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Abstra
t. We provide a 
lass of positive de�nite kernels that allow to solve 
ertain evolution

equations of paraboli
 type for s
attered initial data by kernel�based interpolation or approximation,

avoiding time intergation 
ompletely. Some numeri
al illustrations are given.
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1. Introdu
tion. There are plenty of appli
ation papers in whi
h kernels or

radial basis fun
tions are su

essfully used for solving partial di�erential equations

by meshless methods. The usage of kernels is typi
ally based on spatial interpolation

at s
attered lo
ations, writing the trial fun
tions �entirely in terms of nodes�[2℄. For

stationary partial di�erential equations, the dis
retization 
an take pointwise analyti


derivatives of the trial fun
tions to end up with a linear system of equations. This

started in [5℄ and was pursued in the following years, in
luding a 
onvergen
e theory

in [7℄. There are also variations that use weak data, like the Meshless Lo
al Petrov�

Galerkin method [1℄ with a 
onvergen
e theory in [9℄. For the potential equation,

there are spe
ial kernels that allow the use of trial fun
tions that satisfy the di�erential

equation exa
tly [8, 4℄. This is a variation of the general idea of Tre�tz [12℄ to use

trial fun
tions that satisfy the PDE exa
tly.

For time�dependent partial di�erential equations, meshless kernel�based methods

were similarly based on a �xed spatial interpolation, but now the 
oe�
ients are time�

dependent, and one obtains a system of ordinary di�erential equations for these. This

is the well�known Method of Lines, sometimes also 
alled di�erential quadrature, and

it turned to be experimentally useful in various 
ases (see e.g. [13, 6, 3, 11℄). But

we follow the Tre�tz philosophy here and use spe
ial kernels that satisfy a linear

evolution�type PDE

ut(x, t) = Lu(x, t)(1.1)

with a purely spatial and ellipti
 operator L exa
tly. This will eliminate time integra-

tion, but at the expense of using kernels de�ned via expansions into eigenfun
tions

of the spatial di�erential operator L. Of 
ourse, this is a spe
ial 
ase of a spe
tral

method, 
onveniently stated in terms of a time�dependent positive de�nite kernel.

We give a rigid error analysis of this te
hnique and provide a few numeri
al

examples.

Instead of using trial fun
tions that satisfy the boundary 
onditions but violate

the di�erential equation, we approximate the solution by sele
ting fun
tions that

violate the boundary 
onditions but satisfy the di�erential equation.

2. Linear Ellipti
 Equations. We take a spatial domain Ω ⊂ R
d
and some

kind of homogeneous boundary 
ondition on ∂Ω. Then, for a linear self�adjoint ellipti

di�erential operator L, we assume to have eigenfun
tions un on Ω for the asso
iated

boundary value problem, i.e.

Lun = λnun in Ω, n ∈ N(2.1)
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with a 
ountable index set N . Our running example will be L = ∆ on Ω = [0, π]d

with homogeneous Diri
hlet boundary 
onditions, leading to

uk(x) =

d∏

i=1

sin(kixi), λk = −‖k‖2
2
, k ∈ N := N

d
0
\ {0}(2.2)

in standard multi�index notation.

A solution of the problem

Lu = f

with homogeneous boundary 
onditions 
an then be written formally by expanding f
into the eigenfun
tions as

f =
∑

n∈N

αnun

and then writing the solution u as

u =
∑

n∈N

αn

λn
un.

This needs a dis
ussion of 
onvergen
e of the series. We shall do this in a way that is


losely linked to reprodu
ing kernel Hilbert spa
es.

3. Expansion Kernels. We now �x positive real numbers µn for all n ∈ N to

let an expansion kernel

Kµ(x, y) :=
∑

n∈N

µnun(x)un(y)(3.1)

satisfy the summability 
ondition

Kµ(x, x) =
∑

n∈N

µnun(x)
2 ≤ C2 < ∞ for all x ∈ Ω.

This kernel is positive semide�nite on Ω, i.e. for all sele
tions of �nite point sets X =
{x1, . . . , xM} ⊂ Ω, theM×M kernel matri
es A = A(X) with entriesKµ(xj , xk), 1 ≤
j, k ≤ M are symmetri
 and positive semide�nite.

By well�known results, su
h a kernel is reprodu
ing in the Hilbert spa
e Hµ of

all fun
tions of the form

fc(x) :=
∑

n∈N

cnun(x), x ∈ Ω

under the 
ondition

‖fc‖
2

µ :=
∑

n∈N

c2n
µn

< ∞

related to the inner produ
t

(fc, fd)µ :=
∑

n∈N

cndn
µn
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letting the reprodu
tion follow the formula

fc(x) = (fc,Kµ(x, ·))µ for all x ∈ Ω, fc ∈ Hµ.

Note that this gives us a variety of Hilbert spa
es, and we shall 
he
k now how L
maps fun
tions between these spa
es. Taking u ∈ Hµ with 
oe�
ients cn, we get that
Lu has 
oe�
ients λncn, and thus

L : Hµ → Hµ/λ2

allows to look at solutions of Lu = f for various regularity assumptions. Here, we

denote the sequen
e with values

µn

λ2
n

by µ/λ2
for short.

We require the initial fun
tion u0 to be in H , i.e.

u0(x) =
∑

n∈N

γnun(x)

with

‖u0‖
2

H =
∑

n∈N

γ2

n

µn
< ∞.

The basi
 idea now is to 
onstru
t a time�dependent kernel K satisfying the di�eren-

tial equation exa
tly. We do this by de�ning

K(x, y, t) :=
∑

n∈N

µn(t)un(x)un(y), x, y ∈ Ω, t ≥ 0

with initial 
onditions

µn(0) = µn, n ∈ N

leading to

K(x, y, 0) = K0(x, y) for all x, y ∈ Ω.

To let the di�erential equation be satis�ed in the sense

Kt(x, y, t) = LxK(x, y, t) for all x, y ∈ Ω, t ≥ 0

where the supers
ript x indi
ates that L a
ts on the variable x, we have to satisfy

∑

n∈N

µ′

n(t)un(x)un(y) =
∑

n∈N

µn(t)L
xun(x)un(y)

=
∑

n∈N

µn(t)λnun(x)un(y)

and this leads to the ordinary di�erential equations

µ′

n(t) = µn(t)λn

with the solution

µn(t) = µn exp(λnt), t ≥ 0, n ∈ N.
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Thus our kernel is

K(x, y, t) =
∑

n∈N

µn exp(λnt)un(x)un(y), x, y ∈ Ω, t ≥ 0

and in 
ase of positive eigenvalues we need the 
ondition

∑

n∈N

µn exp(λnT )un(x)
2 < ∞ for all x ∈ Ω

to be able to work in [0, T ]. This approa
h generalizes the standard heat kernel. Note

that ellipti
 operators will have negative eigenvalues in (2.1), and then the 
oe�
ients

µn(t) will de
ay with in
reasing time.

4. Interpolatory Methods. Sin
e we have a positive semide�nite kernel K0

on the spatial domain, we 
an 
hoose a set X = {x1, . . . , xM} ⊂ Ω of points in

Ω and interpolate the initial fun
tion u0 by a linear 
ombination of the fun
tions

K0(x, xm), 1 ≤ m ≤ M via the linear system

u0(xi) =

M∑

m=1

αmK0(xi, xm)(4.1)

for 1 ≤ i ≤ M . If the initial fun
tion u0 lies in H , this problem is solvable, though

the kernel matrix is only positive semide�nite. We then de�ne

ũ(x, t) :=

M∑

m=1

αmK(x, xm, t)

to see that the di�erential equation and the boundary 
onditions are satis�ed.

The error satis�es the di�erential equation and the boundary 
onditions. Thus

the error is exa
tly the evolution of the initial error under the di�erential equation.

If the maximum prin
iple holds, the error for all positive times is thus bounded by

the L∞ interpolation error ‖ũ(·, 0) − u0‖∞ at startup. A theoreti
al analysis of this

error requires an appli
ation of kernel interpolation theory to K(x, y, 0).
The 
hoi
e of the weights in the kernel series (3.1) will depend on the smoothness

of the starting fun
tion u0, sin
e kernel interpolation theory [14, 10℄ tells us that

the smoothness of the kernel K(x, y, 0) should be not lower than the smoothness

of the fun
tion supplying the data. And sin
e, for example, the smoothness of the

fun
tions generated by trigonometri
 series is related to the de
ay of the 
oe�
ients,

the smoothness of K(x, y, 0) will usually be 
ontrolled by de
ay of the λk.

Dire
t interpolation of initial data by linear 
ombinations of eigenfun
tions is not

possible in general. The use of kernels always allows interpolation.

5. Examples . We start the simple example from (2.2) here.

The 
hoi
e µk = 1/k! gives a series whi
h generates an analyti
 kernel plotted in

Figure 5.1. It has an expli
it representation

4K(x, y, 0) = exp(exp(π(x+ y))) + exp(exp(−π(x+ y)))
− exp(exp(π(x− y))) − exp(exp(−π(x− y)))

whi
h unfortunately su�ers from severe 
an
ellation. But the rapid 
onvergen
e of the

series (3.1) allows to sum the series up until the limit of double pre
ision is rea
hed,
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Fig. 5.1. Kernel with weights 1/n!

i.e. at k = 19. This will, however, lead to inevitable rank loss in (4.1) for more

than n = 19 data points. Nonetheless, and in parti
ular if the initial fun
tion u0

is very smooth, there usually are good proje
tions of the right�hand side into the


olumn spa
e of the matrix, leading to unexpe
tedly good results. Figure 5.2 shows

an example for the starting fun
tion u0(x) = 1 − 2|x − 0.5| using only 12 interior

points. The error is bounded by the visible di�eren
e of the starting fun
tion and its

�rst interpolant.

By simple spe
tral shifts, this example generalizes to the 
ase Lu = ∆u+κu, and
similarly for other spatial operators that have known eigenfun
tion expansions.
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Fig. 5.2. Solution of heat equation

If one tries to solve the heat equation ba
kwards this way, the solution must

in
rease exponentially. Figure 5.3 shows two examples:

• starting with u0(x) = x(1 − x) up to time t = −0.005 in steps of 0.0001,
• starting with u0(x) = 1− 2|x− 0.5| up to time t = −0.001 in steps of 0.0001.

The �nal example 
on
erns the wave equation. The time�dependent part now is

µn(t) = µn(0) cos(λnt) =
1

n!
cos(nπt)
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Fig. 5.3. Two ba
kward 
al
ulations

in this 
ase, using (2.2) in the spatial variables. The result is in Figure 5.4 for u0(x) =
1 − 2|x− 0.5| and times up to t = 1 in steps of 0.05. Note that the wave starts with

the interpolant and re�e
ts ba
k to it.
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Fig. 5.4. Solution of wave equation

6. Extensions. This approa
h generalizes to other 
ases where separation of

variables works, e.g. the wave equation. If there is a linear di�erential operator

D a
ting with respe
t to time, the problem Du(x, t) = Lu(x, t) 
an be split into

eigenvalue problems

Dvn(t) = λnvn(t), Lun(x) = λnun(x),

for appropriate homogeneous boundary 
onditions, and we 
an de�ne a kernel

K(x, y, t) :=
∑

n

µnun(x)un(y)vn(t)
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under the summability 
ondition

K(x, x, t) =
∑

n

µnu
2

n(x)|vn(t)| < ∞

To make interpolation at t = 0 work, additional 
onditions must be satis�ed. In 
ase

of the wave equation utt = ∆u, we use trial fun
tions

u(x, t) :=

N∑

j=1

ajK(x, xj , t) +

N∑

j=1

bjKt(x, xj , t)

sin
e for a useful initial�value problem we have to pres
ribe both u(x, 0) and ut(x, 0).
On the spatial domain [0, π] we 
an use un(x) = sin(nx) and vn(t) = cos(nt) to form

kernels. We pose interpolation 
onditions

u(xk, 0) =

N∑

j=1

ajK(xk, xj , 0) +

N∑

j=1

bjKt(xk, xj , 0)

=
N∑

j=1

ajK(xk, xj , 0)

ut(xk, 0) =

N∑

j=1

ajKt(xk, xj , 0) +

N∑

j=1

bjKtt(xk, xj , 0)

=

N∑

j=1

bjKtt(xk, xj , 0)

that simplify be
ause of v′n(0) = 0 and thus Kt(x, y, 0) = 0. The kernels K and

Ktt(x, y, t) =
∑

n

λnµnun(x)un(y)vn(t)

are both de�nite, and the interpolation problem is solvable.
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