0, we
do the change of variables x0 = r cos α, y0 = r sin α, and we get that

(17)
f1(r, α) =

3

8
r3 sin α,

f2(r, α) = −3

8
r3 cos α +

1

2
sin r2.

Note that we must have r ̸= 0, otherwise we would get that (x0, y0) = (0, 0). Thus,
α = 0, π.

We substitute α = 0 in the equation f2 = 0, and we get the equation

(18) −3

8
r3 +

1

2
sin r2 = 0

Solving it with respect to r we get only one real positive root, providing the solution

(r∗, α∗) = (1.0651480242532207..., 0),

of system (17).

When we substitute α = π in the equation f2(r, α) = 0, we get no real roots.

We finish the proof by computing the determinant (6) which takes the value
13.878369380505733.. ̸= 0. Hence, the corollary follows from Theorem 1. �
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