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Initial-Boundary Value Problems for Multi-Term

Time-Fractional Diffusion Equations with

Positive Constant Coefficients∗

Zhiyuan LI† Yikan LIU† Masahiro YAMAMOTO†

Abstract In this paper, we investigate the well-posedness and the long-time asymptotic
behavior for the initial-boundary value problem for multi-term time-fractional diffusion
equations, where the time differentiation consists of a finite summation of Caputo deriva-
tives with decreasing orders in (0, 1) and positive constant coefficients. By exploiting
several important properties of multinomial Mittag-Leffler functions, various estimates fol-
low from the explicit solutions in form of these special functions. Then the uniqueness
and continuous dependency upon initial value and source term are established, from which
the continuous dependence of solution of Lipschitz type with respect to various coefficients
is also verified. Finally, by a Laplace transform argument, it turns out that the decay
rate of the solution as t → ∞ is dominated by the minimum order of the time-fractional
derivatives.
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1 Introduction

Let Ω be an open bounded domain in Rd with a smooth boundary (for example, of C2 class)

and T > 0 be fixed arbitrarily. For a fixed positive integer m, let αj and qj (j = 1, . . . ,m) be

positive constants such that 1 > α1 > · · · > αm > 0. Consider the following initial-boundary

value problem for the multi-term time-fractional diffusion equation





m∑

j=1

qj∂
αj

t u(x, t) = Lu(x, t) + F (x, t), x ∈ Ω, 0 < t ≤ T,

u(x, t) = 0, x ∈ ∂Ω, 0 < t ≤ T,

u(x, 0) = a(x), x ∈ Ω,

(1.1)

(1.2)

(1.3)

where L is a symmetric uniformly elliptic operator with the homogeneous Dirichlet boundary

condition, and we can assume q1 = 1 without lose of generality. The regularities of the initial

value a and the source term F will be specified later. Here ∂
αj

t denotes the Caputo derivative
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defined by

∂
αj

t f(t) :=
1

Γ(1− αj)

∫ t

0

f ′(s)

(t− s)αj
ds,

where Γ( · ) is a usual Gamma function. For various properties of the Caputo derivative, we

refer to Kilbas et al. [12] and Podlubny [24]. See also [8, 28] for further contents on fractional

calculus.

In the case of m = 1, equation (1.1) is reduced to its single-term counterpart

∂α
t u = Lu+ F in Ω× (0, T ], α ∈ (0, 1). (1.4)

The above formulation has been studied extensively from different aspects due to its vast

capability of modeling the anomalous diffusion phenomena in highly heterogeneous aquifer and

complex viscoelastic material (see Adams & Gelhar [1], Ginoa et al. [6], Hatano & Hatano [9],

Nigmatullin [22] and the references therein). Indeed, although the single-term time-fractional

diffusion equation inherits certain properties from the diffusion equation with time derivative

of natural number order, it differs considerably from the traditional one especially in sense

of its limited smoothing effect in space and slow decay in time. In Luchko [16], a maximum

principle of the initial-boundary value problem for (1.4) was established, and the uniqueness of

a classical solution was proved. Luchko [17] represented the generalized solution to (1.4) with

F = 0 by means of the Mittag-Leffler function and gave the unique existence result. Sakamoto

& Yamamoto [26] carried out a comprehensive investigation including the well-posedness of the

initial-boundary value problem for (1.4) as well as the long-time asymptotic behavior of the

solution. It turns out that the spatial regularity of the solution is only moderately improved

from that of the initial value, and the solution decays with order t−α as t → ∞. Recently, the

Lipschitz stability of the solution to (1.4) with respect to α and the diffusion coefficient was

proved as a byproduct of an inverse coefficient problem in Li et al. [13]. For other discussions

concerning equation (1.4), see e.g., Gorenflo et al. [7] and Luchko [15], Prüss [25]. Regarding

numerical treatments, we refer to Liu et al. [14] and Meerschaert & Tadjeran [20] for the finite

difference method and Jin et al. [11] for the finite element method.

As natural extension, equation (1.1) is expected to improve the modeling accuracy in de-

picting the anomalous diffusion due to its potential feasibility. However, to the authors’ best

knowledge, published works on this extension are quite limited in spite of rich literatures on

its single-term version. Luchko [18] developed the maximum principle for problem (1.1)–(1.3)

and constructed a generalized solution when F = 0 by means of the multinomial Mittag-Leffler

functions. Jiang et al. [10] considered fractional derivatives in both time and space and derived

analytical solutions. As for the asymptotic behavior, for m = 2 it reveals in Mainardi et al. [21]

that the dominated decay rate of the solution is related to the minimum order of time fractional

derivative. On the other hand, Beckers & Yamamoto [4] investigated (1.1)–(1.3) in a slightly

more general formulation and obtained a weaker regularity result than that in [26].

In this paper, we are concerned with the well-posedness and the long-time asymptotic be-

havior of the solution to the initial-boundary value problem (1.1)–(1.3), and we attempt to

establish results parallel to that for the single-term case. On basis of the explicit representation

of the solution, we give estimates for the solution by exploiting several properties of the multi-

nomial Mittag-Leffler function. Moreover, as long as the continuous dependency of the solution
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on the initial value and the source term is verified, we can also deduce the Lipschitz stability

of the solution to (1.1)–(1.3) with respect to αj , qj (j = 1, . . . ,m) and the diffusion coefficient

immediately. For the long-time asymptotic behavior, we employ the Laplace transform in time

to show that the decay rate as t → ∞ is indeed t−αm , where αm is the minimum order of

Caputo derivatives in time.

The rest of this paper is organized as follows. The main results concerning problem (1.1)–

(1.3) are collected in Section 2, which includes theorems on well-posedness and long-time asymp-

totic behavior of the solution. The proofs of the main theorems are postponed to Section 3,

which is further divided into three subsections. Subsection 3.1 is devoted to a close scrutiny

of the multinomial Mittag-Leffler functions, which serves as essential keys in the proofs of

well-posedness results in Subsection 3.2. Due to the difference of techniques, the asymptotic

behavior is proved independently in Subsection 3.3. Finally, concluding remarks are given in

Section 4.

2 Main Results

In this section, we state the main results obtained in this paper. More precisely, we give

a priori estimates for the solution u to (1.1)–(1.3) with respect to the initial value (Theorem

2.1), the source term (Theorem 2.2), and Lipschitz continuous dependence of the solutions on

coefficients and orders (Theorem 2.3) so that stability and uniqueness follow, and we describe

the asymptotic behavior of the solution in Theorem 2.4.

To this end, we first fix some general settings and notations. Let L2(Ω) be a usual L2-

space with the inner product ( · , · ) and H1
0 (Ω), H

2(Ω) denote the Sobolev spaces (see, e.g.,

Adams [2]). The elliptic operator L is defined for f ∈ D(−L) := H2(Ω) ∩H1
0 (Ω) as

Lf(x) =

d∑

i,j=1

∂j(aij(x)∂if(x)) + c(x)f(x), x ∈ Ω,

where aij = aji (1 ≤ i, j ≤ d) and c ≤ 0 in Ω . Moreover, it is assumed that aij ∈ C1(Ω),

c ∈ C(Ω) and there exists a constant δ > 0 such that

δ

d∑

i=1

ξ2i ≤

d∑

i,j=1

aij(x)ξiξj , ∀x ∈ Ω , ∀ (ξ1, . . . , ξd) ∈ R
d.

On the other hand, let {λn, ϕn}
∞
n=1 be the eigensystem of the elliptic operator −L such that

0 < λ1 < λ2 ≤ · · · , λn → ∞ as n → ∞ and {ϕn} ⊂ H2(Ω) ∩ H1
0 (Ω) forms an orthonormal

basis of L2(Ω). Then the fractional power (−L)γ is well-defined for γ ∈ R (see Pazy [23]) with

D((−L)γ) =

{
f ∈ L2(Ω);

∞∑

n=1

|λγ
n(f, ϕn)|

2
< ∞

}
,

and D((−L)γ) is a Hilbert space with the norm

‖f‖D((−L)γ) =

(
∞∑

n=1

|λγ
n(f, ϕn)|

2

)1/2

.
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Also we note that D((−L)γ) ⊂ H2γ(Ω) for γ > 0 and especially D((−L)1/2) = H1
0 (Ω).

Now we are well-prepared to consider the dependency of the solution u to the initial-

boundary value problem (1.1)–(1.3) upon the initial value a and the source term F . In view of

the superposition principle, it suffices to deal with the cases F = 0, a 6= 0 and a = 0, F 6= 0

separately.

Theorem 2.1 Let F = 0, 0 ≤ γ ≤ 1 and a ∈ D((−L)γ), where we interpret 1
1−γ = ∞

if γ = 1. Concerning the solution u to the initial-boundary value problem (1.1)–(1.3), the

followings hold true.

(a) There exists a unique solution u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω)) to (1.1)–

(1.3). Actually, u ∈ L
1

1−γ (0, T ;H2(Ω) ∩H1
0 (Ω)) and there exists a constant C > 0 such that

‖u‖C([0,T ];L2(Ω)) ≤ C‖a‖L2(Ω), (2.1)

‖u( · , t)‖H2(Ω) ≤ C‖a‖D((−L)γ)t
α1(γ−1), 0 < t ≤ T. (2.2)

(b) We have

lim
t→0

‖u( · , t)− a‖D((−L)γ) = 0. (2.3)

(c) There holds ∂tu ∈ C((0, T ];L2(Ω)). Moreover, there exists a constant C > 0 such that

‖∂tu( · , t)‖L2(Ω) ≤ C‖a‖D((−L)γ)t
α1γ−1, 0 < t ≤ T. (2.4)

(d) If γ > 0, then ∂β
t u ∈ L

1
1−γ (0, T ;L2(Ω)) for 0 < β ≤ α1. Moreover, for 0 < β < 1, there

exists a constant C > 0 such that

‖∂β
t u( · , t)‖L2(Ω) ≤ C‖a‖D((−L)γ)t

α1γ−β, 0 < t ≤ T. (2.5)

Theorem 2.2 Let a = 0, 1 ≤ p ≤ ∞, 0 ≤ γ ≤ 1 and F ∈ Lp(0, T ;D((−L)γ)), where we

interpret 1/p = 0 if p = ∞. Concerning the solution u to the initial-boundary value problem

(1.1)–(1.3), the followings hold true.

(a) If p = 2, then there exists a unique solution u ∈ L2(0, T ;D((−L)γ+1)) to (1.1)–(1.3).

Moreover, there exists a constant C > 0 such that

‖u‖L2(0,T ;D((−L)γ+1)) ≤ C‖F‖L2(0,T ;D((−L)γ)). (2.6)

(b) If p 6= 2, then there exists a unique solution u ∈ Lp(0, T ;D((−L)γ+1−τ)) to (1.1)–(1.3)

for any τ ∈ (0, 1]. Moreover, there exists a constant C > 0 such that

‖u‖Lp(0,T ;D((−L)γ+1−τ)) ≤
C

τ
‖F‖Lp(0,T ;D((−L)γ)). (2.7)

(c) If α1p > 1, then for any τ ∈ ( 1
α1p

, 1], there holds

lim
t→0

‖u( · , t)‖D((−L)γ+1−τ) = 0. (2.8)

Remark 2.1 We compare the conclusions in Theorems 2.1–2.2 with those of single-term

cases obtained in [26]. In case of the homogeneous source term, i.e. F = 0 in (1.1), it turns out

that Theorem 2.1 is a parallel extension of its single-term counterpart. For instance, in Theorem
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2.1 the regularity results for initial values a ∈ L2(Ω), a ∈ H1
0 (Ω) and a ∈ H2(Ω)∩H1

0 (Ω) agree

with those in [26, Theorem 2.1]. Especially, it will be readily seen from the proof of Theorem

2.1 that the regularity of the solution u at any positive time can be improved from the initial

regularity by 2 orders in space, namely, u( · , t) ∈ D((−L)γ+1) if a ∈ D((−L)γ) for 0 < t ≤ T .

On the other hand, if the source term F does not vanish, the improvement of regularity in

space is strictly less than 2 orders except for the special case that F is L2 in time. For example,

if F ∈ L2(Ω × (0, T )), then it follows from Theorem 2.2(a) that u ∈ L2(0, T ;H2(Ω) ∩H1
0 (Ω)),

which coincides with [26, Theorem 2.2]. However, if F ∈ Lp(0, T ;L2(Ω)) with p 6= 2, then

Theorem 2.2(b) asserts u ∈ Lp(0, T ;D((−L)1−τ )), where τ ∈ (0, 1] can be arbitrarily small but

is never zero. The technical reason is that only in case of p = 2 one can take advantage of a

newly established property in Bazhlekova [3] (see Lemma 3.4).

On basis of these established results, we can consider the dependency of the solution upon

some specified coefficients, especially the orders of Caputo derivatives. More precisely, we

evaluate the difference between the solutions u and ũ to




m∑

j=1

qj∂
αj

t u = LDu in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u|t=0 = a in Ω

(2.9)

and 



m∑

j=1

q̃j∂
α̃j

t ũ = LD̃ũ in Ω× (0, T ],

ũ = 0 on ∂Ω× (0, T ],

ũ|t=0 = a in Ω

(2.10)

respectively, where LDu(x, t) := div(D(x)∇u(x, t)) and D denotes the diffusion coefficient. To

this end, we fix 1 > α > α > 0, q > q > 0, δ > 0, M > 0 and restrict the coefficients in the

admissible sets

A := {(α1, . . . , αm) ∈ R
m; α ≥ α1 > α2 > · · · > αm ≥ α},

Q := {(q1, . . . , qm) ∈ R
m; q1 = 1, qj ∈ [q, q] (j = 2, . . . ,m)},

U := {D ∈ C1(Ω); D ≥ δ in Ω , ‖D‖C1(Ω) ≤ M}.

(2.11)

Under these settings, we can show the following result on the Lipschitz stability.

Theorem 2.3 Fix γ, τ ∈ (0, 1]. Let u and ũ be the solutions to (2.9) and (2.10) respectively,

where

a ∈ D((−L)γ), (α1, . . . , αm), (α̃1, . . . , α̃m) ∈ A, (q1, . . . , qm), (q̃1, . . . , q̃m) ∈ Q, D, D̃ ∈ U

and A, Q, U are defined in (2.11). Then there exists a constant C > 0 depending only on

a, A, Q and U such that

‖u− ũ‖
L

1
1−γ (0,T ;D((−L)1−τ))

≤
C

τ




m∑

j=1

|αj − α̃j |+

m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 (2.12)
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for 0 < γ < 1
2 and

‖u− ũ‖L2(0,T ;H2(Ω)) ≤ C




m∑

j=1

|αj − α̃j |+

m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 (2.13)

for γ ≥ 1
2 .

The above theorem extends a similar result in [13] for the single-term case. It is also

fundamental for the optimization method for an inverse problem of determining αj , qj , D(x) by

extra data of the solution.

In Sakamoto & Yamamoto [26], the decay rate of the solution to the single-term time-

fractional diffusion equation (1.4) was shown to be t−α as t → ∞. Here we give generalization

for the multi-term case where we specify the principal term of the solution as t → ∞.

Theorem 2.4 Let F = 0 and a ∈ L2(Ω). Then there exists a unique solution u ∈

C([0,∞);L2(Ω)) ∩C((0,∞);H2(Ω) ∩H1
0 (Ω)) to (1.1)–(1.3). Moreover, there exists a constant

C > 0 such that
∥∥∥∥u( · , t)−

(−L)−1(qma)

Γ(1− αm) tαm

∥∥∥∥
H2(Ω)

≤
C‖a‖L2(Ω)

tαm−1
as t → ∞. (2.14)

Remark 2.2 We explain the significance of the Theorem 2.4. It reveals that the decay rate

of u( · , t) in sense of H2(Ω) is exactly t−αm as t → ∞. In fact, inequality (2.14) implies that

there exist constants C2 > C1 > 0 such that

C1‖a‖L2(Ω)t
−αm ≤ ‖u( · , t)‖H2(Ω) ≤ C2‖a‖L2(Ω)t

−αm as t → ∞. (2.15)

Consequently, it turns out that the decay rate t−αm is the best possible. In other words, if

‖u( · , t)‖H2(Ω) ≤ C t−β as t → ∞

for any order β > αm and some constant C > 0, then u(x, t) = 0 for x ∈ Ω and t > 0. Actually,

in this case it is easily inferred from the lower bound in (2.15) that there should be a = 0 in Ω.

Therefore, Theorem 2.1 and the upper bound in (2.15) immediately imply u ≡ 0 in Ω× (0,∞).

Furthermore, (2.14) also gives the convergence rate of the approximation

u( · , t)−
(−L)−1(qma)

Γ(1− αm) t−αm
→ 0 in H2(Ω) as t → ∞,

that is, t−αm−1 .

3 Proofs of Main Results

In this section, we give proofs for the theorems stated in Section 2.

In the discussion of single-term time-fractional diffusion equations, it turns out that the

solutions can be explicitly represented by the usual Mittag-Leffler function

Eα,β(z) :=
∞∑

k=0

zk

Γ(αk + β)
, z ∈ C, α > 0, β ∈ R, (3.1)
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and several basic properties play remarkable roles especially for obtaining estimates for the sta-

bility. Since explicit solutions to the multi-term case are also available by using a generalized

form of (3.1) called the multinomial Mittag-Leffler function, we shall first investigate this gen-

eralization so that similar arguments are still feasible for multi-term time-fractional diffusion

equations.

3.1 Properties of multinomial Mittag-Leffler functions

The multinomial Mittag-Leffler function is defined as (see Luchko & Gorenflo [19])

E(β1,...,βm),β0
(z1, . . . , zm) :=

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 z
kj

j

Γ(β0 +
∑m

j=1 βjkj)
, (3.2)

where we assume 0 < β0 < 2, 0 < βj < 1, zj ∈ C (j = 1, . . . ,m), and (k; k1, . . . , km) denotes

the multinomial coefficient

(k; k1, . . . , km) :=
k!

k1! · · · km!
with k =

m∑

j=1

kj ,

where kj , 1 ≤ j ≤ m, are non-negative integers. We recall the following formula for multinomial

coefficients (see Berge [5])

m∑

j=1

(k − 1; k1, . . . , kj−1, kj − 1, kj+1, . . . , km) = (k; k1, . . . , km). (3.3)

If some kj0 vanishes, we understand (k − 1; k1, . . . , kj0−1, kj0 − 1, kj0+1, . . . , km) = 0 and (3.3)

degenerates to its lower dimensional version.

Concerning the relation between multinomial Mittag-Leffler functions with different param-

eters, we have the following lemma.

Lemma 3.1 Let 0 < β0 < 2, 0 < βj < 1 (j = 1, . . . ,m) and zj ∈ C (j = 1, . . . ,m) be fixed.

Then
1

Γ(β0)
+

m∑

j=1

zjE(β1,...,βm),β0+βj
(z1, . . . , zm) = E(β1,...,βm),β0

(z1, . . . , zm).

Proof. According to definition (3.2), direct calculations yield

m∑

j=1

zjE(β1,...,βm),β0+βj
(z1, . . . , zm)

=

m∑

j=1

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km) zj
∏m

ℓ=1 z
kℓ

ℓ

Γ(β0 + βj +
∑m

ℓ=1 βℓkℓ)

=

∞∑

k=0

m∑

j=1





zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k
kj<k

(k; k1, . . . , km) zj
∏m

ℓ=1 z
kℓ

ℓ

Γ(β0 + βj +
∑m

ℓ=1 βℓkℓ)





(3.4)

=

∞∑

k=0

m∑

j=1





zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k+1
0<kj<k+1

(k; k1, . . . , kj−1, kj − 1, kj+1, . . . , km)
∏m

ℓ=1 z
kℓ

ℓ

Γ(β0 +
∑m

ℓ=1 βℓkℓ)







Multi-Term Time-Fractional Diffusion Equations 8

=

∞∑

k=0





m∑

j=1

zk+1
j

Γ(β0 + βj(k + 1))
+

∑

k1+···+km=k+1
kℓ<k+1 (∀ ℓ)

(k + 1; k1, . . . , km)
∏m

ℓ=1 z
kℓ

ℓ

Γ(β0 +
∑m

ℓ=1 βℓkℓ)





(3.5)

=

∞∑

k=0

∑

k1+···+km=k+1

(k + 1; k1, . . . , km)
∏m

ℓ=1 z
kj

j

Γ(β0 +
∑m

ℓ=1 βℓkℓ)

=
∞∑

k=1

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

ℓ=1 z
kℓ

ℓ

Γ(β0 +
∑m

ℓ=1 βℓkℓ)
= E(β1,...,βm),β0

(z1, . . . , zm)−
1

Γ(β0)
,

where we apply formula (3.3) to obtain (3.5). In (3.4), we distill the case kj = k in the j-th

term and substitute kj + 1 with kj for the others to proceed to the next equality.

Concerning the regularity of the solution to a single-term time-fractional diffusion equation,

the estimate (see [24, p. 35])

|Eα,β(−η)| ≤
C

1 + η
, η ≥ 0

is essential. Here we extend the above inequality to the multinomial case by a complex variable

argument.

Lemma 3.2 Let 0 < β < 2 and 1 > α1 > · · · > αm > 0 be given. Assume that α1π/2 <

µ < α1π, µ ≤ |arg(z1)| ≤ π and there exists K > 0 such that −K ≤ zj < 0 (j = 2, . . . ,m).

Then there exists a constant C > 0 depending only on µ, K, αj (j = 1, . . . ,m) and β such that

|E(α1,α1−α2,...,α1−αm),β(z1, . . . , zm)| ≤
C

1 + |z1|
.

Proof. Let αj , zj (j = 1, . . . ,m) and β be assumed as above and introduce the notation

Eα
′,β(z1, . . . , zm) := E(α1,α1−α2,...,α1−αm),β(z1, . . . , zm).

In the sequel, we denote by C a general positive constant depending at most on µ, K, αj

(j = 1, . . . ,m) and β. First we rewrite the multinomial Mittag-Leffler function (3.2) in an

alternative form with the aid of the contour integral representation of 1/Γ(z) (see [24, §1.1.6])

that
1

Γ(z)
=

1

2α1π i

∫

γ(R,θ)

exp(ζ1/α1 )ζ(1−z−α1)/α1 dζ,

where R > 0 is a constant to be determined later and α1π/2 < θ < µ. Here γ(R, θ) denotes the

contour

γ(R, θ) := {ζ ∈ C; |ζ| = R, | arg(ζ)| ≤ θ} ∪ {ζ ∈ C; |ζ| > R, | arg(ζ)| = ±θ}.

Then it follows from the multinomial formula that

Eα
′,β(z1, . . . , zm)

=
1

2α1π i

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)

m∏

j=1

z
kj

j
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×

{∫

γ(R,θ)

exp(ζ1/α1 )ζ(1−β−α1(k+1)−α2k2−···−αmkm)/α1 dζ

}

=
1

2α1π i

∫

γ(R,θ)

exp(ζ1/α1)ζ(1−β)/α1−1

×

∞∑

k=0





∑

k1+···+km=k

(k; k1, . . . , km)

(
z1
ζ

)k1 m∏

j=2

(
zj

ζ1−αj/α1

)kj



 dζ

=
1

2α1π i

∫

γ(R,θ)

exp(ζ1/α1)ζ(1−β)/α1−1
∞∑

k=0


z1

ζ
+

m∑

j=2

zk

ζ1−αj/α1




k

dζ.

In order to guarantee the convergence of the summation with respect to k, it is required that

∣∣∣∣∣∣
z1
ζ

+
m∑

j=2

zj

ζ1−αj/α1

∣∣∣∣∣∣
< 1, ∀ ζ ∈ γ(R, θ).

Since |zj | ≤ K for j = 2, . . . ,m, the above inequality is achieved by taking R such that

R > |z1|+K

m∑

j=2

Rαj/α1 .

Moreover, if we restrict, for example, |z1| ≤ K, then R can be fixed as a constant depending

only on K and αj (j = 1, . . . ,m). Now we deduce for |zj | ≤ K (j = 1, . . . ,m) that

Eα
′,β(z1, . . . , zm) =

1

2α1π i

∫

γ(R,θ)

exp(ζ1/α1)ζ(1−β)/α1

ζ − z1 −
∑m

j=2 zjζ
αj/α1

dζ. (3.6)

Next we fix z2, . . . , zm as negative parameters and regard both sides of (3.6) as functions

of the single complex variable z1, which allows the application of the principle of analytic

continuation to extend equality (3.6) to a domain including {z1 ∈ C; µ ≤ | arg(z1)| ≤ π} (see

Figure 1).

For |z1| > R, we investigate the denominator of the integrand in (3.6). Since zj < 0 and

αj < α1 for j = 2, . . . ,m, it turns out that the curve ζ −
∑m

j=2 zjζ
αj/α1 (ζ ∈ γ(R, θ)) locates

on the right-hand side of γ(R, θ); that is, γ(R, θ) is shifted by the term −
∑m

j=2 zjζ
αj/α1 to the

positive direction. This observation immediately implies

min
ζ∈γ(R,θ)

∣∣∣∣∣∣
ζ − z1 −

m∑

j=2

zjζ
αj/α1

∣∣∣∣∣∣
≥ min

ζ∈γ(R,θ)
|ζ − z1| ≥ |z1| sin(µ− θ).

Therefore, we come up with the estimate

|Eα
′,β(z1, . . . , zm)| =

1

2α1π

∣∣∣∣∣

∫

γ(R,θ)

exp(ζ1/α1)ζ(1−β)/α1

ζ − z1 −
∑m

j=2 zjζ
αj/α1

dζ

∣∣∣∣∣

≤

(
1

2α1π sin(µ− θ)

∫

γ(R,θ)

| exp(ζ1/α1 )||ζ(1−β)/α1 | dζ

)
1

|z1|
.
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x

y

C

0 R

θ

µ

γ(R, θ)

AA

BB

−K−K

Figure 1. Settings of Lemma 3.2 and the contour γ(R, θ). If z1 is located in the shaded domain
A, we employ the principle of analytic continuation and the contour integral representation

(3.6). When z1 is in the shaded domain B, it suffices to argue by definition (3.2).

The integral along γ(R, θ) converges, because for ζ such that arg(ζ) = ±θ and |ζ| > R, there

holds

| exp(ζ1/α1 )| = exp(|ζ|1/α1 cos(θ/α1)) with cos(θ/α1) < 0,

while the integral on the arc {ζ ∈ C; |ζ| = R, | arg(ζ)| ≤ θ} is a constant. Consequently

|Eα
′,β(z1, . . . , zm)| ≤

C

|z1|
, µ ≤ | arg(z1)| ≤ π, |z1| > R. (3.7)

For µ ≤ | arg(z1)| ≤ π such that |z1| ≤ R, it is directly verified that

|Eα
′,β(z1, . . . , zm)| =

∣∣∣∣∣

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 z
kj

j

Γ(β + α1k −
∑m

j=2 αjkj)

∣∣∣∣∣

≤

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 |zj|
kj

Γ(β + α1k −
∑m

j=2 αjkj)

≤ C

∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)
∏m

j=1 |zj |
kj

Γ(β + (α1 − α2)k)

= C
∞∑

k=0

1

Γ(β + (α1 − α2)k)




m∑

j=1

|zj|




k

≤ C
∞∑

k=0

(R + (m− 1)K)k

Γ(β + (α1 − α2)k)
≤ C,

which, together with (3.7), finishes the proof.
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For later use, we adopt the abbreviation

E
(n)
α

′,β(t) := E(α1,α1−α2,...,α1−αm),β(−λnt
α1 ,−q2t

α1−α2 , . . . ,−qmtα1−αm), t > 0, (3.8)

where λn is the n-th eigenvalue of −L, 0 < β < 2, and αj , qj are those positive constants in

(1.1). Especially, regarding the derivative of tα1E
(n)
α

′,1+α1
(t) with respect to t > 0, we state the

following technical lemma.

Lemma 3.3 Let 1 > α1 > · · · > αm > 1. Then

d

dt

{
tα1E

(n)
α

′,1+α1
(t)
}
= tα1−1E

(n)
α

′,α1
(t), t > 0.

Proof. By definition, we carry out a direct differentiation and utilize the formula Γ(s) = Γ(s+

1)/s to derive

d

dt

{
tα1E

(n)
α

′,1+α1
(t)
}

=
d

dt

{
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λn)
k1
∏m

j=2(−qj)
kj tα1(k+1)−α2k2−···−αmkm

Γ(1 + α1(k + 1)−
∑m

j=2 αjkj)

}

=
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λn)
k1
∏m

j=2(−qj)
kj tα1(k+1)−α2k2−···−αmkm−1

Γ(α1(k + 1)−
∑m

j=2 αjkj)

= tα1−1
∞∑

k=0

∑

k1+···+km=k

(k; k1, . . . , km)(−λnt
α1)k1

∏m
j=2(−qjt

α1−αj )kj

Γ(α1 + α1k1 +
∑m

j=2(α1 − αj)kj)

= tα1−1E
(n)
α

′,α1
(t).

Here we use the fact that tα1E
(n)
α

′,1+α1
(t) is real analytic for t > 0 so that termwise differentia-

tions are available.

3.2 Proofs of Theorems 2.1–2.3

Now we are ready to employ the multinomial Mittag-Leffler functions to show results on

the well-posedness. For later use we recall the eigensystem {λn, ϕn} of the elliptic operator −L

and the abbreviation E
(n)
α

′,β(t) (0 < β < 2) in (3.8).

First we prove Theorem 2.1, that is, the case of vanishing source term F . It was shown

in [18] that the explicit solution to (1.1)–(1.3) is given by

u( · , t) =
∞∑

n=1

(
1− λnt

α1E
(n)
α

′,1+α1
(t)
)
(a, ϕn)ϕn. (3.9)

With the aid of Lemmata 3.1–3.3, it is straightforward to demonstrate the well-posedness by

dominating the solution by the initial value.

Proof of Theorem 2.1. Let a ∈ D((−L)γ) with 0 ≤ γ ≤ 1. In the sequel, by C we refer to

positive constants independent of the initial value a which may vary from line by line.

(a) First, a direct application of Lemma 3.2 yields

∣∣∣1− λnt
α1E

(n)
α

′,1+α1
(t)
∣∣∣ ≤ 1 + λnt

α1
C

1 + λntα1
≤ C.
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Thus, we take advantage of (3.9) to derive

‖u( · , t)‖L2(Ω) =

{
∞∑

n=1

∣∣∣1− λnt
α1E

(n)
α

′,1+α1
(t)
∣∣∣
2

|(a, ϕn)|
2

}1/2

≤ C‖a‖L2(Ω) (3.10)

for 0 < t ≤ T , where we use the fact that {ϕn} forms an orthonormal basis of L2(Ω). Since the

summation in (3.9) converges in L2(Ω) uniformly in t ∈ [0, T ], we get u ∈ C([0, T ];L2(Ω)) or

(2.1). Furthermore, by the definition of D(−L), we see

‖u( · , t)‖2D(−L) =

∞∑

n=1

(
λn

∣∣∣1− λnt
α1E

(n)
α

′,1+α1
(t)
∣∣∣
)2

|(a, ϕn)|
2.

In order to treat the term 1− λnt
α1E

(n)
α

′,1+α1
(t), we substitute

β0 = 1, β1 = α1, z1 = −λnt
α1 , βj = α1 − αj and zj = −qjt

α1−αj (j = 2, . . . ,m)

in Lemma 3.1 and then utilize Lemma 3.2 to deduce

∣∣∣1− λnt
α1E

(n)
α

′,1+α1
(t)
∣∣∣ =

∣∣∣∣∣∣
E

(n)
α

′,1(t) +

m∑

j=2

qjt
α1−αjE

(n)
α

′,1+α1−αj
(t)

∣∣∣∣∣∣

≤
∣∣∣E(n)

α
′,1(t)

∣∣∣+ C

m∑

j=2

tα1−αj

∣∣∣E(n)
α

′,1+α1−αj
(t)
∣∣∣ ≤ C

m∑

j=1

tα1−αj

1 + λntα1
.

Therefore, for 0 < t ≤ T , we estimate

‖u( · , t)‖2D(−L) =

∞∑

n=1

∣∣∣λ1−γ
n

(
1− λnt

α1E
(n)
α

′,1+α1
(t)
)∣∣∣

2

|λγ
n(a, ϕn)|

2

≤ C2
∞∑

n=1




m∑

j=1

λ1−γ
n tα1−αj

1 + λntα1




2

|λγ
n(a, ϕn)|

2

≤ C2
∞∑

n=1




m∑

j=1

(λnt
α1)1−γ

1 + λntα1
tα1γ−αj




2

|λγ
n(a, ϕn)|

2

≤ C2




m∑

j=1

tα1γ−αj




2
∞∑

n=1

|λγ
n(a, ϕn)|

2 ≤
(
C‖a‖D((−L)γ)t

α1(γ−1)
)2

,

where we use the fact

(λnt
α1)1−γ

1 + λntα1
≤





1

1 + λntα1
if λnt

α1 ≤ 1

λnt
α1

1 + λntα1
if λnt

α1 ≥ 1





≤ 1

in the third inequality. This, together with the fact D(−L) ⊂ H2(Ω), yield the estimate (2.2).

Furthermore, it follows immediately from (2.2) and α1 < 1 that u ∈ L
1

1−γ (0, T ;H2(Ω)∩H1
0 (Ω)).

(b) In order to investigate the asymptotic behavior near t = 0, first we have

‖u( · , t)− a‖2
D((−L)γ) =

∞∑

n=1

∣∣∣λnt
α1E

(n)
α

′,1+α1
(t)
∣∣∣
2

|λγ
n(a, ϕn)|

2 ≤
(
C‖a‖D((−L)γ)

)2
< ∞
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for 0 ≤ t ≤ T by a direct calculation and Lemma 3.2. On the other hand, in view of Lemma

3.1, the term λnt
α1E

(n)
α

′,1+α1
(t) can be rewritten as

λnt
α1E

(n)
α

′,1+α1
(t) = −(E

(n)
α

′,1(t)− 1)−

m∑

j=2

qjt
α1−αjE

(n)
α

′,1+α1−αj
(t).

Thanks to the fact that limt→0(E
(n)
α

′,1(t) − 1) = 0 and the boundedness of E
(n)
α

′,1+α1−αj
(j =

2, . . . ,m) by Lemma 3.2 for each n = 1, 2, . . ., the above observation implies

lim
t→0

(λnt
α1E

(n)
α

′,1+α1
(t)) = 0, ∀n = 1, 2, . . . .

Therefore, (2.3) follows immediately from Lebesgue’s dominated convergence theorem.

(c) In order to deal with ∂tu, we make use of Lemma 3.3 to obtain

∂tu( · , t) = −tα1−1
∞∑

n=1

λnE
(n)
α

′,α1
(t)(a, ϕn)ϕn.

Then a similar argument to that for (2.2) indicates

‖∂tu( · , t)‖
2
L2(Ω) = t2(α1−1)

∞∑

n=1

∣∣∣λ1−γ
n E

(n)
α

′,α1
(t)
∣∣∣
2

|λγ
n(a, ϕn)|

2

≤ C2t2(α1−1)
∞∑

n=1

(
(λnt

α1)1−γ

1 + λntα1
tα1(γ−1)

)2

|λγ
n(a, ϕn)|

2

≤
(
C‖a‖D((−L)γ)t

α1γ−1
)2

, 0 < t ≤ T

or (2.4). This implies ∂tu ∈ C((0, T ];L2(Ω)) immediately.

(d) Finally, to give estimates for ∂β
t u with 0 < β < 1 when γ > 0, we employ (2.4) and turn

to the definition of the Caputo derivative to obtain

‖∂β
t u( · , t)‖L2(Ω) =

1

Γ(1 − β)

∥∥∥∥
∫ t

0

∂su( · , s)

(t− s)β
ds

∥∥∥∥
L2(Ω)

≤ C

∫ t

0

‖∂su( · , s)‖L2(Ω)

(t− s)β
ds

≤ C‖a‖D((−L)γ)

∫ t

0

sα1γ−1(t− s)−β ds ≤ C‖a‖D((−L)γ)t
α1γ−β, 0 < t ≤ T

or (2.5), where the first inequality follows from Minkowski’s inequality for integrals. Especially,

as long as β ≤ α1, there holds α1γ − β > γ − 1 and obviously ∂β
t v ∈ L

1
1−γ (0, T ;L2(Ω)).

Collecting all the results above, we complete the proof of Theorem 2.1.

Next we turn to the proof of Theorem 2.2, that is, the case of vanishing initial value a. To

construct an explicit solution, we apply the eigenfunction expansion method. In other words,

we seek for a solution to (1.1)–(1.3) of the particular form

u( · , t) =

∞∑

n=1

Tn(t)ϕn, 0 < t ≤ T, (3.11)

where ϕn is the n-th eigenfunction of −L. The substitution of (3.11) into (1.1) yields

∞∑

n=1




m∑

j=1

qj∂
αj

t Tn(t)


ϕn = −

∞∑

n=1

λnTn(t)ϕn +

∞∑

n=1

(F ( · , t), ϕn)ϕn.
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Therefore, it is readily seen from the orthogonality of {ϕn} and the homogeneous initial condi-

tion (1.3) that Tn satisfies an initial value problem for an ordinary differential equation





m∑

j=1

qj∂
αj

t Tn(t) + λnTn(t) = (F ( · , t), ϕn), 0 < t ≤ T,

Tn(0) = 0.

Then it follows from [19, Theorem 4.1] that

Tn(t) =

∫ t

0

sα1−1E
(n)
α

′,α1
(s)(F ( · , t− s), ϕn) ds,

implying that the solution takes the form of a convolution

u( · , t) =

∫ t

0

U(s)F ( · , t− s) ds, (3.12)

where

U(t)f := tα1−1
∞∑

n=1

E
(n)
α

′,α1
(t)(f, ϕn)ϕn. (3.13)

Before proceeding to the proof, we introduce a key lemma for showing Theorem 2.2(a).

Lemma 3.4 (see [3, Theorem 3.2]) The function tα1−1E
(n)
α

′,α1
(t) is positive for t > 0.

Proof of Theorem 2.2. Let F ∈ Lp(0, T ;D((−L)γ)) with 1 ≤ p ≤ ∞ and 0 ≤ γ ≤ 1. In the

sequel, by C we refer to a general positive constant independent of F and τ .

(a) Let p = 2. According to the expression (3.12)–(3.13), formally we write

‖u( · , t)‖2
D(−L) =

∞∑

n=1

λ2
n

(∫ t

0

sα1−1E
(n)
α

′,α1
(s)(F ( · , t− s), ϕn) ds

)2

.

Using Young’s inequality for convolutions, we estimate

‖u‖2L2(0,T ;D(−L)) =
∞∑

n=1

λ2
n

∥∥∥∥
∫ t

0

sα1−1E
(n)
α

′,α1
(s)(F ( · , t− s), ϕn) ds

∥∥∥∥
2

L2(0,T )

≤

∞∑

n=1

(
λn

∫ T

0

tα1−1|E
(n)
α

′,α1
(t)| dt

)2

‖(F ( · , t), ϕn)‖
2
L2(0,T ).

By Lemma 3.4, we can remove the absolute value of E
(n)
α

′,α1
(t) and apply Lemma 3.3 to derive

∫ T

0

tα1−1|E
(n)
α

′,α1
(t)| dt =

∫ T

0

tα1−1E
(n)
α

′,α1
(t) dt = Tα1E

(n)
α

′,1+α1
(T ).

Consequently, we use Lemma 3.2 to conclude

‖u‖2L2(0,T ;H2(Ω)) ≤ C2‖u‖2L2(0,T ;D(−L)) ≤ C2
∞∑

n=1

(
λnT

α1E
(n)
α

′,1+α1
(T )
)2

‖(F ( · , t), ϕn)‖
2
L2(0,T )

≤ C2
∞∑

n=1

‖(F ( · , t), ϕn)‖
2
L2(0,T ) =

(
C‖F‖L2(Ω×(0,T ))

)2
.
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(b) Fix τ ∈ (0, 1] arbitrarily. First we give an estimate for (3.13) with f ∈ D((−L)γ).

Similarly to the proof of Theorem 2.1, we apply Lemma 3.2 to deduce

‖U(t)f‖2
D((−L)γ+1−τ) = t2(α1−1)

∞∑

n=1

∣∣∣λ1−τ
n E

(n)
α

′,α1

∣∣∣
2

|λγ
n(f, ϕn)|

2

≤ C2t2(α1−1)
∞∑

n=1

(
(λnt

α1)1−τ

1 + λntα1
tα1(τ−1)

)2

|λγ
n(f, ϕn)|

2

≤
(
C‖f‖D((−L)γ)t

α1τ−1
)2

, 0 < t ≤ T.

Using (3.12) and Minkowski’s inequality for integrals, formally we have

‖u( · , t)‖D((−L)γ+1−τ) =

∥∥∥∥
∫ t

0

U(s)F ( · , t− s) ds

∥∥∥∥
D((−L)γ+1−τ)

≤

∫ t

0

‖U(s)F ( · , t− s)‖D((−L)γ+1−τ) ds

≤ C

∫ t

0

‖F ( · , t− s)‖D((−L)γ)s
α1τ−1 ds, 0 < t ≤ T. (3.14)

Finally, it follows from Young’s inequality for convolutions that

‖u‖Lp(0,T ;D((−L)γ+1−τ)) ≤ C

∥∥∥∥
∫ t

0

‖F ( · , t− s)‖D((−L)γ)s
α1τ−1 ds

∥∥∥∥
Lp(0,T )

≤ C‖F‖Lp(0,T ;D((−L)γ))

∫ T

0

tα1τ−1 dt ≤
C

τ
‖F‖Lp(0,T ;D((−L)γ)).

This completes the verification of (2.7).

(c) Assume α1p > 1 and fix τ ∈ ( 1
α1p

, 1] arbitrarily. To investigate the asymptotic behavior

near t = 0, we apply Hölder’s inequality to (3.14) to see

‖u( · , t)‖D((−L)γ+1−τ) ≤ C‖F‖Lp(0,t;D((−L)γ))

(∫ t

0

s(α1τ−1)p′

ds

)1/p′

,

where p′ is the conjugate number of p, i.e. 1/p+1/p′ = 1. Since τ > 1
α1p

, we see (α1τ−1)p′ > −1

and then limt→0

∫ t

0
s(α1τ−1)p′

ds = 0, indicating (2.8) immediately.

As a direct application of Theorems 2.1–2.2, it is straightforward to show the Lipschitz

stability of the solution with respect to various coefficients.

Proof of Theorem 2.3. Let γ, τ ∈ (0, 1], a ∈ D((−L)γ) and C > 0 be a general constant which

depends only on a, A, Q and U . First, a direct application of Theorem 2.1 immediately yields

u ∈ Lp(0, T ;H2(Ω) ∩H1
0 (Ω)) and ∂β

t u ∈ Lp(0, T ;L2(Ω)) for 0 < β ≤ α1, where we abbreviate

p := 1
1−γ . More precisely, there exists C > 0 such that

‖u‖Lp(0,T ;H2(Ω)) ≤ C, ‖∂β
t u‖Lp(0,T ;L2(Ω)) ≤ C (0 < β ≤ α1). (3.15)
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On the other hand, by taking the difference of systems (2.10) and (2.9), it turns out that the

system for v := ũ− u reads





m∑

j=1

q̃j∂
α̃j

t v = LD̃v + F in Ω× (0, T ],

v = 0 on ∂Ω× (0, T ],

v|t=0 = 0 in Ω,

where

F :=

m∑

j=1

q̃j(∂
αj

t u− ∂
α̃j

t u) +

m∑

j=2

(qj − q̃j)∂
αj

t u+ LD̃−Du.

Without loss of generality, we assume α1 ≥ α̃1, or otherwise we investigate v := u− ũ instead.

Therefore, together with D, D̃ ∈ C1(Ω), we see F ∈ Lp(0, T ;L2(Ω)) from (3.15). Now it is

straightforward to employ Theorem 2.2(b) to obtain

‖u− ũ‖Lp(0,T ;D((−L)1−τ)) = ‖v‖Lp(0,T ;D((−L)1−τ)) ≤
C

τ
‖F‖Lp(0,T ;L2(Ω)). (3.16)

Especially, if γ ≥ 1
2 , we see p = 1

1−γ ≥ 2 and hence Lp(Ω × (0, T )) ⊂ L2(0, T ;L2(Ω)). It then

follows from Theorem 2.2(a) that

‖u− ũ‖L2(0,T ;H2(Ω)) ≤ C‖F‖L2(Ω×(0,T )) ≤ C‖F‖Lp(0,T ;L2(Ω)). (3.17)

Therefore, it suffices to dominate ‖F‖Lp(0,T ;L2(Ω)) by the difference of coefficients.

To this end, first it is readily seen from (3.15) that

‖F‖Lp(0,T ;L2(Ω)) ≤

m∑

j=1

q̃j‖∂
αj

t u− ∂
α̃j

t u‖Lp(0,T ;L2(Ω)) +

m∑

j=2

|qj − q̃j |‖∂
αj

t u‖Lp(0,T ;L2(Ω))

+ C‖D − D̃‖C1(Ω)‖u‖Lp(0,T ;H2(Ω))

≤ C




m∑

j=1

‖∂
αj

t u− ∂
α̃j

t u‖Lp(0,T ;L2(Ω)) +

m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 .

To give an estimate for ∂
αj

t u− ∂
α̃j

t u by |αj − α̃j |, we adopt a similar treatment as that in [13,

Proposition 1] and decompose it by definition as

∂
αj

t u( · , t)− ∂
α̃j

t u( · , t) =
1

Γ(1− αj)

∫ t

0

∂su( · , s)

(t− s)αj
ds−

1

Γ(1− α̃j)

∫ t

0

∂su( · , s)

(t− s)α̃j
ds

= I1j ( · , t) + I2j ( · , t),

where

I1j ( · , t) :=
Γ(1− α̃j)− Γ(1− αj)

Γ(1− α̃j)
∂
αj

t u( · , t),

I2j ( · , t) :=
1

Γ(1− α̃j)

∫ t

0

{(t− s)−αj − (t− s)−α̃j}∂su( · , s) ds.
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Since αj , α̃j ∈ [α, α] and the Gamma function is Lipschitz continuous in [1−α, 1−α], it follows

from (3.15) that

‖I1j ‖Lp(0,T ;L2(Ω)) =
|Γ(1− α̃j)− Γ(1− αj)|

Γ(1− α̃j)
‖∂

αj

t u‖Lp(0,T ;L2(Ω)) ≤ C|αj − α̃j |. (3.18)

In order to treat I2j , we recall the estimate (2.4) for ∂tu and utilize Minkowski’s inequality for

integrals to deduce

‖I2j ( · , t)‖L2(Ω) =
1

Γ(1− α̃j)

∥∥∥∥
∫ t

0

{(t− s)−αj − (t− s)−α̃j}∂su( · , s) ds

∥∥∥∥
L2(Ω)

≤

∫ t

0

|(t− s)−αj − (t− s)−α̃j |‖∂su( · , s)‖L2(Ω) ds

≤ C

∫ t

0

|(t− s)−αj − (t− s)−α̃j | sα1γ−1 ds

= C

∫ t

0

|s−αj − s−α̃j | (t− s)α1γ−1 ds.

Using the mean value theorem, we have

|s−αj − s−α̃j | = | ln s| s−α̂j(s)|αj − α̃j |,

where α̂j(s) is a parameter depending on s such that

min{αj, α̃j} ≤ α̂j(s) ≤ max{αj , α̃j} ≤ α1

by the assumption α1 ≥ α̃1. Henceforth, we assume T > 1 without lose of generality. We prove

separately in the cases 0 < t ≤ 1 and 1 < t ≤ T . First, let 0 < t ≤ 1. Then there holds

0 < s < 1 and hence

s−α̂j(s) ≤ s−α1 = sεs−α1−ε,

where ε > 0 is sufficiently small such that α1(1 − γ) + ε < 1 − γ. Since | ln s| sε ≤ C for

0 < s < 1, we obtain

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j |

∫ t

0

| ln s| s−α̂j(s)(t− s)α1γ−1 ds

≤ C|αj − α̃j |

∫ t

0

(| ln s| sε)s−α1−ε(t− s)α1γ−1 ds

≤ C|αj − α̃j | t
−α1(1−γ)−ε, 0 < t ≤ 1, (3.19)

where we apply the boundedness of the Beta function B(1 − α1 − ε, α1γ) and γ > 0. Second,

let 1 < t ≤ T . Then it is readily seen that t− s > 1− s for 0 < s < 1 and | ln s| s−α̂j(s) ≤ C for

1 ≤ s < t. These observation, together with the inequality (3.19) for t = 1, indicate

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j |

(∫ 1

0

+

∫ t

1

)
| ln s| s−α̂j(s)(t− s)α1γ−1 ds

≤ C|αj − α̃j |

(∫ 1

0

| ln s| s−α̂j(s)(1− s)α1γ−1 ds+ C

∫ t

1

(t− s)α1γ−1 ds

)
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≤ C|αj − α̃j |, 1 < t ≤ T. (3.20)

The combination of (3.19) and (3.20) immediately yields

‖I2j ( · , t)‖L2(Ω) ≤ C|αj − α̃j | t
−α1(1−γ)−ε, 0 < t ≤ T

and thus ‖I2j ‖Lp(0,T ;L2(Ω)) ≤ C|αj − α̃j | because α1(1 − γ) + ε < 1 − γ = 1/p. Consequently,

collecting the estimate (3.18) for I1j , we conclude

‖F‖Lp(0,T ;L2(Ω)) ≤ C




m∑

j=1

‖I1j + I2j ‖Lp(0,T ;L2(Ω)) +

m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)




≤ C




m∑

j=1

|αj − α̃j |+

m∑

j=2

|qj − q̃j |+ ‖D − D̃‖C1(Ω)


 ,

implying (2.12) and (2.13) with the aid of (3.16) and (3.17) respectively.

3.3 Proof of Theorem 2.4

In this subsection, we study the long-time asymptotic behavior of the solution u to (1.1)–

(1.3) with F = 0 by a Laplace transform argument. In the sequel, by C we refer to a generic

constant which is independent of the initial value a and u but may depend on d, Ω, αj , qj

(j = 1, . . . ,m) and the operator −L.

Although an explicit representation (3.9) is available in this case, we write the solution in

form of

u( · , t) =

∞∑

n=1

un(t)ϕn, t > 0 (3.21)

by use of the eigensystem {λn, ϕn} of −L, where a direct calculation and the orthogonality of

{ϕn} yield 



m∑

j=1

qj∂
αj

t un(t) + λnun(t) = 0, t > 0,

un(0) = (a, ϕn),

n = 1, 2, . . . . (3.22)

The proof of Theorem 2.4 relies on the following lemma.

Lemma 3.5 Let un (n = 1, 2, . . .) solve the initial value problem (3.22). Then there exists

a constant C > 0 such that
∣∣∣∣un(t)−

qm(a, ϕn)

λnΓ(1− αm) tαm

∣∣∣∣ ≤
C|(a, ϕn)|

λntαm−1
, t ≫ 1. (3.23)

Proof. We abbreviate an := (a, ϕn) for simplicity. Applying the Laplace transform to (3.22)

and using the formula

L(∂α
t f)(s) = sαL(f)(s) − sα−1f(0+),

we are led to the transformed algebraic equation

L(un)(s) =
an
w(s)

m∑

j=1

qjs
αj−1, w(s) :=

m∑

j=1

qjs
αj + λn.
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Noting that the Laplace transform of un has a branch point zero, we should cut off the negative

part of the real axis so that the function w(s) has no zero in the main sheet of the Riemann

surface including its boundaries on the cut. In fact, for s = r eiθ, we see that sin(αjθ) (j =

1, · · · ,m) have the same signal and thus Im(w(s)) =
∑m

j=1 qjr
αj sin(αjθ) 6= 0 since qj > 0.

Therefore, the inverse Laplace transform of L(un) can be represented by an integral on the

Hankel path Ha(0+) (i.e., the loop constituted by a small circle |s| = ε with ε → 0 and by the

two borders of the cut negative real axis). Actually, it suffices to consider the following integral

1

2π i

∫

C

L(un)(s) e
st ds (3.24)

and estimate each

Hℓ(t;R) :=

∫

Cℓ

L(un)(s) e
st ds, ℓ = 1, · · · , 5,

where the loop C and its partitions Cℓ (ℓ = 1, . . . , 5) are illustrated in Figure 2.

C

x

y

A

B

C

D γε

iR

C1

C3

C2

C4

C5

Figure 2. The loop C and its partition.

For H1(t;R), noting that |s| = R > 1 and using a change of variable, we have

|H1(t;R)| =

∣∣∣∣
∫

C1

L(un)(s) e
st ds

∣∣∣∣ ≤ C|an|

∫ π

π/2

Rαm eRt cos θ dθ

= C|an|R
αm

∫ 0

−1

eRtη

√
1− η2

dη, t > 0.

Furthermore, we break up the above integral in [−1, 0] into two parts and calculate their bounds

respectively as

Rαm

∫ 0

−1

eRtη

√
1− η2

dη = Rαm

(∫ −1/2

−1

+

∫ 0

−1/2

)
eRtη

√
1− η2

dη

≤ Rαm e−Rt/2

∫ −1/2

−1

dη√
1− η2

+ CRαm

∫ 0

−1/2

eRtη dη
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≤ CRαm e−Rt/2 + CRαm−1 1− e−Rt/2

t
→ 0 as R → ∞, t > 0.

Therefore, for any t > 0, we see that H1(t;R) → 0 as R → ∞. Similarly to the calculation of

H1(t;R), we have H3(t;R) → 0 as R → ∞ for any t > 0. On the other hand, since R cos θ ≤ γ

for all θ ∈ [θR, π/2] where θR denotes the argument of point A, we have

|H2(t;R)| ≤ C|an|R
αm

∫ π/2

θR

eRt cos θ dθ ≤ C|an|R
αm eγt

(π
2
− θR

)

= C|an|R
αm eγt

(
π

2
− arccos

1

R

)
→ 0 as R → ∞.

Therefore, since w(s) has no zero in the main sheet of the Riemann surface including the

boundaries on the cut, the integral in (3.24) vanishes. By Fourier-Mellin formula (see e.g. [27]),

we have

un(t) = lim
M→∞

1

2π i

∫ γ+iM

γ−iM

L(un)(s) e
st ds =

1

2π i

∫

Ha(ε)

L(un)(s) e
st ds.

Here the integral is taken on the segment from γ− iM to γ+iM , and Ha(ε) denotes the Hankel

path in C defined as

Ha(ε) := {s ∈ C; arg s = ±π, |s| ≥ ε} ∪ {s ∈ C; −π ≤ arg s ≤ π, |s| = ε}.

By a similar argument as above, we find

1

Γ(1− αm) tαm
= lim

M→∞

1

2π i

∫ γ+iM

γ−iM

sαm−1 est ds =
1

2π i

∫

Ha(ε)

sαm−1 est ds.

It is now straightforward to show that the contribution from the Hankel path Ha(ε) as ε → 0

is provided by

un(t)−
qman

λnΓ(1− αm) tαm
= an

∫ ∞

0

H(r, λn) e
−rt dr, where (3.25)

H(r, λn) := −
1

π
Im






 1

w(s)

m∑

j=1

qjs
αj−1 −

qm
λn

sαm−1



∣∣∣∣∣∣
s=r eiπ



 .

To give the desired estimate (3.23), we observe that |w(s)| ≥ Cλn as long as r = |s| ≤ ε0λn,

where ε0 > 0 is sufficiently small. This indicates

|H(r, λn)| ≤

∣∣∣∣∣
λn

∑m−1
j=1 qjs

αj−1 −
∑m

j=1 qjqmsαj+αm−1

λn(
∑m

j=1 qjs
αj + λn)

∣∣∣∣∣

≤
C|an|

λn




m−1∑

j=1

|s|αj−1 +

m∑

j=1

|s|αj+αm−1


 , ∀ |s| ≤ ε0λn.

Meanwhile, for any s = r e±iπ with r ≥ ε0λn, we know that

|H(r, λn)| ≤

∑m−1
j=1 qjr

αj−1

|Im
∑m

j=1 qjs
αj |

+

∑m
j=1 qjqmrαj+αm−1

λn|Im
∑m

j=1 qjs
αj |

≤ C.
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Using these estimates, we break up the integral in (3.25) into two parts and give respective

bounds as
∣∣∣∣∣

∫ ε0λn

0

H(r, λn) e
−rt dr

∣∣∣∣∣ ≤
C

λn

∫ ∞

0




m−1∑

j=1

rαj−1 +

m∑

j=1

rαj+αm−1


 e−rt dr

≤
C

λn




m−1∑

j=1

1

tαj
+

m∑

j=1

1

tαj+αm


 ,

∣∣∣∣
∫ ∞

ε0λn

H(r, λn) e
−rt dr

∣∣∣∣ ≤ C

∫ ∞

ε0λn

e−rt dr =
C

t eε0λnt
≤

C

λnt2
.

Collecting the above two estimates, we obtain (3.23) for sufficiently large t.

Proof of Theorem 2.4. Let u take the form of (3.21) which solves (1.1)–(1.3) with a ∈ L2(Ω)

and F = 0, and fix any T > 0 sufficiently large. For all t ≥ T , it immediately follows from

Lemma 3.5 and the eigenfunction expansion that
∥∥∥∥u( · , t)−

(−L)−1(qma)

Γ(1− αm) tαm

∥∥∥∥
H2(Ω)

≤ C

∥∥∥∥∥

∞∑

n=1

(
un(t)−

qm(a, ϕn)

λnΓ(1− αm) tαm

)
ϕn

∥∥∥∥∥
D(−L)

= C

(
∞∑

n=1

∣∣∣∣λnun(t)−
qm(a, ϕn)

Γ(1− αm) tαm

∣∣∣∣
2
)1/2

≤
C

tαm−1

(
∞∑

n=1

|(a, ϕn)|
2

)1/2

=
C‖a‖L2(Ω)

tαm−1
,

implying u ∈ C([T,∞);H2(Ω) ∩H1
0 (Ω)). On the other hand, since Theorem 2.1(a) guarantees

u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω)), the proof is finished by combining the regularity

results in the finite and infinite time spans.

Remark 3.1 If some qj0 is negative, then we cannot obtain the asymptotic estimate for the

solution u of the initial-boundary value problem (1.1)–(1.3). In fact, for some n ∈ N sufficiently

large, we study the following problem




∂
1/2
t u(x, t)− 3λn∂

1/4
t u(x, t) = Lu(x, t), x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0.

u(x, 0) = anϕn = (a, ϕn)ϕn, x ∈ Ω,

where (λn, ϕn) is the n-th pair in the eigensystem of the elliptic operator −L, and a ∈ L2(Ω).

The Laplace transform of the solution reads

L(u)(s) =
an
w(s)

(
s−1/2 − 3λns

−3/4
)
ϕn, w(s) := s1/2 − 3λns

1/4 + λn.

We see that {s; w(s) = 0} is a finite set with all of the zero points having finite multiplicity in

the main sheet of the Riemann surface, and there is no zero point on the negative part of the

real axis since λn is sufficiently large. Furthermore, we can prove that there exist zeros of w(s)

having positive real parts. In fact, obviously

r± :=
3λn ±

√
9λ2

n − 4λn

2
> 0
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solves w(r±) = 0, and we have

w′(r±) =
1

2
r
−1/2
± −

3λn

4
r
−3/4
± 6= 0.

Note that
1

2π i

∫

C

L(u)(s) est ds =
∑

Res{L(u)(s) est, C},

where C is defined in Figure 2, Res{f, C} denotes the residue of function f in the domain

enclosed by C, and the sum is taken over all the poles of L(u)(s) est in this domain. Repeating

the argument in the proof of Lemma 3.5, we deduce

u(t) = lim
M→∞

1

2π i

∫ γ+iM

γ−iM

L(u)(s) estds =
∑

Res{L(u)(s) est}+
1

2π i

∫

Ha(0+)

L(u)(s) est ds.

Here the sum is taken over all the poles of L(u)(s) est lying on the left-hand side of the line

{z = γ+iM ; M ∈ R} with γ > r+, and there are only finite terms in this summation since w(s)

only has finite number of zero points including multiplicity in the main sheet of the Riemann

surface cutting of the negative axis. We can easily see that

Res{(L(u)(s) est)|s=r±} =
r
−1/2
± − 3λnr

−3/4
±

w′(r±)
er±tϕn.

Of course er±t tend to infinity as t → ∞ since r± > 0, indicating that the asymptotic behavior

in Theorem 2.4 does not hold for this case.

4 Concluding Remarks

We summarize this paper by providing several concluding remarks. Concerning the initial-

boundary value problem (1.1)–(1.3) for multi-term time-fractional diffusion equations, we mainly

investigate the well-posedness and the long-time asymptotic behavior of the solution, which turn

out to be mostly parallel to those of the single-term prototype. On the basis of the representa-

tion of solutions and a careful analysis of multinomial Mittag-Leffler functions, we succeed in

dominating the solutions by the initial value a and the source term F . Although uniqueness

and stability also follow from the maximum principle developed in [18], we carry out various

estimates so that regularity and short-time asymptotic behaviors of the solutions are directly

connected with the regularity of a and F (see Theorems 2.1–2.2). Furthermore, in Theorem

2.3 we establish the Lipschitz stability of the solution with respect to αj , qj and the diffusion

coefficient, which is not only important by itself but also applicable to the corresponding inverse

coefficient problem when treated by a minimization approach (see [13, Theorem 5]).

Simultaneously, we also obtain an extended version of [26, Corollary 2.6] in Theorem 2.4,

which asserts that, if the solution does not vanish identically, then its decay rate cannot exceed

t−αm , where αm is the minimum order of fractional time-derivative. It is a remarkable property

of fractional diffusion equations because the classical diffusion equation admits non-zero solu-

tions decaying exponentially. This characterizes the slow diffusion in contrast to the classical

one.
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In the formulation of the initial-boundary value problem, we emphasize that the coefficients

qj of the time derivatives are positive constants because this assumption is obligatory not only

to acquire explicit solutions but also to apply the Laplace transform in time, which are essential

in the discussions of well-posedness and asymptotic behavior, respectively. On the other hand,

if qj are space-dependent, then explicit solutions are not available so that one should rely on

a fixed point argument for the unique existence of solution, and the improvement of regularity

in space is strictly less than 2 orders (see [4, Theorem 2]). On the other hand, if some qj0 is

negative, then one may construct a counterexample in which the asymptotic property fails (see

Remark 3.1).

However, in view of practical applications and theoretical interests, the linear non-symmetric

diffusion equation with positive variable coefficients of Caputo derivatives in time can be re-

garded as a more feasible model equation than that we have studied in the current paper, but

it will be definitely more challenging. Though still under consideration, we expect to establish

parallel results for this more generalized case.
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