DIRECT MESHLESS KERNEL TECHNIQUES FOR
TIME-DEPENDENT EQUATIONS
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Abstract. We provide a class of positive definite kernels that allow to solve certain evolution
equations of parabolic type for scattered initial data by kernel-based interpolation or approximation,
avoiding time intergation completely. Some numerical illustrations are given.
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1. Introduction. There are plenty of application papers in which kernels or
radial basis functions are successfully used for solving partial differential equations
by meshless methods. The usage of kernels is typically based on spatial interpolation
at scattered locations, writing the trial functions “entirely in terms of nodes’[2]. For
stationary partial differential equations, the discretization can take pointwise analytic
derivatives of the trial functions to end up with a linear system of equations. This
started in [5] and was pursued in the following years, including a convergence theory
in [7]. There are also variations that use weak data, like the Meshless Local Petrov—-
Galerkin method [1] with a convergence theory in [9]. For the potential equation,
there are special kernels that allow the use of trial functions that satisfy the differential
equation exactly [8, 4]. This is a variation of the general idea of Trefftz [12] to use
trial functions that satisfy the PDE exactly.

For time—dependent partial differential equations, meshless kernel-based methods
were similarly based on a fixed spatial interpolation, but now the coefficients are time—
dependent, and one obtains a system of ordinary differential equations for these. This
is the well-known Method of Lines, sometimes also called differential quadrature, and
it turned to be experimentally useful in various cases (see e.g. [13, 6, 3, 11]). But
we follow the Trefftz philosophy here and use special kernels that satisfy a linear
evolution—type PDE

(L.1) ug(z,t) = Lu(z,t)

with a purely spatial and elliptic operator L ezactly. This will eliminate time integra-
tion, but at the expense of using kernels defined via expansions into eigenfunctions
of the spatial differential operator L. Of course, this is a special case of a spectral
method, conveniently stated in terms of a time—dependent positive definite kernel.

We give a rigid error analysis of this technique and provide a few numerical
examples.

Instead of using trial functions that satisfy the boundary conditions but violate
the differential equation, we approximate the solution by selecting functions that
violate the boundary conditions but satisfy the differential equation.

2. Linear Elliptic Equations. We take a spatial domain Q C R? and some
kind of homogeneous boundary condition on 9€2. Then, for a linear self-adjoint elliptic
differential operator L, we assume to have eigenfunctions u,, on €2 for the associated
boundary value problem, i.e.

(2.1) Lu, = A\, in Q, neN
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with a countable index set N. Our running example will be L = A on = [0, «1]¢
with homogeneous Dirichlet boundary conditions, leading to

d
(2.2) up(z) = Hsm(km), A = — k|2, ke N :=N¢\ {0}

in standard multi-index notation.
A solution of the problem

Lu=f

with homogeneous boundary conditions can then be written formally by expanding f
into the eigenfunctions as

f= anu,

neN

and then writing the solution u as

u = Z %un.

neN "

This needs a discussion of convergence of the series. We shall do this in a way that is
closely linked to reproducing kernel Hilbert spaces.

3. Expansion Kernels. We now fix positive real numbers p,, for all n € N to
let an expansion kernel

(3.1) Ku(z,y) =Y ntin (2)un(y)

neN

satisfy the summability condition

K,(z,x) = Z fintin (z)? < C? < oo for all z € Q.
nenN

This kernel is positive semidefinite on §2, i.e. for all selections of finite point sets X =
{z1,..., 2} C Q, the M x M kernel matrices A = A(X) with entries K,,(z;, zx), 1 <
7,k < M are symmetric and positive semidefinite.

By well-known results, such a kernel is reproducing in the Hilbert space H, of
all functions of the form

fel@) =) cpun(@), z€Q
neN

under the condition
2

C
Ifellf =D = < o0

nenN

related to the inner product




letting the reproduction follow the formula
fe(x) = (fe, Ku(z, ), for all x € Q, fe. € Hy,.

Note that this gives us a variety of Hilbert spaces, and we shall check now how L
maps functions between these spaces. Taking u € H,, with coefficients c,,, we get that
Lu has coefficients A\, ¢,,, and thus

L : H, — Hyx

allows to look at solutions of Lu = f for various regularity assumptions. Here, we
denote the sequence with values £ by p/ A2 for short.
We require the initial function ug to be in H, i.e.

up(z) = Z Y ()
nenN
with
2
Y,
luollFr = — < oo.

nenN "

The basic idea now is to construct a time—dependent kernel K satisfying the differen-
tial equation exactly. We do this by defining

K(x,y,t) = Z o (D)t () (y), x,y €Q, >0
nenN

with initial conditions
n(0) = pin, n € N
leading to
K(x,y,0) = Ko(z,y) for all z,y € Q.
To let the differential equation be satisfied in the sense
Ki(x,y,t) = L"K(x,y,t) for all z,y € Q, t >0

where the superscript x indicates that L acts on the variable x, we have to satisfy

Z,u;(t)un(x)un(y) = Zﬂn(t)Lmun(z)un(y)

neN neN

Z o () Ayt ()1, ()

nenN

and this leads to the ordinary differential equations

i (t) = pn (t)An
with the solution

pn(t) = pin exp(Apt), t >0, n € N.
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Thus our kernel is

K(Ia yvt) = Z Hn exp(/\nt)un(x)un(y), z,y € Qv t Z O
neN

and in case of positive eigenvalues we need the condition

Z pin exp(An T, ()? < oo for all z € Q
neN

to be able to work in [0, T']. This approach generalizes the standard heat kernel. Note
that elliptic operators will have negative eigenvalues in (2.1), and then the coefficients
pn(t) will decay with increasing time.

4. Interpolatory Methods. Since we have a positive semidefinite kernel K
on the spatial domain, we can choose a set X = {z1,...,zp} C Q of points in
Q and interpolate the initial function ug by a linear combination of the functions
Ko(z, ), 1 <m < M via the linear system

M
(4.1) uo(zi) = Y amKo(wi,zm)

m=1

for 1 < i < M. If the initial function ug lies in H, this problem is solvable, though
the kernel matrix is only positive semidefinite. We then define

M
u(x, t) := Z am K (z, T, t)
m=1

to see that the differential equation and the boundary conditions are satisfied.

The error satisfies the differential equation and the boundary conditions. Thus
the error is exactly the evolution of the initial error under the differential equation.
If the maximum principle holds, the error for all positive times is thus bounded by
the Lo interpolation error ||@(-,0) — ug|loo at startup. A theoretical analysis of this
error requires an application of kernel interpolation theory to K (z,v,0).

The choice of the weights in the kernel series (3.1) will depend on the smoothness
of the starting function wg, since kernel interpolation theory [14, 10] tells us that
the smoothness of the kernel K (z,y,0) should be not lower than the smoothness
of the function supplying the data. And since, for example, the smoothness of the
functions generated by trigonometric series is related to the decay of the coefficients,
the smoothness of K (z,y,0) will usually be controlled by decay of the Ay.

Direct interpolation of initial data by linear combinations of eigenfunctions is not
possible in general. The use of kernels always allows interpolation.

5. Examples . We start the simple example from (2.2) here.
The choice pux = 1/k! gives a series which generates an analytic kernel plotted in
Figure 5.1. It has an explicit representation

AK(z,y,0) = exp(exp(m(z +y))) + exp(exp(=7(z +y)))
— exp(exp(n(z —y))) — expexp(—n(z —y)))

which unfortunately suffers from severe cancellation. But the rapid convergence of the
series (3.1) allows to sum the series up until the limit of double precision is reached,



Fic. 5.1. Kernel with weights 1/n!

ie. at k = 19. This will, however, lead to inevitable rank loss in (4.1) for more
than n = 19 data points. Nonetheless, and in particular if the initial function wug
is very smooth, there usually are good projections of the right—hand side into the
column space of the matrix, leading to unexpectedly good results. Figure 5.2 shows
an example for the starting function ug(z) = 1 — 2|z — 0.5] using only 12 interior
points. The error is bounded by the visible difference of the starting function and its
first interpolant.

By simple spectral shifts, this example generalizes to the case Lu = Au+ ku, and
similarly for other spatial operators that have known eigenfunction expansions.
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Fia. 5.2. Solution of heat equation

If one tries to solve the heat equation backwards this way, the solution must
increase exponentially. Figure 5.3 shows two examples:
e starting with ug(x) = (1 — x) up to time ¢t = —0.005 in steps of 0.0001,
e starting with ug(xz) =1 — 2|z — 0.5] up to time ¢ = —0.001 in steps of 0.0001.
The final example concerns the wave equation. The time—dependent part now is

tn (t) = pn(0) cos(Ant) = % cos(nmt)
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Fiac. 5.3. Two backward calculations

in this case, using (2.2) in the spatial variables. The result is in Figure 5.4 for ug(z) =
1 — 2|z — 0.5] and times up to ¢t = 1 in steps of 0.05. Note that the wave starts with
the interpolant and reflects back to it.
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Fic. 5.4. Solution of wave equation
6. Extensions. This approach generalizes to other cases where separation of
variables works, e.g. the wave equation. If there is a linear differential operator

D acting with respect to time, the problem Du(z,t) = Lu(x,t) can be split into
eigenvalue problems

Doy, (t) = Apon(t), Luy(x) = Aun(2),

for appropriate homogeneous boundary conditions, and we can define a kernel

K(x,y,t) = Z fon U () () v (1)



under the summability condition

K(x,x,t) ZM" x) |, ()] < o0

To make interpolation at ¢ = 0 work, additional conditions must be satisfied. In case
of the wave equation us; = Awu, we use trial functions

N N
1) =Y 0K (wxy,t) + Y biK(w,aj,t)
7j=1

j=1

since for a useful initial-value problem we have to prescribe both u(x,0) and us(x, 0).
On the spatial domain [0, 7] we can use u,(z) = sin(nz) and v, (t) = cos(nt) to form
kernels. We pose interpolation conditions

N N
u(zg,0) = ZajK(xk, xj,0) + Z b K (xk,2;,0)

j=1
N
= Y a;jK(xy,x;,0)

N N
ug(xg,0) = ZajKt(lEk,lEj,O)+ijKtt(fEk7$j;O)
j=1 j=1
N
= ijKtt(xk,xj,O)
j=1

that simplify because of v}, (0) = 0 and thus Ky(x,y,0) = 0. The kernels K and

Ktt xz y, Z)‘nﬂnun ( )Un(t)

are both definite, and the interpolation problem is solvable.
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