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Abstract

This study examines the notion of generators of a pairwise compar-
isons matrix. Such approach decreases the number of pairwise com-
parisons from n · (n − 1) to n − 1. An algorithm of reconstructing of
the PC matrix from its set of generators is presented.
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1 Introduction
In [18], Thurstone proposed “The Law of Comparative Judgments” for pair-
wise comparisons (for short, PC). However, the first use of pairwise compar-
isons is in [4]). Even earlier, Condorcet used it in [3], but in a more simplified
way for voting (win or loss).

The approach, based on the additive value model is presented in [1].
Generalization of the pairwise comparisons method was examined in [11, 16].
In [5], the PC matrix approximation problem was examined.

In this study, we examine the possibility of reconstructing the entire n×n
PC matrix from only n − 1 given entries placed in strategic locations. We
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call them generators. Before we progress, some terminologies of pairwise
comparisons must be revisited in the next section, since PC theory is still
not as popular as other mathematical theories. However, the next section is
definitely not for PC method experts.

2 Pairwise comparisons basics
We define an n × n pairwise comparison matrix simply as a square matrix
M = [mij] such that mij > 0 for every i, j = 1, . . . , n. A pairwise comparison
matrix M is called reciprocal if mij = 1

mji
for every i, j = 1, . . . , n (then

automatically mii = 1 for every i = 1, . . . , n). Let us assume that:

M =


1 m12 · · · m1n
1

m12
1 · · · m2n

...
...

...
...

1
m1n

1
m2n

· · · 1


where mij expresses a relative quantity, intensity, or preference of entity (or
stimuli) Ei over Ej. A more compact and elegant specification of PC matrix
is given in [15] by Kulakowski.

A pairwise comparison matrix M is called consistent (or transitive) if:

mij ·mjk = mik

for every i, j, k = 1, 2, . . . , n.

We will refer to it as a “consistency condition”. Consistent PC matrices
correspond to the situation with the exact values µ(E1), . . . , µ(En) for all
the entities. In such case, the quotients mij = µ(Ei)/µ(Ej) then form a
consistent PC matrix. The vector s = [µ(E1), . . . µ(En)] is unique up to a
multiplicative constant. While every consistent matrix is reciprocal, the con-
verse is generally false. If the consistency condition does not hold, the matrix
is inconsistent (or intransitive). Axiomatization of inconsistency indicators
for pairwise comparisons has been recently proposed in [14].

The challenge for the pairwise comparisons method comes from the lack
of consistency of the pairwise comparisons matrices, which arises in practice
(while as a rule, all the pairwise comparisons matrices are reciprocal). Given
an N ×N matrix M , which is not consistent, the theory attempts to provide
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a consistent n × n matrix M ′, which differs from matrix M “as little as
possible”.

It is worth to noting that the matrix: M = [vi/vj] is consistent for all
(even random) positive values vi. It is an important observation since it im-
plies that a problem of approximation is really a problem of a norm selection
and the distance minimization. For the Euclidean norm, the vector of geo-
metric means (equal to the principal eigenvector for the transitive matrix) is
the one which generates it. Needless to say that only optimization methods
can approximate the given matrix for the assumed norm (e.g., LSM for the
Euclidean distance, as recently proposed in [7]). Such type of matrices are
examined in [17] as “error-free” matrices.

It is unfortunate that the singular form “comparison” is sometimes used
considering that a minimum of three comparisons are needed for the method
to have a practical meaning. Comparing two entities (stimuli or properties)
in pairs is irreducible, since having one entity compared with itself gives
trivially 1. Comparing only two entities (2× 2 PC matrix) does not involve
inconsistency. Entities and/or their properties are often called stimuli in the
PC research but are rarely used in applications.

3 The generators of pairwise comparisons ma-
trix

For a given PC matrix A ∈ Mn×n(R) consider the set Cn := {aij : i < j}.
Note that to reconstruct the whole matrix it is enough to know the elements
of Cn, as aii = 1 for each i ∈ {1, · · · , n} and aji = 1

aij
for i < j.

Let us call each such set sufficient to reconstruct the matrix A its set of
generators.

The set Cn has n2−n
2

elements. However, consistency is a much stronger
condition. So, it is obvious that we can reduce this input set to calculate the
rest of elements. It is a natural question to ask which minimal subsets of Cn

generate A.

Remark 3.1. If B ⊂ B′ ⊂ Cn and B generates A, then B′ does as well.

Theorem 3.2. There is no (n− 2)-set of generators of A.

Proof. For n = 3 the statement is obvious, as in any matrix:
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 1 a c
1
a

1 b
1
c

1
b

1

 .
if we only know one of the values a, b or c, we cannot clearly calculate the
other two satisfying c = ab.

To continue the induction, let us assume that the assertion holds for each
matrix M ∈Mn×n(R). Now consider the matrix:

An+1 =


1 a12 · · · a1n a1,n+1
1

a12
1 · · · a2n a2,n+1

...
...

...
...

1
a1n

1
a2n

· · · 1 an,n+1
1

a1,n+1

1
a2,n+1

· · · 1
an,n+1

1


Notice that in order to calculate the elements of the last column, we need

to know at least one of them. On the other hand, if we know p of them,
we can calculate only p − 1 of the elements aij for 1 ≤ i < j ≤ n. Let us
assume there is a (n − 1)-set B of generators of An+1. We define a new set
B′ := B ∪ L \ R, where R denotes the set of elements of B from the last
column, and L denotes the elements from the previous columns which can
be calculated from the elements of R. Now B′ is a (n− 2)-set of generators
of the matrix An resulting from An+1 by removing the last row and column.

An ∈Mn×n(R), which contradicts the inductive assumption.

Remark 3.3. Given input values ai,i+1 (for i = 1, · · · , n − 1) located above
the main diagonal, from the consistency condition we can reconstruct the
entire matrix

A =


1 a12 · · · a1n
1

a12
1 · · · a2n

...
...

...
...

1
a1n

1
a2n

· · · 1


using the formula

aij =

j−1∏
k=i

ak,k+1 (1)
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for j > i.

It is worth mentioning that the above n−1 values are not the only values
generating the entire matrix. The following theory is provided for finding
the other minimal sets of generators.

Remark 3.4. There is a mutual relevance between each set B ⊂ Cn and an
undirected graph GB with n vertices:

aij ∈ B ⇔ there is an edge i− j in GB.

Lemma 3.5. If we know k edges of any subtree of GB, then we are able to

compute
(
k + 1
2

)
of elements of Cn.

Proof. For k = 1 the statement is obvious, as
(

1 + 1
2

)
= 1.

To proceed with induction, let us assume that the statement is true for
k. Take a tree D with k + 2 vertices x1, . . . , xk+2 ∈ V (D) and k + 1 edges.
Remove any leaf xl ∈ V (D) together with the edge xm − xl, joining the
leaf with the tree. We get a new tree D′ with k edges. From the inductive

assumption, we are able to calculate
(
k + 1
2

)
of elements of Cn.

Now, when we give the removed edge back, we notice that for every vertex
xj ∈ V (D) \ {l} there is a path xj − xp1 − · · · − xps − xl joining xj with xl
and we can compute ajl = ajp1 · ap1p2 · . . . · apsl. These are k+1 new elements

and altogether we know
(
k + 1
2

)
+ k + 1 =

(
k + 2
2

)
of elements of Cn.

Now we can formulate the necessary and sufficient condition for minimal
sets of generators.

Theorem 3.6. Let us assume B ⊂ Cn is a (n− 1)-set. Then

B generates matrix A ⇔ G(B) is a tree.

Proof. Take a set B of generators of matrix A. Let us assume G(B) is not
a tree. If so, it must contain a cycle xk1 − xk2 − . . . − xks − xk1 . When
we remove the edge xk1 − xks the relevant n − 2-set still generates A, as
ak1,ks = ak1,k2 · . . . · aks−1,ks . Thus we get a contradiction with Theorem 3.2.

The reverse implication follows straight from Lemma 3.5 for k = n−1.
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Corollary 3.7. There are nn−2 minimal sets of generators of A.

Proof. This is an immediate consequence of the Cayley’s formula for the
number of trees on n vertices.

Although there are many combinations of n − 1 values generating the
entire PC matrix, the valuesmi,i+1 are the most important of all combinations
since they express this sequence:

E1/E2, E2/E3, ..., En−2/En−1, En−1/En (2)

Let us call the above n − 1 values as principal generators (PGs). For
matrix An, the principal generators are located above the main diagonal and
are as follows:

a1,2, a2,3, . . . , an−1,n

Let us invent our own handicapping. Handicapping, in sports and games,
is the practice of assigning advantage through scoring compensation or other
advantage given to different contestants to equalize the chances of winning.
The same term also applies to the various methods for computing advantages.

Entities 1 and n occurs in (2) only once. Any other entity, 2 to n − 1,
occurs twice. Since the highest frequency is 2, it is fair to add 1 to E1 and
En to compensate for only one occurrence and count the maximum number
of occurrences of an entity to compensate other entities. We also define the
total handicapping as the total of all compensations.

By the frequency f(i, B) of an entity i ∈ {1, . . . , n}in a set B ⊂ Cn we
understand the cardinality of set

Bi := {ajk ∈ B : j = i ∨ k = i}.

Let O(B) denote the set {i : Bi 6= ∅}. We define the total handicapping
of the set B ⊂ Cn as

h(B) :=
∑

i∈O(B)

( max
j∈O(B)

f(j, B)− f(i, B)).

For example, for generators assumed to be the first raw, the total hand-
icapping would be (n − 2)(n − 1), since E1 occurs n − 1 times and the rest
entities only once, so they need to be handicapped by n− 2.
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Remark 3.8. The frequency of an entity i in the set B is equal to the degree
of vertex i in graph GB:

f(i, B) = degGB
(i).

Remark 3.9. O(B) is the set of vertices of GB with a positive degree.

Remark 3.10. h(B) counts the sum of differences between the maximal de-
gree of a vertex in GB and the degrees of the rest of vertices.

Corollary 3.11. h(B) = 0 ⇒ graph GB is regular (all its vertices have the
same degree).

Theorem 3.12. If n > 1 and B is a (n− 1)-set of generators of A, then

1. h(B) = 0⇒ n = 2

2. h(B) 6= 1

3. h(B) = 2⇒ GB is a path connecting all vertices.

Proof. From Theorem 3.6, it follows that G(B) is a tree. Thus, it has n
vertices and n − 1 edges. Notice that to obtain the number of edges one
needs to sum up the degrees of vertices and divide by two (each edge is
counted twice).

If h(B) = 0, then G(B) has n vertices of the same degree k. Hence,

n− 1 =
nk

2
⇒ 2n− 2 = nk ⇒ n(2− k) = 2⇒ n = 2.

If h(B) = 1, then G(B) has n− 1 vertices of the same degree k and one
of degree k − 1. Hence,

n− 1 =
(n− 1)k

2
+
k + 1

2
=
nk − 1

2
⇒ 2n− 2 = nk − 1⇒

⇒ (2− k)n = 1⇒ n = 1,

which is a contradiction.
If h(B) = 2, then there are two cases. The first one with n − 1 vertices

of degree k and one vertex of degree k − 2. Hence,

n− 1 =
(n− 1)k

2
+
k − 2

2
=
nk − 2

2
⇒ 2n− 2 = nk − 2⇒ k = 2,
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and it follows that there is one vertex of degree 0, so graphGB is disconnected,
which is a contradiction.

For a case with n−2 vertices of degree k and two vertices of degree k−1,
we have:

n− 1 =
(n− 2)k

2
+

2

k − 1
2 =

nk − 2

2
⇒ 2n− 2 = nk − 2⇒ k = 2,

and it follows that GB is a path connecting all vertices.

Corollary 3.13. For n ≥ 2 there are n!
2
(n− 1)-sets of generators of A with

the minimal total handicapping.

Proof. For n = 2 the statement is obvious. For n ≥ 3 from Theorem 3.12,
we know that it suffices to count all the paths connecting all vertices. Each
such path is of the form p(1)− p(2)− · · ·− p(n), where p is a permutation of
the set {1, . . . , n}. However, from p(1)− p(2)− · · · − p(n) and p(n)− p(n−
1) − · · · − p(1), we obtain the same tree hence the number of permutations
must be divided by two.

Example 3.14. Consider n = 4 and the matrix

A =


1 a b c
1
a

1 d e
1
b

1
d

1 f
1
c

1
e

1
f

1

 .
The set C4 = {a, b, c, d, e, f} consists of 42−4

2
= 6 elements, so it has(

6
3

)
= 20 3-subsets listed in Tab. 3.14. From Remark 3.4, we know that

they are related to some graphs. They are listed in Fig. 1 and their nodes
are labeled in Fig. 2.
The last four subsets are triads, so they are not generators of A. The graphs
related to them are cycles.

According to Corollary 3.7, there are 44−2 = 16 minimal sets of generators
of A and they are the first 16. The graphs related to them are obviously trees.
From Corollary 3.13, we conclude that we have 4!

2
= 12 sets of generators of

A minimizing the total handicapping and they are the first 12. The related
graphs are paths.
It is worth noticing that the first subset is the set of PGs.
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{a, d, f} {a, c, d} {a, c, f} {c, d, f}
{a, e, f} {a, b, f} {b, c, d} {c, d, e}
{a, b, e} {b, c, e} {b, e, f} {b, d, e}
{a, b, c} {a, d, e} {b, d, f} {c, e, f}
{a, c, e} {a, b, d} {b, c, f} {d, e, f}

Table 1: 3-subsets for n = 4

The strategic importance of PGs, based on the total handicapping, places
them on the diagonal above the main diagonal. It is important to notice
that PGs are always there and it is up to us to decide whether or not we
use them for the reconstructing the entire consistent PC matrix (with the
possible increased error) or enter the remaining entires into PC matrix with
the possibility of inconsistency in triads. As pointed out in [12], nothing is
carved in stone and even reciprocity can be relaxed for the blind wine and
other types of tasting. Reciprocity may also not be guaranteed when data
are collected over the Internet from different sources or individuals. For PGs
sufficiently accurate, the PC matrix reconstruction is a vital possibility.

4 An algorithm for the reconstruction of a PC
matrix from generators

Assuming that we know the (n − 1)−set B ⊂ Cn ⊂ A, we can reconstruct
the entire matrix A using an algorithms described below.

For given PGs a11, . . . , ann, we can compute each aij for i < j from
Remark 3.3. On the other hand, if we know a (n − 1)-set B of different
values of matrix A we can apply the log function to the formula (1) and we
substitute xk := log ak,k+1 then we get the system of linear equations

log aij =

j−1∑
k=i

xk, aij ∈ B

If B generates A, then this system has a unique solution and we may
calculate ak,k+1 = 10xk .

This leads us to the following algorithm:
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Figure 1: All possible combinations of 20 three generators

Figure 2: Nodes for all generators in Fig. 1

INPUT :

• M ∈M(n− 1, 3) representing the set B of generators of A.

• (M [i, 1],M [i, 2]) correspond to the coordinates of the i-th element of
B.

• M [i, 3] corresponds to the value of the i-th element of B.

OUTPUT :
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The consistent PC matrix A ∈M(n, n) reconstructed from A.

ALGORITHM:

1. Construct graph GB:
GB := ∅;
for i := 1 to n− 1 GB := GB ∪ {M [i, 1]−M [i, 2]};

2. Check if GB is a tree (using DFS algorithm):
if not then write (’B does not generate A’) and exit;

3. Solve a linear system

M [i,2]−1∑
k=M [i,1]

xk = log(M [i, 3]), i = 1, . . . , n− 1

4. Calculate elements of A:
for k := 1 to n A[k, k] := 1;
for k := 1 to n− 1 A[k, k + 1] := 10xk ;
for k := 1 to n− 1

for l := k + 2 to n A[k, l] :=
∏l−1

m=k A[m,m+ 1]
for k := 1 to n− 1

for l := k + 1 to n A[l, k] := 1
A[k,l]

Example 4.1. Let us consider the PC matrix A, from the example 3.14, and
assume that we know the values from the set B = {a, b, e}. Thus, the input
matrix is:

M =

 1 2 a
1 3 b
2 4 e

 .
Apply the algorithm:

1. We obtain the graph GB with 4 vertices

1, 2, 3, 4

and 3 edges
1− 2, 1− 3, 2− 4.
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2. We assure that GB is a tree and continue.

3. We solve the linear system
x1 = log a

x1 + x2 = log b
x2 + x3 = log e

and we get 
x1 = log a
x2 = log b− log a = log b

a

x3 = log e− logb+ log a = log ae
b

4. We calculate the missing elements of the output PC matrix A:

A =


1 a b ae
1
a

1 b
a

e
1
b

a
b

1 ae
b

1
ae

1
e

b
ae

1

 .
Remark 4.2. The complexity of the algorithm is O(n3).

Proof. Steps 1 and 2 take O(n) operations. The complexity of step 3 is O(n2)
and of step 4 is O(n3).

Notice that the assumption that the number p of input entries is equal
to n − 1 may not be satisfied. We may have less or more data and still use
the slightly modified algorithm. We only change steps 1 and 2:

1. Construct graph GB:
GB := ∅;
for i := 1 to p GB := GB ∪ {M [i, 1]−M [i, 2]};

2. Replace GB by its spanning tree received from DFS algorithm.
if GB has less than n − 1 edges then write (’B does not generate A’)
and exit;
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5 Conclusions
In this study, we have demonstrated that we are able to use less than all
n · (n − 1)/2 pairwise comparisons to reconstruct a consistent matrix. In
fact, the minimum of n− 1 generators is sufficient. This may be very useful,
provided that they represent more accurate values than the rest of the PC
matrix. Another possible application of the suggested algorithm is a case of
the missing data in the PC matrix. The entire PC can be reconstructed from
the principal generators located above the main diagonal. Together with the
preliminary sorting of entities, it is quick and easy way of getting weights.

The problem is that the accumulated errors grow fast when we “walk
away” from the main diagonal towards the upper right corner. In fact, for
n = 7 and 20% error in the principal generators, nearly 200% is accumulated
in the upper right corner.

The proposed algorithm for reconstructing the entire matrix from the
principal generators is easy to implement, even in Gnumeric (or in MS Excel).
In addition, the reconstructed values (accurate or not) are consistent.

In this study, we only consider the multiplicative variant of PC, which
is based on “how many times?”, while the additive version of pairwise com-
parisons (“by how much?”)was recently analyzed in [19]. The additive PC
method utilizes a different type of inconsistency (not addressed here). Cer-
tainly more research is needed.
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