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Integral relations for solutions of confluent Heun equations
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Abstract: Firstly, we construct kernels of integral relations among solutions of the confluent Heun
equation (CHE) and its limit, the reduced CHE (RCHE). In both cases we generate additional
kernels by systematically applying substitutions of variables. Secondly, we establish integral relations
between known solutions of the CHE that are power series and solutions that are series of special
functions; and similarly for solutions of the RCHE. Thirdly, by using one of the integral relations as
an integral transformation we obtain a new series solution of the spheroidal wave equation. From
this solution we construct new solutions of the general CHE, and show that these are suitable for
solving the radial part of the two-center problem in quantum mechanics. Finally, by applying a
limiting process to kernels for the CHEs we obtain kernels for two double-confluent Heun equations.
As a result, we deal with kernels of four equations of the Heun family, each equation presenting
a distinct structure of singularities. In addition, we find that the known kernels for the Mathieu
equation are special instances of kernels of the RCHE.
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1. Introductory remarks

Recently we have found that the transformations of variables which preserve the form of the general Heun equation
correspond to transformations which preserve the form of the equation for the kernels of integral relations among solutions
of the Heun equation [1]. In fact, by using the known transformations of the Heun equation [2, 3] we have found prescriptions
for transforming kernels and, in this manner, we have generated several new kernels for the equation.
The above correspondence can be extended to the confluent equations of the Heun family, that is, to the (single) confluent,

double-confluent, biconfluent and triconfluent Heun equations [4, 5], as well as to the reduced forms of such equations [6, 7].
In the present study we consider only the confluent Heun equation (CHE) and equations connected to the CHE by limiting
processes. Specifically:

• we deal with the construction and transformations of integral kernels for CHE and its limit called reduced confluent
Heun equation (RCHE);

• from some of these kernels we establish integral relations between known solutions for the CHE;
• using one of the relations as an integral transformation we obtain new solutions in series of confluent hypergeometric
functions for the CHE;

• we show that the previous solutions are suitable to solve the radial part of the Schrödinger equation for an electron
in the field of two Coulomb centres [8] (two-centre problem);

• finally, from kernels of the CHE and RCHE we find kernels for the double-confluent Heun equation (DHE) and for
the reduced DHE (RDHE).

We write the CHE as [9]

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+
[

B3 − 2ωη(z − z0) + ω2z(z − z0)
]

U = 0, (1)

where z0, Bi, η and ω are constants. This equation is called generalized spheroidal wave equation by Leaver [9] but
sometimes such expression refers to a particular case of the CHE [5, 10]. Excepting the special case represented by the
Mathieu equation, the CHE is the most studied of the confluent Heun equations and embraces the (ordinary) spheroidal
equation as a particular case [5]. However, further studies are necessary due to the recent emergence of several classes of
quantum two-state systems ruled by the CHE [11]. On the other side, the reduced confluent Heun equation (RCHE) is
written as

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, (2)

where z0, Bi and q (q 6= 0) are constants. The RCHE describes the angular part of the Schrödinger equation for an electron
in the field of a point electric dipole [12, 13]. It appears as well in the study of two-level systems [14], polymer dynamics
[15] and theory of gravitation [16]. The form (2) for the RCHE results from the CHE (1) by means of the limits

ω → 0, η → ∞ such that 2ηω = −q, [Whittaker-Ince limit]. (3)

In both equations, z = 0 and z = z0 are regular singular points with exponents (0, 1 + B1/z0) and (0, 1 − B2 − B1/z0),
respectively, that is, from ascending power series solutions we find

z → 0 : U(z) ∼ 1 or U(z) ∼ z1+
B1
z0 ; z → z0 : U(z) ∼ 1 or U(z) ∼ (z − z0)

1−B2−B1
z0 . (4)

In contrast, at the irregular singular point z = ∞, the behaviour of the solutions is different for each equation since

z → ∞ : U(z) ∼ e±iωz z∓iη−(B2/2) for the CHE (1) and U(z) ∼ e±2i
√
qz z(1/4)−(B2/2) for the RCHE (2), (5)

as follow from the normal and the subnormal Thomé solutions [17] for the CHE and RCHE, respectively.
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According to the concepts of Ref. [7], the s-rank of the singularity at z = ∞ is 2 for the CHE, and 3/2 for the RCHE.
However, more important is the fact that the solutions exhibit the above behavior predicted by the normal or subnormal
Thomé solutions, and the fact that the Whittaker-Ince limit (3) may generate solutions to the RCHE. In effect, most of
the known solutions for the RCHE [18–20] has been obtained from solutions of the CHE by means of the limit (3). Despite
this, the main part of the present study is restricted to integral relations concerning the CHE. Relations for RCHE are
relegated to an appendix. In appendices we also present kernels for double-confluent Heun equations which are obtained
by taking z0 = 0 in Eqs. (1) and (2).
Integral relations are important because, in principle, they make possible the transformation of known solutions into

solutions with different properties. However, apart from the Mathieu equation, only in rare cases this task has been
accomplished successfully. One case is constituted by the expansions of the Lamé functions in series of associated Legendre
functions [21], obtained by Erdélyi from Fourier-Jacobi series for the Lamé equation; however, as far we are aware, his
solutions have not been extended for the general Heun equation (of which Lamé equation is a particular case). Another
example is a Leaver expansion in series of irregular confluent hypergeometric functions for the CHE [9], obtained from a
power series; the integral transformation was originally constructed for a particular case of CHE but the expansion has
been generalized for any CHE.
To establish integral relations for solutions it is necessary to get appropriate integral kernels. To this end, in section 2

we proceed as in case of the general Heun equation [1]. In other words, firstly we insert into the integral connecting two
solutions a weight function w(z, t) which allows to write the CHE and the equation for its kernels in terms of differential
operators functionally identical (respecting z and t). In this manner, by examining each variable substitution which leaves
invariant the form of the CHE (one variable, z) we find prescriptions for the variables transformations which preserve the
form of the equation for the kernels (two variables, z and t). By using these substitutions, we may systematically convert
a given (initial) kernel into new kernels. As initial kernels we use the ones obtained as limits of kernels of the general Heun
equation [1], adapting them to the form (1) for the CHE.
In section 3 we find integral relations which transform the Jaffé power-series solutions [22] into expansions in series of

irregular confluent hypergeometric functions, including the aforementioned solution given by Leaver. In the second place, we
find that the power-series solutions of Baber and Hassé [23] are transformed into expansions in series of regular confluent
hypergeometric functions. These are integral transformations among known solutions of the CHE. In both examples,
power-series solutions are converted into series of confluent hypergeometric functions. However, there are the non-integral
transformations (involving only substitutions of variables) which do not modify the type of series: these transform, for
example, a power-series solution into another power-series solution, and an expansion in series of hypergeometric functions
into another expansion in series hypergeometric functions. Integral relations among these two types of modified series
demand the use of kernels transformed in accordance with the prescriptions mentioned in the previous paragraph.
Analogously, in section 4 we apply an integral transformation to an asymptotic (Thomé) solution of the spheroidal

equation and obtain a new solution in series of irregular confluent hypergeometric functions. That solution is extended
to any CHE (not just the spheroidal equation); then, by substitutions of variables, we obtain a group of solutions for the
CHE with domains of convergence different of the ones of the asymptotic solutions. Therefore, by combining integral and
non-integral transformations we get new solutions for the CHE; as a test, we show that some of these solutions afford
bounded and convergent solutions to the radial part of the two-center problem.
In section 5, we present concluding remarks and mention open issues. In appendix A we write some formulas concerning

special functions, while in appendix B we discuss the convergence of asymptotic solutions for the CHE. In appendices C, D
and E we obtain, respectively, kernels for the reduced CHE (RCHE), for the double-confluent Heun equation (DHE) and
for the reduced DHE (RDHE).

2. Kernels for the confluent Heun equation

In this section we regard kernels for the CHE (1). In particular,

• in section 2.1 we get the correspondences among substitutions of variables which preserve the form of the CHE and
the substitutions which preserve the equation of the kernels of the CHE;

• in section 2.2 we construct a group of kernels with an arbitrary constant of separation λ, given by products of two
confluent hypergeometric functions and elementary functions;

• in section 2.3 we find another group of kernels with an arbitrary constant of separation λ, given by products of
confluent hypergeometric functions and Gauss hypergeometric functions (and elementary functions);

• in sections 2.4, 2.5 and 2.6, by taking suitable values for λ we get kernels given by products of elementary and special
functions; thus, in sections 2.4 and 2.5 we find products of elementary and confluent hypergeometric functions and,
in section 2.6, products of elementary and Gauss hypergeometric functions.

Later on, in section 4, we will need kernels for the ordinary spheroidal wave equation [5]

d
dx

[

(

1− x2
) dX(x)

dx

]

+
[

γ2(1− x2) + λ̄− µ2

1− x2

]

X(x) = 0. (6)
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Such kernels are obtained from the ones of the CHE through the substitutions

x = 1− 2z, X(x) = zµ/2 (z − 1)µ/2U(z), (7)

which give

z(z − 1)d
2U
dz2 + [− (µ+ 1) + 2 (µ+ 1) z] dU

dz +
[

µ (µ+ 1)− λ̄+ 4γ2z(z − 1)
]

U = 0, (8a)

that is, the CHE (1) with

z0 = 1, B2 = −2B1 = 2(µ+ 1), B3 = µ(µ+ 1)− λ̄, η = 0, ω2 = 4γ2. (8b)

Thus, the spheroidal equation (6) will be treated as a CHE with z0 = 1, η = 0 and B2 = −2B1, namely,

z(z − 1)
d2U

dz2
+ (B1 − 2B1z)

dU

dz
+
[

B3 + ω2z(z − 1)
]

U = 0. (9)

2.1. Transformations of the CHE and its kernels

Defining the operator Lz by

Lz = z[z − z0]
∂2

∂z2 + [B1 +B2z]
∂
∂z +

[

ω2z(z − z0)− 2ωηz
]

(10)

and interpreting this as an ordinary differential operator, the CHE (1) reads

[Lz +B3 + 2ηωz0]U(z) = 0. (11)

The adjoint operator L̄z corresponding to Lz is [24]

L̄z = z(z − z0)
∂2

∂z2
+ [−2z0 −B1 + (4 −B2)z]

∂

∂z
+
[

ω2z(z − z0)− 2ωηz + 2−B2

]

. (12)

On the other side, if U(z) is a known solution of the CHE, we seek new solutions U(z) having the form

U(z) =
∫ t2
t1
K(z, t)U(t)dt =

∫ t2
t1
w(z, t)G(z, t)U(t)dt =

∫ t2
t1
t
−1−B1

z0 (t− z0)
B2+

B1
z0

−1
G(z, t)U(t)dt, (13)

w(z, t) = t
−1−B1

z0 (t− z0)
B2+

B1
z0

−1
,

where the kernel K(z, t) or G(z, t) is determined from a partial differential equation. The general theory is usually
established for the function K(z, t) [24], but to study the transformations of kernels we will deal with G(z, t). If the
integration endpoints t1 and t2 are independent of z, by applying Lz to integral (13) we find

LzU(z) =

∫ t2

t1

[LzK(z, t)]U(t)dt =

∫ t2

t1

U(t)
[

Lz − L̄t

]

K(z, t)dt+

∫ t2

t1

U(t)L̄tK(z, t)dt, (14)

L̄t being obtained from L̄z by replacing z with t. Now we demand that

[

Lz − L̄t

]

K(z, t) = 0 ⇔ [Lz − Lt]G(z, t) = 0. (15)

Thence, by using the Lagrange identity

U(t)L̄tK(z, t)−K(z, t)LtU(t) =
∂

∂t
P (z, t),

where the bilinear concomitant P (z, t) is given by

P (z, t) = t(t− z0)

[

U(t)
∂K(z, t)

∂t
−K(z, t)

dU(t)

dt

]

− [(B2 − 2) t+B1 + z0]U(t)K(z, t)

= t−
B1
z0 (t− z0)

B2+
B1
z0

[

U(t)∂G(z,t)
∂t −G(z, t)dU(t)

dt

]

, (16)

Eq. (14) reduces to

LzU(z) =

∫ t2

t1

[

K(z, t)LtU(t) +
∂P (z, t)

∂t

]

dt = −(B3 + 2ηωz0)

∫ t2

t1

K(z, t)U(t)dt+

∫ t2

t1

∂P (z, t)

∂t
dt,
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where in the last step we have used equation (11). Using equation (13) as well, this yields

[Lz +B3 + 2ηωz0]U(z) = P (z, t2)− P (z, t1). (17)

Therefore, U(z) is also a solution of the CHE if: (i) the kernel satisfies Eq. (15), (ii) the integral (13) exists and (iii) the
right-hand side of Eq. (17) vanishes.
Now let us examine the transformations of the solutions U(z) and kernels G(z, t). If U(z) = U(B1, B2, B3; z0, ω, η; z)

denotes one solution of the CHE, the following transformations [18, 25, 26] – T1, T2, T3 and T4 – leave invariant the form
of the CHE:

T1U(z) = z1+
B1
z0 U(C1, C2, C3; z0, ω, η; z), T2U(z) = (z − z0)

1−B2−B1
z0 U(B1, D2, D3; z0, ω, η; z),

T3U(z) = U(B1, B2, B3; z0,−ω,−η; z), T4U(z) = U(−B1 −B2z0, B2, B3 + 2ηωz0; z0,−ω, η; z0 − z),
(18)

where

C1 = −B1 − 2z0, C2 = 2 +B2 +
2B1

z0
, C3 = B3 +

[

1 + B1

z0

] [

B2 +
B1

z0

]

,

D2 = 2−B2 − 2B1

z0
, D3 = B3 +

B1

z0

(

B1

z0
+B2 − 1

)

. (19)

By composition of these transformations, from an initial solution we may generate a group containing up to 16 solutions.
To get the corresponding transformations for the kernels, we notice that the operators Lz and Lt (which appear in the CHE
(11) and in [Lz − Lt]G(z, t) = 0) have the same functional form. Hence, if G(z, t) = G(B1, B2; z0, ω, η; z, t) is a solution of
the Eq. (15), we find that the transformations R1, R2, R3 and R4, given by

R1G(z, t) = (zt)
1+

B1
z0 G(C1, C2; z0, ω, η; z, t), R2G(z, t) = [(z − z0)(t− z0)]

1−B2−B1
z0 G(B1, D2; z0, ω, η; z, t),

R3G(z, t) = G(B1, B2; z0,−ω,−η; z, t), R4G(z, t) = G(−B1 −B2z0, B2; z0,−ω, η; z0 − z, z0 − t)
(20)

do not change the form of the kernel equation (15). These transformations may generate a group containing up to 16
kernels when applied to an initial kernel.
For another version of the CHE we have obtained initial kernels as limits of kernels for the general Heun equation [1].

For the version (1), in the following we reobtain these kernels by solving Eq. (15) and use the transformations (20) to
generate groups of kernels closed under such transformations.

2.2. First group of kernels: products of two confluent hypergeometric functions

Kernels with products of two confluent hypergeometric functions have already appeared in a paper [27] which considers
a particular problem obeying a CHE. Here we are concerned with the general case.
In the first place we show that the kernel equation [Lz −Lt]G(z, t) = 0, given in (15), is satisfied by 16 of such products,

denoted by G
(i,j)
1 and defined as (i, j = 1, 2, 3, 4)

G
(i,j)
1 (z, t) = e−iω(z+t)ϕi(ξ)× ϕ̄j(ζ), (21)

where ϕi(ξ) and ϕ̄j(ζ) are the confluent hypergeometric functions (A.2), having the following arguments and parameters:

ϕi(ξ) : ξ = − 2iω
z0

(z − z0)(t− z0), a = B2

2 − iη − λ, c = B2 +
B1

z0
; (22a)

ϕ̄j(ζ) : ζ = 2iω
z0
zt, a = λ, c = −B1

z0
, (22b)

where λ is an arbitrary constant of separation. In the second place, by the transformation R3 we may get another set of

kernels, G
(i,j)
2 , given by

G
(i,j)
2 (z, t) = R3G

(i,j)
1 (z, t) = G

(i,j)
1 (z, t)

∣

∣

(η,ω) 7→(−η,−ω)
, (23)

The transformations R1, R2 and R4 are superfluous in this case.
To obtain the kernels (21), first we write

G(z, t) = e−iω(z+t)f(z, t), (24)

in Eq. (15). This leads to

z(z − z0)
∂2f

∂z2
+
[

B1 + (B2 + 2iωz0)z − 2iωz2
]∂f

∂z

−t(t− z0)
∂2f

∂t2
−
[

B1 + (B2 + 2iωz0)t− 2iωt2
]∂f

∂t
− 2iω

(

B2

2
− iη

)

(z − t)f = 0. (25)
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Then, by the substitutions

ξ = − 2iω(z−z0)(t−z0)
z0

, ζ = 2iωzt
z0

, f = X(ξ)Y (ζ) (26)

we find the confluent hypergeometric equations

ξ d2X
dξ2 +

[

B2 +
B1

z0
− ξ
]

dX
dξ −

[

B2

2 − iη − λ
]

X = 0, ζ d2Y
dζ2 +

[

−B1

z0
− ζ
]

dY
dζ − λY = 0, (27)

where λ is the constant of separation. The solutions for the above equations are: X(ξ) = ϕi(ξ) with a = (B2/2)− iη − λ
and c = B2 + (B1/z0); and Y (ζ) = ϕ̄j(ζ) with a = λ and c = −B1/z0. Inserting these solutions into (24) and (26) we find
the kernels (21). Thence, the kernels given by regular confluent hypergeometric functions are

G
(1,1)
1 (z, t) = e−iω(z+t)Φ

[

B2

2 − iη − λ,B2 +
B1

z0
;− 2iω

z0
(z − z0)(t− z0)

]

Φ
[

λ,−B1

z0
; 2iω

z0
zt
]

, (28)

G
(1,2)
1 (z, t) = e

−iω(z+t)+ 2iω
z0

zt
[zt]

1+
B1
z0 Φ

[

B2

2
− iη − λ,B2 +

B1

z0
;−2iω

z0
(z − z0)(t− z0)

]

Φ

[

1− λ, 2 +
B1

z0
;−2iω

z0
zt

]

, (29)

G
(2,1)
1 (z, t) = e−iω(z+t)− 2iω

z0
(z−z0)(t−z0) [(z − z0)(t− z0)]

1−B2−B1
z0

× Φ

[

1 + iη + λ− B2

2
, 2−B2 −

B1

z0
;
2iω

z0
(z − z0)(t− z0)

]

Φ

[

λ,−B1

z0
;
2iω

z0
zt

]

, (30)

G
(2,2)
1 (z, t) = eiω(z+t)[zt]

1+
B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0

× Φ
[

1 + iη + λ− B2

2 , 2−B2 − B1

z0
; 2iω

z0
(z − z0)(t− z0)

]

Φ
[

1− λ, 2 + B1

z0
;− 2iω

z0
zt
]

. (31)

The remaining kernels are obtained by replacing one or both functions Φ by Ψ. In this manner we obtain the 16 kernels.
The transformations R1, R2 and R4 are superfluous because they simply rearrange these kernels. For instance,

R1G
(1,1)
1 = e−iω(z+t)+ 2iω

z0
zt[zt]1+

B1
z0 Φ

[

2 + B1

z0
− λ1, 2 +

B1

z0
;− 2iω

z0
zt
]

× Φ
[

B1

z0
+ B2

2 + 1− iη − λ1, B2 +
B1

z0
;− 2iω

z0
(z − z0)(t− z0)

]

,

where we have transformed λ into λ1. By putting λ1 = λ+ 1 + (B1/z0), we see that R1G
(1,1)
1 = G

(1,2)
1 .

2.3. Second group: product of hypergeometric and confluent hypergeometric functions

Now we find a group of kernels G(i,j) given by products of the confluent hypergeometric functions ϕi written in (A.2)
with the Gauss hypergeometric functions F j written in (A.5), (A.6) and (A.7). These kernels take the form

G(i,j)(z, t) = e−iω(z+t) (z + t− z0)
−λ

ϕi(ξ)× F j(ζ), [i = 1, · · · , 4; j = 1, · · · , 6] (32)

where λ is a constant of separation, whereas the arguments and parameters for the hypergeometric functions are

ϕi(ξ) : ξ = 2iω(z + t− z0), a =
B2

2
− iη − λ, c = B2 − 2λ; (33a)

F j(ζ) : ζ =
zt

z0(z + t− z0)
, a = λ, b = B2 − 1− λ, c = −B1

z0
. (33b)

We can show that the transformations Ri do not generate new kernels.
The above kernels are constructed by inserting

G(z, t) = e−iω(z+t)f(z, t) = e−iω(z+t)g(ξ, ζ) (34)

into [Lz − Lt]G(z, t) = 0, where ξ and ζ are defined in Eqs. (33a) and (33b) . Thus we find

ξ
[

ξ ∂2g
∂ξ2 + (B2 − ξ) ∂g

∂ξ −
(

B2

2 − iη
)

g
]

+ ζ(1 − ζ)∂
2g

∂ζ2 +
(

−B1

z0
−B2ζ

)

∂g
∂ζ = 0.
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The separation of variables g(ξ, ζ) = X(ξ)Y (ζ) leads to

ξ d2X
dξ2 + [B2 − ξ] dX

dξ −
[

B2

2 − iη − λ̄
ξ

]

X = 0, ζ(1 − ζ)d
2Y
dζ2 −

[

B1

z0
+B2ζ

]

dY
dζ − λ̄Y = 0, (35)

where λ̄ is a constant of separation. Putting λ̄ = λ(B2 − 1 − λ), we find that Y (ζ) is given by hypergeometric functions
Y (ζ) = F j(ζ) as in Eqs. (32) and (33b), while X(ξ) obeys the equation

ξ d2X
dξ2 + [B2 − ξ] dX

dξ −
[

B2

2 − iη − λ(B2−1−λ)
ξ

]

X = 0.

The substitution X(ξ) = ξ−λX̄(x) gives the confluent hypergeometric equation

ξ d2X̄
dξ2 +

[

B2 − 2λ− ξ
]

dX̄
dξ −

[

B2

2 − iη − λ
]

X̄ = 0, (36)

whose solutions are X̄(ξ) = ϕi(ξ). In this manner, by inserting the previous solutions for X̄(ξ) and Y (ζ) into

G(z, t) = e−iω(z+t)(z + t− z0)
−λ X̄(ξ) Y (ζ) (37)

we obtain kernels having the form (32).
The kernels G(1,j) and G(2,j) in terms of regular confluent hypergeometric functions are

G(1,j)(z, t) = e−iω(z+t) [z + t− z0]
−λ

F j(ζ) Φ
[

B2

2 − iη − λ,B2 − 2λ; 2iω(z + t− z0)
]

, (38)

G(2,j)(z, t) = eiω(z+t) [z + t− z0]
1−B2+λ

F j(ζ) Φ

[

1 + iη + λ− B2

2
, 2 + 2λ−B2;−2iω(z + t− z0)

]

, (39)

whereas G(3,j) and G(4,j) in terms of irregular functions are obtained by substituting Ψ(a, c;u) for Φ(a, c;u), that is,

G(3,j)(z, t) = G(1,j)(z, t)
∣

∣

Φ7→Ψ
, G(4,j)(z, t) = G(2,j)(z, t)

∣

∣

Φ7→Ψ
. (40)

The functions F j(ζ) are given by

F 1(ζ) = F
[

λ,B2 − 1− λ;−B1

z0
; zt
z0(z+t−z0)

]

, (41)

F 2(ζ) =
[

zt
z0(z+t−z0)

]1+
B1
z0
F
[

λ+ 1 + B1

z0
, B2 +

B1

z0
− λ; 2 + B1

z0
; zt
z0(z+t−z0)

]

, (42)

F 3(ζ) = F
[

λ,B2 − 1− λ;B2 +
B1

z0
; (z−z0)(t−z0)

z0(z0−z−t)

]

, (43)

F 4(ζ) =

[

(z − z0)(t− z0)

z0(z + t− z0)

]1−B2−B1
z0

F

[

−λ− B1

z0
, λ+ 1−B2 −

B1

z0
; 2−B2 −

B1

z0
;
(z − z0)(t− z0)

z0(z0 − z − t)

]

, (44)

F 5(ζ) =
[

z0(z+t−z0)
zt

]λ

F
[

λ, λ+ 1 + B1

z0
; 2 + 2λ−B2;

z0(z+t−z0)
zt

]

, (45)

F 6(ζ) =
[

z0(z+t−z0)
zt

]B2−1−λ

F
[

B2 +
B1

z0
− λ,B2 − 1− λ;B2 − 2λ; z0(z+t−z0)

zt

]

. (46)

By using the explicit form for the kernels and the fact that the separation constant is arbitrary, it is possible to show that
the transformations Ri simply rearrange the previous kernels. For instance, we get

R3G
(1,j)(z, t) = eiω(z+t) [z + t− z0]

−λ3 Φ
[

B2

2 + iη − λ3, B2 − 2λ3;−2iω(z + t− z0)
]

Hj(ζ),

where Hj(ζ) is obtained by substituting λ3 for λ in F j(ζ). Thence, putting λ3 = B2 − λ− 1 and taking into account that
F (a, b; c;u) = F (b, a; c;u), we find that H5(ζ) = F 6(ζ), H6(ζ) = F 5(ζ) and Hj(ζ) = F j(ζ) if j = 1, 2, 3, 4. For this reason,
R3G

(1,j) is equivalent to G(2,j).

7



2.4. Third group: confluent hypergeometric functions

An initial set has the form

G
(i)
1 (z, t) = e−iω(z+t)ϕi(ξ), [i = 1, 2, 3, 4] (47)

where the ϕi(ξ) denote the four solutions (A.2) for the confluent hypergeometric equation with the following argument and
parameters:

ξ = − 2iω
z0

(z − z0)(t− z0), a = B2

2 − iη, c = B2 +
B1

z0
. (48)

The set (47) is obtained by putting λ = 0 and Y constant in (27). Besides this, from (47) we form four sets by using the
rules R2 and R4, namely,

G
(i)
1 (z, t), G

(i)
2 (z, t) = R1G

(i)
1 (z, t), G

(i)
3 (z, t) = R4G

(i)
2 (z, t), G

(i)
4 (z, t) = R2G

(i)
3 (z, t). (49)

The four pairs in terms of regular confluent hypergeometric functions Φ(a, c;u) read

G
(1)
1 (z, t) = e−iω(z+t)Φ

[

B2

2 − iη, B2 +
B1

z0
;− 2iω

z0
(z − z0)(t− z0)

]

,

G
(2)
1 (z, t) = eiω(z+t)− 2iωzt

z0 [(z − z0)(t− z0)]
1−B2−B1

z0 Φ
[

1 + iη − B2

2 , 2−B2 − B1

z0
; 2iω

z0
(z − z0)(t− z0)

]

;

(50)

G
(1)
2 (z, t) = e−iω(z+t)[zt]

1+
B1
z0 Φ

[

1− iη + B1

z0
+ B2

2 , B2 +
B1

z0
;− 2iω

z0
(z − z0)(t− z0)

]

,

G
(2)
2 (z, t) = e

iω(z+t)− 2iωzt

z0 [zt]
1+

B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0 Φ

[

iη − B1

z0
− B2

2 , 2−B2 − B1

z0
; 2iω

z0
(z − z0)(t− z0)

]

;

(51)

G
(1)
3 (z, t) = e−iω(z+t)[(z − z0)(t− z0)]

1−B2−B1
z0 Φ

(

1− iη − B1

z0
− B2

2 ,−
B1

z0
; 2iωzt

z0

)

,

G
(2)
3 (z, t) = e

−iω(z+t)+ 2iωzt

z0 (zt)
1+

B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0 Φ

(

iη + B1

z0
+ B2

2 , 2 +
B1

z0
;− 2iωzt

z0

)

;

(52)

G
(1)
4 (z, t) = e−iω(z+t)Φ

(

B2

2 − iη,−B1

z0
; 2iωzt

z0

)

,

G
(2)
4 (z, t) = e−iω(z+t)+ 2iωzt

z0 (zt)1+
B1
z0 Φ

(

1 + iη − B2

2 , 2 +
B1

z0
;− 2iωzt

z0

)

.

(53)

We get the pairs in terms of irregular confluent hypergeometric functions by replacing Φ(a, c;u) by Ψ(a, c;u):

G
(3)
i (z, t) = G

(1)
i (z, t)

∣

∣

∣

Φ→Ψ
, G

(4)
i (z, t) = G

(2)
i (z, t)

∣

∣

∣

Φ→Ψ
, [i = 1, 2, 3, 4]. (54)

Thus, by using also R3, we find that this group is constituted by 32 kernels. Notice that R1, R2 and R4 generate only
four sets of kernels instead of 16 sets because in some cases these transformations rearrange the kernels of a given set in a

different order: we can test this by computing, for example, R2G
(i)
1 or R2G

(i)
2 . Notice that kernels whose arguments of the

hypergeometric functions are ±(2iωzt/z0) have been known since long [28].
For the spheroidal equation (η = 0, z0 = 1, B2 = −2B1), sixteen of the previous kernels reduce to four kernels in terms

of elementary functions, namely,

G
(±)
1 (z, t) = e±iω(z+t)∓2iωzt, G

(±)
2 (z, t) = e±iω(z+t)∓2iωzt[zt(z − 1)(t− 1)]1+B1 . (55)

For instance,

G
(1)
1 (z, t) ∝ G

(4)
1 (z, t) ∝ G

(+)
1 (z, t), G

(1)
4 (z, t) ∝ G

(4)
4 (z, t) ∝ G

(−)
1 (z, t),

G
(2)
2 (z, t) ∝ G

(4)
2 (z, t) ∝ G

(+)
2 (z, t), G

(2)
3 (z, t) ∝ G

(4)
3 (z, t) ∝ G

(−)
2 (z, t).

The kernel G
(−)
2 (z, t) will be used in section 4.1.
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2.5. Fourth group: confluent hypergeometric functions again

To obtain new kernels given by confluent hypergeometric functions we take

G
(i)
1 (z, t) = G(i,1)(z, t)

∣

∣

λ=0
,

where the G(i,1) denote the kernels (32) with j = 1. Since the above choice for λ eliminates the Gauss hypergeometric
function [F (0, b; c; ζ) = 1] we find

G
(i)
1 (z, t) = e−iω(z+t)ϕi(ξ), [i = 1, 2, 3, 4] (56a)

where ϕi(ξ) denote the solutions (A.2) for the confluent hypergeometric equation with

ξ = 2iω(z + t− z0), a =
B2

2
− iη, c = B2 [see Eq. (33a)]. (56b)

Other choices for λ also lead to kernels in terms of confluent hypergeometric functions. However, such kernels are obtained
from the initial set (56a) by using the transformations Ri. In this manner we find four sets, namely,

G
(i)
1 (z, t), G

(i)
2 (z, t) = R1G

(i)
1 (z, t), G

(i)
3 (z, t) = R2G

(i)
2 (z, t), G

(i)
4 (z, t) = R1G

(i)
3 (z, t), (57)

since R4 does not generate new kernels. The kernels given by regular confluent hypergeometric functions are

G
(1)
1 (z, t) = e−iω(z+t)Φ

[

B2

2 − iη, B2; 2iω(z + t− z0)
]

,

G
(2)
1 (z, t) = eiω(z+t)[z + t− z0]

1−B2Φ
[

1 + iη − B2

2 , 2−B2;−2iω(z + t− z0)
]

;
(58)

G
(1)
2 (z, t) = e−iω(z+t)[zt]

1+
B1
z0 Φ

[

1− iη + B1

z0
+ B2

2 , 2 +B2 +
2B1

z0
; 2iω(z + t− z0)

]

,

G
(2)
2 (z, t) = eiω(z+t)[zt]

1+
B1
z0 [z + t− z0]

−1−B2− 2B1
z0 Φ

[

iη − B1

z0
− B2

2 ,−B2 − 2B1

z0
;−2iω(z + t− z0)

]

;

(59)

G
(1)
3 (z, t) = e−iω(z+t)[zt]

1+
B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0 Φ

[

2− iη − B2

2 , 4−B2; 2iω(z + t− z0)
]

,

G
(2)
3 (z, t) = eiω(z+t)[zt]1+

B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0 [z + t− z0]

B2−3Φ
[

iη − 1 + B2

2 , B2 − 2;−2iω(z + t− z0)
]

;

(60)

G
(1)
4 (z, t) = e−iω(z+t)[(z − z0)(t− z0)]

1−B2−B1
z0 Φ

[

1− iη − B1

z0
− B2

2 , 2−B2 − 2B1

z0
; 2iω(z + t− z0)

]

,

G
(2)
4 (z, t) = eiω(z+t)[(z − z0)(t− z0)]

1−B2−B1
z0 [z + t− z0]

B2+
2B1
z0

−1
Φ
[

iη + B1

z0
+ B2

2 , B2 +
2B1

z0
;−2iω(z + t− z0)

]

.

(61)

Replacing Φ(a, c;u) by Ψ(a, c;u) and using the transformation R3, once more we get a group with 32 kernels. Some
particular cases of these kernels are already known [4]. Furthermore, if η = 0 this group can be expressed in terms of Bessel
functions by means of (A.12).

2.6. Fifth group: hypergeometric functions

To get kernels given by hypergeometric functions we take G
(i)
1 (z, t) = G(1,i)(z, t)|λ=(B2/2)−iη, where G

(1,i) are the kernels
given in (38). In fact, for this choice for λ we obtain Φ(0, c; ξ) = 1 and, thence,

G
(i)
1 (z, t) = e−iω(z+t)[z + t− z0]

iη−B2
2 F i(ζ), ζ = zt/[z0(z + t− z0)], (62)

where the hypergeometric functions F i(ζ) are obtained by putting λ = (B2/2)− iη in Eqs. (41-46). Explicitly

G
(1)
1 (z, t) = e−iω(z+t) [z + t− z0]

iη−B2
2 F

[

B2

2 − iη, B2

2 + iη − 1;−B1

z0
; zt
z0(z+t−z0)

]

, (63)

G
(2)
1 (z, t) = e−iω(z+t) [z + t− z0]

iη−1−B1
z0

−B2
2 [zt]

1+
B1
z0 F

[

1− iη + B1

z0
+ B2

2 , iη +
B1

z0
+ B2

2 ; 2 + B1

z0
; zt
z0(z+t−z0)

]

, (64)
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G
(3)
1 (x, t) = e−iω(z+t) [z + t− z0]

iη−B2
2 F

[

B2

2 − iη, B2

2 + iη − 1;B2 +
B1

z0
; (z−z0)(t−z0)

z0(z0−z−t)

]

, (65)

G
(4)
1 (x, t) = e−iω(z+t) [z + t− z0]

iη−1+
B1
z0

+
B2
2 [(z − z0)(t− z0)]

1−B2−B1
z0

× F
[

iη − B1

z0
− B2

2 , 1− iη − B1

z0
− B2

2 ; 2−B2 − B1

z0
; (z−z0)(t−z0)

z0(z0−z−t)

]

, (66)

G
(5)
1 (x, t) = e−iω(z+t) [zt]

iη−B2
2 F

[

B2

2 − iη, 1− iη + B1

z0
+ B2

2 ; 2− 2iη; z0(z+t−z0)
zt

]

, (67)

G
(6)
1 (x, t) = e−iω(z+t) [z + t− z0]

2iη−1
[zt]1−iη−B2

2 F
[

iη + B1

z0
+ B2

2 , iη − 1 + B2

2 ; 2iη; z0(z+t−z0)
zt

]

. (68)

The transformations R1, R2 and R4 at most rearrange the preceding kernels. For example,

R1G
(1)
1 (z, t) = G

(2)
1 (z, t), R2G

(1)
1 (z, t) = G

(1)
1 (z, t), R4G

(1)
1 (z, t) = G

(3)
1 (z, t).

However, we find six additional kernels G
(j)
2 (z, t) by using the transformations R3 as

G
(i)
2 (z, t) = R3G

(i)
1 (z, t) (69)

So, G
(i)
2 is obtained by replacing (η, ω) by (−η,−ω) in G(i)

1 .

3. Integral relations between known solutions

In this section we use some kernels to obtain integral relations among solutions of the CHE. We find that:

• the Jaffé solutions in power series are tranformed into Leaver’s expansions in series of irregular confluent hypergeo-
metric series;

• the Baber-Hassé solutions in power series are transformed into solutions given by series of regular confluent hyperge-
ometric functions.

Relations for solutions generated by transformations of the CHEs may be obtained by transforming also the kernel, since
each transformation of a solution corresponds to a transformation of a kernel.

3.1. Jaffé’s solutions in power series and Leaver’s solutions

By UJ
1 (z) and U

L
1 (z) we denote respectively the Jaffé [22] and the Leaver [9] solutions for the CHE, namely,

UJ
1 (z) = eiωzz−iη−B2

2

∞
∑

n=0

a1n
(

z−z0
z

)n
, (70a)

UL
1 (z) = eiωz

∞
∑

n=0

a1n Γ
(

n+B2 +
B1

z0

)

Ψ
(

n+ iη + B2

2 ,−
B1

z0
;−2iωz

)

, (70b)

where the recurrence relations for the a1n are (a1−1 = 0)

(n+ 1)
[

n+B2 +
B1

z0

]

a1n+1 +
[

− 2n
(

n+ B2 +
B1

z0
+ iη − iωz0

)

+B3 +
(

B2 +
B1

z0

)

(

iωz0 − iη − B2

2

)

]

a1n

+
[

n− 1 + iη + B2

2

]

[

n+ B2

2 + B1

z0
+ iη

]

a1n−1 = 0.

The convergence of solutions (70a) and (70b) is discussed in the Leaver paper [9], where it is used the minimal solution
for the coefficients a1n. In fact, three-term recurrence relations as the above ones admit two independent solutions, say, fn
and gn. If limn→∞(fn/gn) = 0, fn is called minimal solution [29, 30]. In addition, it is necessary to suppose that there
is an arbitrary parameter in the CHE. The series converges only for special values of that parameter, determined from a
transcendental (characteristic) equation which results from the recurrence relations [9].
By supposing that UJ

1 (z) converges for |z| ≥ |z0| and by using Eq. (13), we find the relation

UL
1 (z) = C1

∫ ∞

z0

t−1−B1
z0 [t− z0]

B2+
B1
z0

−1G
(4)
4 (z, t)UJ

1 (t)dt, Re

[

n+B2 +
B1

z0

]

> 0, Re[iωz] < 0, (71)
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where C1 is a constant and G(z, t) = G
(4)
4 (z, t) is the kernel indicated in (54). In fact, by setting y = t/z0, we find that

the right-hand side of (71) is equivalent to

e−iωzz
1+

B1
z0

∞
∑

n=0

a1n

∫ ∞

z0

dy

[

e2iωzy (y − 1)
n+B2+

B1
z0

−1
y−n−iη−B2

2 Ψ
(

1 + iη − B2

2 , 2 +
B1

z0
;−2iωzy

)

]

.

Then, by using the integral [31]
∫ ∞

1

e−ay(y − 1)µ−1yα+k−µ− 1
2Ψ

(

1

2
+ α− k, 2α+ 1; ay

)

dy = Γ(µ)e−aΨ

(

1

2
+ α+ µ− k, 2α+ 1; a

)

, (72)

[Re µ > 0, Re a > 0],

we obtain the relation (71).
For the bilinear concomitant (16) we find

P1(z, t) = z1+
B1
z0 eiωz( 2t

z0
−1) t−iη−B2

2 (t− z0)
B2+

B1
z0

∞
∑

n=0

an

(

t− z0
t

)n

×
{[

2iω
(

z
z0

− 1
)

t− nz0
t−z0

+ 1
t

(

iη + 1 + B1

z0
+ B2

2

)

]

Ψ+ t∂Ψ∂t

}

,

where

Ψ = Ψ
(

1 + iη − B2

2 , 2 +
B1

z0
;− 2iωzt

z0

)

, ∂Ψ
∂t = 2iωz

z0

(

1 + iη − B2

2

)

Ψ
(

2 + iη − B2

2 , 3 +
B1

z0
;− 2iωzt

z0

)

.

Since Ψ(a, b; y) = y−a when |y| → ∞ and Re(iωz) < 0, the exponential factor assures that P1(z, t) vanishes when t/z0 → ∞.
On the other hand, the condition Re[B2 +

B1

z0
] > 0 assures that P1(z, t) vanishes also for t = z0 since (t− z0)

B2+B1/z0 → 0.

In this manner, we have extended the results of Leaver [9] who has considered only relations between solutions with
iη = ±(B2/2− 1). Notice also that the conditions given in (71) are necessary only to assure the integral relation between
the solutions. In fact the Leaver solutions can be derived directly from the differential equation without imposing those
conditions [9].
For the present case the transformation T1 is ineffective and, so, from

(

UJ
1 , U

L
1

)

we can obtain only 8 pairs of solutions
by composition of the transformations (18); to each pair corresponds a kernel generated by the transformations (20). For
example, taking UJ

2 (z) = T2U
J
1 (z) and U

L
2 (z) = T2U

L
1 (z), we find

UJ
2 (z) = eiωz(z − z0)

1−B2−B2
2 z−iη−1+

B1
z0

+
B2
2

∞
∑

n=0

a2n
(

z−z0
z

)n
, (73a)

UL
2 (z) = eiωz(z − z0)

1−B2−B2
2

∞
∑

n=0

a2nΓ
(

n+ 2−B2 − B1

z0

)

Ψ
(

n+ iη + 1− B2

2 − B1

z0
,−B1

z0
;−2iωz

)

, (73b)

where the recurrence relations for a2n are (a2−1 = 0)

(n+ 1)
[

n+ 2−B2 − B1

z0

]

a2n+1 +
[

− 2n
(

n+ 2 + iη − iωz0 −B2 − B1

z0

)

+B3 +
(

2−B2 +
B1

z0

)

(iωz0 − iη) + B1

z0

+
(

1− B2

2

)

(

1 + B1

z0
− B2

2

) ]

a2n +
[

n+ 1 + iη − B2

2

]

[

n+ iη − B2

2 − B1

z0

]

a2n−1 = 0.

Using Eq. (13), we find that

UL
2 (z) = C2

∫ ∞

z0

dt t−1−B1
z0 [t− z0]

B2+
B1
z0

−1UJ
2 (t)R2G

(4)
4 (z, t), Re

[

n+ 2−B2 −
B1

z0

]

> 0, Re[iωz] < 0,

where C2 is a constant, G
(4)
4 (z, t) is the kernel indicated in (54), and the transformation R2 is given in (20); then,

R2G
(4)
4 = e−iω(z+t)+ 2iωzt

z0 [(z − z0)(t− z0)]
1−B2−B1

z0 (zt)1+
B1
z0 Ψ

(

iη + B1

z0
+ B2

2 , 2 +
B1

z0
;− 2iωzt

z0

)

.

We have supposed that the Jaffé solutions converge for |z| ≥ |z0|, but we must be careful about the point z = ∞, since [9]

lim
z→∞

UJ
1 (z) = eiωzz−iη−B2

2

∞
∑

n=0

a1n with lim
n→∞

a1n+1

a1n
= 1−

√
−2iωz0√
n

+
i(η − ωz0)− (3/4)

n
, (74)

where the ratio a1n+1/a
1
n holds for the minimal solution of the recurrence relations. Thus, the D’Alambert test is inconclusive

as to the convergence of
∑

a1n. For the radial part of the two-center problem we could use the Raabe test for convergence,
as in Eq. (106).
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3.2. Solutions in power series and solutions in series of confluent hypergeometric functions

We find another pair of solutions for the CHE which are again connected by the integral (13). By one side we have the
Baber-Hassé expansion [18, 23]

Ubaber
1 (z) = eiωz

∞
∑

n=0

a1n(z − z0)
n, (75a)

where the coefficients satisfy the relations (a1−1 = 0)

z0

(

n+B2 +
B1

z0

)

(n+ 1)a1n+1 + β1
na

1
n + 2iω

(

n+ iη + B2

2 − 1
)

a1n−1 = 0, (75b)

with β1
n = n(n + B2 − 1 + 2iωz0) + B3 + iωz0 [B2 +B1/z0]. The minimal solutions for a1n yield solutions convergent for

any finite value of z. On the other side, if (B2/2)− iη is not zero or negative integer we have the solution [18]

U1(z) = e−iωz
∞
∑

n=0

b1n Φ

(

B2

2
− iη, n+B2; 2iωz

)

, (76a)

where the recurrence relations for b1n are obtained from the previous ones by taking

b1n = C(−z0)
nΓ(n+B2+B1/z0)
Γ(n+B2)

a1n, C = constant.

This yields

−(n+B2)(n+ 1)b1n+1 + β1
nb

1
n − 2iωz0

(

n+B2+
B1
z0

−1
)

(n+iη+
B2
2

−1)
n+B2−1 b1n−1 = 0. (76b)

Now, if we insert Ubaber
1 (t) and the kernel G

(1)
4 (z, t) given in (53) into Eq. (13), we find the solution U1(z), that is,

U1 = K

∫ t2

t1

t−1−B1
z0 [t− z0]

B2+
B1
z0

−1G
(1)
4 (z, t)Ubaber

1 (t)dt, Re

[

n+B2 +
B1

z0

]

> 0, Re[−B1

z0
] > 0, (77)

where K is a constant. In effect, by taking t1 = 0 and t2 = z0, the above integral is proportional to

e−iωz
∞
∑

n=0

(−z0)na(1)n

∫ 1

0
d
(

t
z0

)

[

(

t
z0

)−1−B1
z0

(

1− t
z0

)n+B2−1+
B1
z0

Φ
(

B2

2 − iη,−B1

z0
; 2iωz t

z0

)

]

Then, by using the relation [31]

∫ 1

0

[

xλ−1(1− x)2µ−λΦ
(

1
2 + µ− ν, λ; yx

)]

dx = Γ(λ)Γ(1+2µ−λ)
Γ(1+2µ) Φ

(

1
2 + µ− ν, 1 + 2µ; y

)

, (78)

[Re(λ) > 0, Re(1 + 2µ− λ) > 0] ,

we find the solution U1(z) given in (76a) provided that Re [n+B2 + (B1/z0)] > 0 and Re[−B1/z0] > 0. On the other side,
from dΦ(a, b; ξ)/dξ = (a/b)Φ(a + 1, b + 1; ξ) for ξ = 2iωzt/z0, a = B2/2 − iη and b = −B1/z0, we find that the bilinear
concomitant (16) is given by

P1(z, t) = −e−iωzt−
B1
z0 (t− z0)

B2+
B1
z0

×
{

Φ(a, b; ξ)

∞
∑

n=1

na1n(t− z0)
n−1 + 2iω

[

Φ(a, b; ξ)− az

bz0
Φ(a+ 1, b+ 1; ξ)

]

∞
∑

n=0

a1n(t− z0)
n

}

.

Therefore, P1(z, t = 0) = P1(z, t = z0) = 0 due to the conditions Re(−B1/z0) > 0 and Re(B2 +B1/z0) > 0.
Observe that from the pair

(

Ubaber
1 , U1

)

we can obtain 16 pairs of solutions by using the four transformations (18) and
composition of them: to each pair corresponds a kernel which is obtained by using the transformations (20).

4. New solutions for the confluent equation

In section 4.1, by an integral transformation we find a new solution in series of irregular confluent hypergeometric
functions for the ordinary spheroidal equation. Then, in section 4.2 we extend that solution to the general case (no
restriction on the parameters of the CHE). In this manner, we obtain an initial solution, U1(z), which allows to generate
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a group of solutions Ui(z) for the CHE by by means of transformations (18). Finally, in section 4.3, we show that the new
solutions are suitable for the radial part of the two-center problem of the quantum mechanics.
Initially we make some comments on the recurrence relations and the ratio test for convergence. As in the preceding

section, the three-term recurrence relations for the series coefficients bin of Ui(z) have the form

αi
0 b

i
1 + βi

0 b
i
0 = 0, αi

n b
i
n+1 + βi

n b
i
n + γin b

i
n−1 = 0 (n ≥ 1) (79)

where αi
n, β

i
n and γin depend on the parameters of the differential equation and on the summation index n. By omitting

the superscripts, these relations take the form



























β0 α0 0
γ1 β1 α1

0 γ2 β2 α2
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. . .

. . .

γN βN αN

γN+1 βN+1 αN+1
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. . .

. . .





















































b0
b1
b2
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bN

bN+1
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=



























0

0

0
...

0

0
...



























, (80)

where we have split the matrix into blocks. This system of homogeneous linear equations has nontrivial solutions for bn
only if the determinant of the above tridiagonal matrix vanishes: this demands some arbitrary parameter in the matrix
elements and, as a consequence, in the differential equation. The condition on the determinant can also be expressed by
an (characteristic) equation given by the continued fraction [9]

β0 =
α0γ1
β1−

α1γ2
β2−

α2γ3
β3−

· · · . (81)

The solution of the characteristic equation and the computation of the series coefficients are important aspects concerning
applications of the CHE [32, 33]. The problem is simplified if γin=N+1 = 0 for some N ≥ 0; then, the series terminates at
n = N leading to a finite-series solution with 0 ≤ n ≤ N (see page 146 of [34]) which is called polynomial or quasi-polynomial
solution. In this case, only the left upper block of the matrix is relevant.
On the other side, the convergence of a series like

∑∞
n=0 fn(z) is obtained by computing the limit of

L(z) =

∣

∣

∣

∣

fn+1(z)

fn(z)

∣

∣

∣

∣

when n→ ∞. (82a)

By the D’Alembert ratio test the series converges in the region where L(z) < 1 and diverges where L1(z) > 1. If L(z) = 1,
the D’Alembert test is inconclusive; however, by the Raabe test [35, 36], if

L(z) = 1 +
A

n
+O

(

1

n2

)

(82b)

(where A is a constant) the series converges if A < −1 and diverges if A > −1; the test is inconclusive if A = −1.

4.1. An integral transformation for the spheroidal equation

For the spheroidal equation in the form (9) we will find a solution U1(z) given by

U1(z) = eiωzz1+B1(z − 1)1+B1

∞
∑

n=0

b1nΨ(2 +B1, 2 +B1 − n;−2iωz) [B1 6= −2,−3, · · · ] (83a)

where the coefficients b1n satisfy the relations (b1−1 = 0)

−2iω(n+ 1)b1n+1 +
[

n (n+ 1 + 2iω) + iω(2 +B1)−B1 (1 +B1) +B3

]

b1n − n (n+B1 + 1) b1n−1 = 0. (2)

U1(z) is not valid if B1 = −2,−3, · · · , because in these cases the function Ψ(a, c; y) becomes a polynomial of fixed degree
and, accordingly, (83a) is not a series expansion. This follows from the relation [37]

Ψ(−l, α+ 1; y) = (−1)l l! Lα
l (y), [l = 0, 1, · · · ] (84)

where the L
(α)
l (y) denote Laguerre polynomials of degree l. Besides this, the above expansion in general does not hold at

z = 0 because in most cases Ψ(a, c; y) goes to infinity at z = 0 [5]. The convergence of Ψ for z 6= 0 will be discussed later
on.
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We get the expansion (83a) by applying an integral transformation to the asymptotic expansion W2(z) given in Eq.
(B.4). First, for the spheroidal equation, by writing W (z) = W2(z) and a

2
n = b1n, we find

W (z) = eiωz (z − 1)1+B1

∞
∑

n=0

b1n z
−n−1, [Eq. (B.4) for the spheroidal equation] (85)

where the coefficients b1n satisfy (2). In the second place, the solution U1 is obtained by inserting U(t) = W (t) and
G(z, t) = G−

2 (z, t) – see Eq. (55) – into the right-hand side of Eq. (13), and by integrating from t = 1 to t = ∞, that is,

U1(z)
(13)
=

∫ ∞

1

t−1−B1(t− 1)−1−B1G−
2 (z, t) W (t)dt

(55)
= e−iωz[z(z − 1)]1+B1

∫ ∞

1

e−iωt+2iωzt W (t)dt

which gives

U1(z)
(85)
= e−iωz[z(z − 1)]1+B1

∞
∑

n=0

b1n

∫ ∞

1

e2iωzt(t− 1)1+B1t−n−1dt. (86)

Thence, we obtain (83a) by using [5]

∫ ∞

1

e−yt(t− 1)a−1tc−a−1dt = Γ(a)e−yΨ(a, c; y), [Re a > 0, Re y > 0].

The integrability conditions on the right-hand side require that

Re[2 +B1] > 0 and Re[iωz] < 0. (87)

On the other side, the bilinear concomitant (16) reads

P (z, t) = t−B1(t− 1)−B1

[

W (t)
∂G−

2
(z,t)

∂t −G−
2 (z, t)

dW (t)
dt

]

,

= eiωz(2t−1)[z(z − 1)]1+B1(t− 1)2+B1

{

[

2iω(z − 1)t+B1

]

∞
∑

n=0

b1nt
−n−1 +

∞
∑

n=0

nb1nt
−n−1

}

(88)

Since the series converge at t = ∞, the conditions (87) assure that P (z, t = ∞) = 0. However, the concomitant is
undetermined at t = 1 because [for Re(2 +B1) > 0] P (z, t) is given by the product of the vanishing factor (t − 1)2+B1 by
a divergent series. Despite this, we can check directly [38] that U1(z) is indeed a solution of the spheroidal equation (9)
regardless of the conditions (87).
Now we use the ratio test to get the convergence of U1. Thus, when n → ∞, we find that the minimal solution of (2)

satisfies [38]

b1
n+1

b1
n

∼ 1 + B1

n ⇒ b1
n−1

b1
n

∼ 1− B1

n . (89)

To get the ratio between successive Ψ, we use the relation [5]

(a+ 1− c)Ψ(a, c− 1; y) + (c− 1 + y)Ψ(a, c; y)− yΨ(a, c+ 1; y) = 0.

Hence, by taking

a = 2 +B1, c = 2 +B1 − n, y = −2iωz, Ψn(y) = Ψ(2 +B1, 2 +B1 − n;−2iωz)

we obtain

(n+ 1) Ψn+1

Ψn
− (n− 1−B1 + 2iωz) + 2iωzΨn−1

Ψn
= 0.

If z is bounded (that is, if 2iωz/n→ 0), then when n→ ∞ this equation is satisfied by

Ψn+1

Ψn
∼ 1− 1

n (B1 + 2) ⇔ Ψn−1

Ψn
∼ 1 + 1

n (B1 + 2) or (90)

Ψn+1

Ψn
∼ 2iωz

n

(

1 + B1

n

)

⇔ Ψn−1

Ψn
∼ n

2iωz

[

1− 1
n (1 +B1)

]

.

Only the first ratio is consistent with the fact that, if |c| → ∞ while a and y remain fixed and bounded, then [37]

Ψ(a, c; y) = c−a

[

(−1)−a +
√
2π

Γ(a)

(

c
ey

)c+a− 3
2

ya−
1
2 ey+a− 3

2

]

[

1 +O
(

1
|c|

)]

,

[c→ ∞; a 6= 0,−1,−2, · · · ; | arg(±c)| < π] .
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Thus, using (89) and (90), we find that

when n→ ∞,
b1n+1Ψn+1

b1nΨn
= 1− 2

n
+O

(

1

n2

)

in U1. (91a)

Therefore, by the Raabe test the series may converge for any finite value of z (the ratios (90) are valid if z is finite);
however, we must exclude the point z = 0 because in general the function Ψ(a, c; y) goes to infinity at y = 0. On the other
side, since Ψ(a, c; y)∼y−a when y → ∞, we find that for z → ∞

U1(z) ∼ eiωz zB1

∞
∑

n=0

b1n,

∣

∣

∣

∣

b1n+1

b1n

∣

∣

∣

∣

(89)
= 1 +

ReB1

n
+O

(

1

n2

)

when n→ ∞. (91b)

Thus, according to the Raabe test, the series
∑

b1n converges only if Re(B1) < −1, and this condition assures that U1(z)
converges at z = ∞.

4.2. Solutions for the confluent Heun equation

Now the solution U1(z) for the spheroidal equation, given in (83a), is extended for any CHE. In fact, we can construct
a group of solutions Ui(z) whose series coefficient bin satisfy the relations (79). To this end, in the right-hand side of (83a)
we perform the substitutions

z1+B1(z − 1)1+B1 7→ z1+
B1
z0 (z − z0)

1−B2−B1
z0 , Ψ(2 +B1, 2 +B1 − n;−2iωz) 7→ Ψ(α, β − n;−2iωz),

where we have used the exponents 1+B1/z0 and 1−B2−B1/z0 because these are indicial exponents at z = 0 and z = z0,
respectively. By using the properties of Ψ(a, c; y) we find that α = 2 + iη − B2/2 and β = 2 + B1/z0 [38]. Thus, U1 is
given

U1(z) = eiωzz1+
B1
z0 [z − z0]

1−B2−B1
z0

∞
∑

n=0

b1n Ψ
(

2 + iη − B2

2 , 2 +
B1

z0
− n;−2iωz

)

, [iη −B2/2 6= −2,−3, · · · ] (92a)

where the coefficients b1n satisfy the recurrence relations (79) with [38]

α1
n = −2iωz0(n+ 1), β1

n = n
[

n+ 1−B2 − 2B1

z0
+ 2iωz0

]

+
[

iωz0 − 1− B1

z0

] [

2−B2 − B1

z0

]

+ 2−B2 +B3,

γ1n = −
[

n+ iη − B1

z0
− B2

2

] [

n+ 1−B2 − B1

z0

]

. (92b)

By the transformations (18), U1 produces a group constituted by 16 solutions, Ui. Eight of these can be constructed as

U1(z), U2(z) = T1U1(z), U3(z) = T2U2(z), U4(z) = T1U3(z);

U5(z) = T4U1(z), U6(z) = T4U2(z), U7(z) = T4U3(z), U8(z) = T4U4(z),
(93)

while the others result by the transformation T3 which changes (η, ω) by (−η,−ω) in the above solutions. Thus,

U2(z) = eiωz[z − z0]
1−B2−B1

z0

∞
∑

n=0

b2nΨ
(

1 + iη − B2

2 − B1

z0
,−B1

z0
− n;−2iωz

)

, [iη − B2

2 − B1

z0
6= −1,−2, · · · ] (94a)

where, in the recurrence relations (79) for b2n,

α2
n = −2iωz0(n+ 1), β2

n = n [n+ 3−B2 + 2iωz0)] + iωz0

[

2−B2 − B1

z0

]

+ 2−B2 +B3],

γ2n = −
[

n+ iη + 1− B2

2

]

[

n+ 1−B2 − B1

z0
(94b)

The third solution reads

U3(z) = eiωz

∞
∑

n=0

b3n Ψ
(

iη + B2

2 ,−
B1

z0
− n;−2iωz

)

,
[

iη + B2

2 6= 0,−1, · · · ,
]

(95a)

with

α3
n = −2iωz0(n+ 1), β3

n = n
[

n+ 1 +B2 +
2B1

z0
+ 2iωz0

]

+
[

B2 +
B1

z0

] [

1 + B1

z0
+ iωz0

]

+B3,

γ3n = −
[

n+ iη + B2

2 + B1

z0

] [

n− 1 +B2 +
B1

z0

]

. (95b)
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At last, we write

U4(z) = eiωzz1+
B1
z0

∞
∑

n=0

b4nΨ
(

1 + iη + B2

2 + B1

z0
, 2 + B1

z0
− n;−2iωz

)

, [iη +B2/2 +B1/z0 6= −1,−2, · · · ] (96a)

with

α4
n = −2iωz0(n+ 1), β4

n = n [n− 1 +B2 + 2iωz0] + iωz0

[

B2 +
B1

z0

]

+B3,

γ4n = −
[

n+ iη − 1 + B2

2

]

[

n− 1 +B2 +
B1

z0

]

. (96b)

The relation (91a) is valid also for the present case, whereas for large values of z Eq. (91b) is replaced by [38]

U1(z) ∼ eiωz z−iη−B2
2

∞
∑

n=0

b1n,

∣

∣

∣

∣

b1n+1

b1n

∣

∣

∣

∣

= 1 +
1

n
Re

(

iη − B2

2

)

+O

(

1

n2

)

if n→ ∞. (97)

Then, U1 converges at z = ∞ if Re(iη − B2/2) < −1. By using the transformations as in (93), we find that all the Ui

converge for finite values of z, excepting possibly the points z = 0 (if i = 1, 2, 3, 4) and z = z0 (if i = 5, 6, 7, 8). According
to the Raabe test, these Ui converge also at z = ∞ if

Re
[

iη − B2

2 + 1
]

< 0 : U1, U5; Re
[

iη − B1

z0
− B2

2

]

< 0 : U2, U8;

Re
[

iη + B2

2 − 1
]

< 0 : U3, U7; Re
[

iη + B1

z0
+ B2

2

]

< 0 : U4, U6.
(98)

4.3. The radial part of the two-center problem

Now we consider the equations of the two-center problem of quantum mechanics, as the one describing the electron of
the ionized hydrogen molecule. Using Leaver‘s conventions [9], the wave function ψ of the time-independent Schrödinger
equation for an electron in the field of two Coulombian centers has the form

ψ = eimϕ R̄(λ) S̄(µ), λ =
r1 + r2
2a

, µ =
r1 − r2
2a

, m = 0, ±1, ±2, · · · , (99)

where r1 and r2 are the distances from the electron to the two nuclei, and 2a the intercenter distance. By the definitions

S(z) = S̄(λ) = z
m

2 (2 − z)
m

2 U−(z), z = µ+ 1, [0 ≤ z ≤ 2],

R(z) = R̄(µ) = z
m

2 (z − 2)
m

2 U+(z), z = λ+ 1, [z ≥ 2],
(100)

Leaver obtained CHEs in the form (1) for U±, with the parameters
(

η± for η , B±
3 for B3

)

z0 = 2, ω2 = 2a2E, ωη± = −a(N1 ±N2), B1 = −2(m+ 1), B2 = 2(m+ 1),

B±
3 = ω2 + 2a(N1 ±N2) +m(m+ 1)−Alm. (101)

where Alm is a separation constant, and N1 and N2 are the charges on the two nuclei. Thus, there are two CHEs, one for
the “angular” coordinate µ and one for the “radial” coordinate λ. Each CHE is associated with a characteristic equation
(81) which determines the possible values of the constants Alm and E.
Now we consider R(z), the radial solution given in (100). For bound states (E < 0) we take

iω = −a
√

2|E| ⇒ iη = iη+ = −(N1 +N2)
/
√

2|E| (102)

in order to assure that the factor exp (iωz) remains finite when z → ∞. Then, if |E| is finite,

Re
[

iη − B1

z0
− B2

2

]

= Re
[

iη + B1

z0
+ B2

2

]

= −N1+N2√
2|E|

< 0,

and, consequently, four of the solutions listed in (98) converge at z = ∞. To get wavefunctions bounded also at z = 2, we
select U2 if m ≤ 0 and U4 if m ≥ 0. Thus, we find

R(z) = e−a
√

2|E| z z−
|m|
2 (z − 2)

|m|
2

∞
∑

n=0

b2nΨ

(

1− N1+N2√
2|E|

, 1− |m| − n; a
√

8|E| z
)

(103a)
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where the coefficients b2n satisfy the relations (79) with

α2
n =

√

8|E| a(n+ 1), β2
n = n

[

n+ 1 + 2|m| − 2a
√

8|E|
]

+
[

|m|+ 1
] [

|m| − a
√

8|E|
]

+

2a
[

N1 +N2 − a|E|
]

−Alm, γ2n = −
[

n+ |m|
]

[

n+ |m| − N1+N2√
2|E|

]

. (103b)

The expansion (103a) holds only if

(N1 +N2)/
√

2|E| 6= l+ 1, [l = 0, 2, · · · ] (104)

a condition which assures that Ψ(a, b; y) is not a polynomial of degree l in y.
The condition (104) is also required by the Jaffé expansions. In effect, by using the solutions UJ

1 (if m ≥ 0) and UJ
2 (if

m ≤ 0) given in Eqs (70a) and (73a), respectively, we find

RJ (z) = e−a
√

2|E| z z
−1− |m|

2
+

N1+N2√
2|E| (z − 2)

|m|
2

∞
∑

n=0

a1n

(

z − 2

z

)n

, (105a)

where the recurrence relations for a1n have the form (79) with

α1
n = (n+ 1)(n+ |m|+ 1), β1

n = −2n

[

n+ 1 + |m|+ a
√

8|E| − N1+N2√
2|E|

]

+
[

|m|+ 1
]

[

N1+N2√
2|E|

− a
√

8|E| − 1

]

+

2a
[

N1 +N2 − a|E|
]

−Alm, γ1n = −
[

n+ |m| − N1+N2√
2|E|

]

[

n− N1+N2√
2|E|

]

. (105b)

Thus, γl+1 = 0 if (N1 +N2)/
√

2|E| = l + 1 and, then, RJ(z) becomes a finite-series solution with 0 ≤ n ≤ l, as stated
after Eq. (81). In this case, the constant Alm would be determined from the characteristic equation associated with the
recurrence relations for a1n. However, if E and Alm are both determined from the radial solution, we cannot satisfy the
characteristic equation corresponding to the angular solutions (these are usually given by series where the summation begins
at n = 0 and, so, present recurrence relations having the form (80)). Therefore, also for the Jaffé solutions it is necessary

that (N1 +N2)/
√

2|E| 6= l+1. The same is true respecting Hylleraas’ expansions in series of Laguerre polynomials [9, 39].
The convergence of solution (103a) follows immediately from the Raabe test. As to the Jaffé solution (105a), we have to

examine its behavior at z = ∞. By using (101) together with (102), the expressions (74) imply that

lim
z→∞

RJ(z) = e−a
√

2|E| z z
N1+N2√

2|E|
−1

∞
∑

n=0

a1n, with lim
n→∞

a1n+1

a1n
= 1− 1

n

[

3
4 + 2

√

an
√

2|E| − 2a
√

2|E|+ N1+N2√
2|E|

]

. (106)

Then, by a convenient choice of n, the constant A which appears in (82b) becomes less than −1 and so, by the Raabe test,
the solution converges at z = ∞.

5. Concluding remarks

By inserting a suitable weight function w(z, t) into the integral relation (13) we have found the kernel equation (15)
where the differential operators Lz and Lt depend on z and t in same manner as the operator of the CHE (11); this fact
allows to get transformations of the kernels by examining the known transformations of the solutions for the CHE. As
mentioned, this is an extension of a similar correspondence found in 2011 for the general Heun equation (HE) [1].
Actually, in 1942 Erdélyi used the appropriate weight function for the HE but he could not infer how to transform the

kernels because the transformations of the HE were fully established only in 2007 [3]. On the other side, transformations of
confluent Heun equations are known since 1978 [25, 26] but have not been applied to transform kernels – see, for example,
references [4, 6, 7, 27]. In the present study we have considered transformations of kernels of the CHE and limiting cases.
The initial kernels (to be transformed) come from kernels of the HE by a process of confluence [1]; however, for the sake
of completeness, in section 2 we have reobtained them by solving the kernel equation.
By separation of variables we have found two groups of kernels presenting an arbitrary constant of separation. One

group, with products of two confluent hypergeometric functions, includes some particular kernels already known in the
literature [27]; the other group, with products of confluent hypergeometric functions and Gauss hypergeometric functions,
is new as far as we know. By ascribing particular values to the constant of separation we have obtained three groups given
by product of elementary functions with one special function: this is represented by confluent hypergeometric functions
(two groups) and by Gauss hypergeometric functions (one group).
In section 3 we have found some integral transformations among known solutions of the confluent Heun equations. We

have used two singularities as endpoints of integration and supposed that the solutions to be transformed are convergent
at both endpoints (this assures that the bilinear concomitants vanish there). If the solutions are modified by the rules (18),
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the kernels must be modified by the rules (20). This emphasizes that the correspondence between the transformations of
the Heun equations and of the respective kernels are important parts of the transformation theory.
The applications of section 3 simply interconnect known solutions without affording new solutions. In contrast, in section

4, by means of an integral transformation we have obtained a new solution for the spheroidal wave equation, which in turn
leads to a group of new solutions for the CHE. We have seen that these solutions may be used to compute the radial part
of the wavefunctions for bound states of hydrogen moleculelike ions and, by this reason, can play the role of the expansions
in series of Laguerre polynomials proposed by Hylleraas in 1931 [39] and the Jaffé power-series solutions [22] which have
been used from 1934 up to now [40].
It is possible to realize further properties of the solutions by considering other problems, as the Lorentzian model of a

quantum two-state system given by Ishkhanyan and Gregoryan [11]. This is ruled by a CHE with z = (1+ it)/2 and z0 = 1,
where t denotes the time. According to the authors, for certain values of a parameter R, the problem admits finite-series
solutions which are bounded for any admissible value of t and assure that the system returns to the initial state after the
interaction. By using the solutions of section 4.2, we have verified that the previous statement is correct; it seems that
no other known solution of the CHE permits to prove the statement. In addition, since in this case |z| ≥ 1/2, it would
be interesting to check if there are infinite-series solutions suitable for some range of the parameter R (the Hylleraas and
Jaffé solutions do not converge for |z| < 1).
We have omitted details concerning the derivation of the new solutions of the CHE. In addition, the solutions must be

improved as follows: (i) by considering also expansions in series of regular confluent hypergeometric functions, we will get
solution valid in the neighborhood of z = 0 [38], (ii) by using the Whittaker-Ince limit as in Ref. [18], we can expect
solutions in series of Bessel functions for the RCHE (2), (iii) by inserting a “characteristic” parameter ν and letting that
the series summation runs from minus to plus infinite [38] (two-sided series), we can obtain solutions for a CHE without
free parameters [18].
As mentioned, besides the RCHE, there are two other equations which are associated with the CHE by formal limits.

These are the double-confluent Heun equation (DHE) and the reduced DHE (RDHE) which appear when we allow that
z0 → 0 in the CHE and RCHE, respectively, that is,

DHE : z2 d2U
dz2 + (B1 +B2z)

dU
dz +

(

B3 − 2ηωz + ω2z2
)

U = 0, [B1 6= 0, ω 6= 0]

RDHE : z2 d2U
dz2 + (B1 +B2z)

dU
dz + (B3 + qz)U = 0, [q 6= 0, B1 6= 0]

(107)

where now z = 0 and z = ∞ are irregular singularities. At z = ∞ the behaviour is again given by Eq. (5), that is,

lim
z→∞

U(z) ∼ e±iωz z∓iη−(B2/2) for the DHE (1), lim
z→∞

U(z) ∼ e±2i
√
qz z(1/4)−(B2/2) for the RDHE (2),

while at z = 0 the normal Thomé solutions affords [18]

lim
z→0

U(z) ∼ 1 or lim
z→0

U(z) ∼ eB1/zz2−B2 for DHE and RDCE.

Starting with kernels of the CHE, in appendices C, D and E we have found that the Whitakker-Ince limit (3) and the
Leaver limit (z0 → 0) lead to new kernels for the RCHE, DHE and RDHE, in accordance with a previous conjecture [1].
However, by integrating the kernel equations we have also found kernels which are not connected with known kernels of
the CHE: for the RCHE we have a group of kernels expressed by products of Bessel and hypergeometric functions, while
for the DHE and RDHE we have kernels given in terms of elementary functions. Therefore, the limiting procedures do not
exhaust the possibilities for generating kernels.
In the appendix C we have found that the usual kernels of the Mathieu equation turn out to be particular cases of kernels

of the RCHE. Furthermore, in appendix D, we have noticed that for DHE and RDHE in general it is convenient to use
integral relations with variable limits of integration; this fact leads to an additional term in the bilinear concomitant - see
Eq. (D.7).

Appendix A. Hypergeometric functions

The regular and irregular confluent hypergeometric functions are denoted by Φ(a, c;u) and Ψ(a, c;u), respectively. They
satisfy the confluent hypergeometric equation [37]

u
d2ϕ(u)

du2
+ (c− u)

dϕ(u)

du
− aϕ(u) = 0 (A.1)

which admits the solutions

ϕ1(u) = Φ(a, c;u), ϕ2(u) = euu1−cΦ(1− a, 2− c;−u), ϕ3(u) = Ψ(a, c;u), ϕ4(u) = euu1−cΨ(1− a, 2− c;−u). (A.2)

All of them are defined and distinct only if c is not an integer. Alternative forms for these solutions follow from the relations

Φ(a, c;u) = euΦ(c− a, c;−u), Ψ(a, c;u) = u1−cΨ(1 + a− c, 2− c;u). (A.3)

18



On the other side, solutions for the (Gauss) hypergeometric equation [37],

u(1− u)
d2F

du2
+
[

c− (a+ b+ 1)u
]dF

du
− abF = 0, (A.4)

are given by hypergeometric functions F (a, b; c;u) = F (b, a; c;u). In fact, in the vicinity of the singular points 0, 1 and ∞,
the formal solutions for the hypergeometric equation (A.4) are, respectively,

F 1(u) = F (a, b; c;u) , F 2(u) = u1−cF (a+ 1− c, b+ 1− c; 2− c;u) ; (A.5)

F 3(u) = F (a, b; a+ b+ 1− c; 1− u) , F 4(u) = (1− u)
c−a−b

F (c− a, c− b; 1 + c− a− b; 1− u) ; (A.6)

F 5(u) = u−aF
(

a, a+ 1− c; a+ 1− b; 1
u

)

, F 6(u) = u−bF
(

b+ 1− c, b; b+ 1− a; 1
u

)

. (A.7)

Each of these may be written in four forms by using the relations

F (a, b; c;u) = (1− u)c−a−bF (c− a, c− b; c;u), F (a, b; c;u) = (1− u)−aF [a, c− b; c;u/(u− 1)] . (A.8)

On the other side, the usual form for the Bessel equation is [5]

y2
d2Z(y)

dy2
+ y

dZ(y)

dy
+
[

y2 − α2
]

Z(y) = 0. (A.9)

The solutions for this equation are denoted by Z
(j)
α (y) according as [5, 34]

Z(1)
α (y) = Jα(y), Z(2)

α (y) = Yα(y), Z(3)
α (y) = H(1)

α (y), Z(4)
α (y) = H(2)

α (y) (A.10)

where Jα(y) and Yα(y) are the Bessel functions of the first and second kind, respectively; H
(1)
α (y) and H

(2)
α (y) are the first

and the second Hankel functions. There are formulas connecting these functions [5]. For example,

Yα =
1

2i

[

H(1)
α −H(2)

α

]

=
cos(απ)Jα − J−α

sin(απ)
. (A.11)

Bessel and confluent hypergeometric functions are connected by [37]

Φ
(

α+ 1
2 , 2α+ 1;−2iy

)

= Γ(α+ 1) e−iy
(

y
2

)−α
Jα(y), Ψ

(

α+ 1
2 , 2α+ 1;−2iy

)

= i
√
π

2 e−i(y−απ) (2y)
−α

H
(1)
α (y),

Ψ
(

α+ 1
2 , 2α+ 1; 2iy

)

= − i
√
π

2 ei(y−απ) (2y)
−α

H
(2)
α (y). (A.12)

In addition, we have the relations [37]

lim
a→∞

Φ
(

a, c;−y
a

)

= Γ(c) y(1−c)/2Jc−1

(

2
√
y
)

,

lim
a→∞

[

Γ(a+ 1− c) Ψ
(

a, c;−y
a

)]

=







−iπeiπcy(1−c)/2H
(1)
c−1

(

2
√
y
)

, Im y > 0,

iπe−iπcy(1−c)/2H
(2)
c−1

(

2
√
y
)

, Im y < 0.

(A.13)

Appendix B. Wilson’s asymptotic expansions for the CHE

Such solutions were considered in 1928 by Wilson [10]. Actually they are given by 8 asymptotic Thomé expansions [17]
which we denote by Wi(z) (i = 1, 2, 3, 4) and T3Wi(z). For the CHE in the form (1) we find

W1(z) = eiωz z−iη−B2
2

∞
∑

n=0

a1nz
−n (B.1)

where the coefficients a1n satisfy the three-term recurrence relations (a1−1 = 0)

2iω(n+ 1)a1n+1 −
[

n (n+ 1 + 2iη + 2iωz0) + iωz0

(

B2 +
B1

z0

)

+B3 +
(

B2

2 + iη
)

(

1 + iη − B2

2

)

]

a1n

+z0

(

n+ iη + B1

z0
+ B2

2

)

(

n+ iη + B2

2 − 1
)

a1n−1 = 0. (B.2)
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For the other solutions we take

W2(z) = T2W1(z), W3(z) = T4W1(z), W4(z) = T4W2(z) = T1W3(z) (B.3)

and Wi+4 = T3Wi (i = 1, · · · 4). Thus, from the first solution we get

W2(z) = eiωz (z − z0)
1−B2−B1

z0 z
−iη−1+

B1
z0

+
B2
2

∞
∑

n=0

a2nz
−n, where (B.4)

2iω(n+ 1)a2n+1 −
[

n (n+ 1+ 2iη + 2iωz0) + iωz0

(

2−B2 − B1

z0

)

+B3 +
(

B2

2 + iη
)(

1 + iη − B2

2

)]

a2n

+z0

(

n+ iη − B1

z0
− B2

2

)(

n+ iη + 1− B2

2

)

a2n−1 = 0. (B.5)

This W2(z) is the only solution relevant for section 5. For this reason we omit the other solutions.
By the D’Alembert test the solutions W1(z) and W2(z) converge for |z| > |z0|, whereas W3(z) and W4(z) converge for

|z − z0| > |z0|. However, by the Raabe test they converge also at |z| = |z0| and |z − z0| = |z0| provided that

|z| ≥ |z0| if











Re
[

B2 +
B1

z0

]

< 1 in W1(z),

Re
[

B2 +
B1

z0

]

> 1 in W2(z);
|z − z0| ≥ |z0| if











Re
[

B1

z0

]

> −1 in W3(z),

Re
[

B1

z0

]

< −1 in W4(z),
(B.6)

where the restrictions on parameters of the equation are necessary only to assure convergence at |z| = |z0| or |z−z0| = |z0|.
The above regions of convergence suppose the minimal solutions for the series coefficients [17]. In the following we

consider only the series which appears in W1(z), the convergence for the other solutions being obtained by using the
transformations as indicated above. Thus, when n→ ∞ in W1(z) we have

2iω
a1
n+1

a1
n

− (n+ 1 + 2iη + 2iωz0) + z0

(

n+ 2iη +B2 +
B1

z0
− 1
)

a1
n−1

a1
n

= 0

whose minimal solution for a1n+1/a
1
n satisfies

a1n+1

a1n
∼ z0

[

1 +
1

n

(

B2 +
B1

z0
− 2

)]

⇒ a1n−1

a1n
∼ 1

z0

[

1− 1

n

(

B2 +
B1

z0
− 2

)]

.

Thence, when n→ ∞

a1n+1z
−n−1

a1nz
−n

∼ z0
z

[

1 +
1

n

(

B2 +
B1

z0
− 2

)]

⇒ a1n+1z
−n−1

a1nz
−n

∼ |z0|
|z|

[

1 +
1

n
Re

(

B2 +
B1

z0
− 2

)]

.

So, by the D’Alambert test the series converges absolutely for |z| > |z0|. However, by the Raabe test, the series converges
even for |z| = |z0| provided that Re [B2 + (B1/z0)] < 1.

Appendice C. Kernels for the reduced confluent Heun equation (RCHE)

In this appendix C:

• initially we get the substitutions of variables which preserve the form of the equation for the kernels of the RCHE;
• in C.1 we find a group of kernels containing products of two Bessel functions having an arbitrary constant of separation
λ; these kernels cannot be derived from known kernels of the CHE by using the Whittaker-Ince limit (3);

• in C.2 we construct a group of kernels containing products of Bessel and hypergeometric functions with an arbitrary
constant of separation λ; these kernels may be derived as limits of kernels of the CHE;

• in C.3, C.4 and C.5, by taking suitable values for λ in the above cases, we get kernels given by products of elementary
and special functions; thus, in C.3 and C.4 the kernels are given by products of elementary and Bessel functions,
while in C.5 the kernels are given by products of elementary and Gauss hypergeometric functions;

• in C.6 we find an integral relation between a solution of a RCHE in power series and a solution given by series of
Bessel functions of first kind.

• the above results are also valid for the Mathieu equations because these are particular instances of the RCHE.

In Whittaker-Ince limit (3), Eqs. (13) and (16) remain formally unchanged but the operator (10) now reads

Lz = z(z − z0)
∂2

∂z2
+ [B1 +B2z]

∂

∂z
+ qz, (C.1)
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and so the RCHE (2) and equation (15) for the corresponding kernels G(z, t) take the forms

[Lz +B3 − qz0]U(z) = 0, [Lz − Lt]G(z, t) = 0. (C.2)

On the other side, if U(z) = U(B1, B2, B3; z0, q; z) is solution of the RCHE, new solutions may be generated by the
transformations T1, T2 and T3 given by [18]

T1U(z) = z
1+

B1
z0 U(C1, C2, C3; z0, q; z),

T2U(z) = (z − z0)
1−B2−B1

z0 U(B1, D2, D3; z0, q; z),

T3U(z) = U(−B1 −B2z0, B2, B3 − qz0; z0,−q; z0 − z),

(C.3)

where Ci and Di are defined in (19). Similarly, we can check that, if G(z, t) = G(B1, B2; z0, q; z, t) is a kernel, new kernels
may generated by the transformations

R1G(z, t) = (zt)
1+

B1
z0 G(C1, C2; z0, q; z, t),

R2(z)G(z, t) = [(z − z0)(t− z0)]
1−B2−B1

z0 G(B1, D2; z0, q; z, t),

R3G(z, t) = G(−B1 −B2z0, B2; z0,−q; z0 − z, z0 − t).

(C.4)

We will see that the kernels for the RCHE reproduce all the known kernels [34, 41] for the Mathieu equation. To this
end, we write the last equation as

d2w

du2
+ σ2

[

a− 2k2 cos(2σu)
]

w = 0, (C.5)

where σ = 1 or σ = i for the Mathieu or modified Mathieu equations, respectively. Then, by setting z = cos2(σu) and
w(u) = U(z), Eq. (C.5) is converted into RCHE (2) with the following parameters:

z0 = 1, B1 = −1

2
, B2 = 1, B3 =

k2

2
− a

4
, q = k2. (C.6)

Besides this, putting t = cos2(σv) the integral (13) reads

U(z) =

∫ v2

v1

G[z(u), t(v)] U [t(v)] dv. (C.7)

where z(u) = cos2(σu) and t(v) = cos2(σv).

C.1. First group of kernels: products of Bessel functions

We find the set of kernels G
(i,j)
(±,±) given by products of Bessel functions, namely,

G
(i,j)
(±,±)(z, t) =

[

λ
√

(z−z0)(t−z0)
z0

]1−B2−B1
z0
[√

zt
z0

]1+
B1
z0

× Z
(i)

±
(

1−B2−B1
z0

)

[

λ
√

(z−z0)(t−z0)
z0

]

Z
(j)

±
(

1+
B1
z0

)

[√

1
z0
(λ2 + 4q)zt

]

, (C.8)

where Z
(i)
α are the four Bessel functions given in Eq. (A.10) or linear combinations of them. In addition, we find that the

transformations R1 and R2 and R3 do not produce new kernels.
In fact, the substitutions

ξ =
√

(z−z0)(t−z0)
z0

, ζ =
√

zt
z0
, G(z, t) = H(ξ, ζ), (C.9)

transform Eq. (C.2) into

∂2H

∂ξ2
+

2

ξ

(

B2 +
B1

z0
− 1

2

)

∂H

∂ξ
− 4qH −

[

∂2H

∂ζ2
− 2

ζ

(

B1

z0
+

1

2

)

∂H

∂ζ

]

= 0. (C.10)

Thence, by the separation of variable

H(ξ, ζ) = ξ1−B2−B1
z0 ζ1+

B1
z0 X(ξ) Y (ζ), (C.11)
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we find

1
X

[

d2X
dξ2 + 1

ξ
dX
dξ − 1

ξ2

(

B2 +
B1

z0
− 1
)2

X

]

− 1
Y

[

d2Y
dζ2 + 1

ζ
dY
dζ − 1

ζ2

(

1 + B1

z0

)2

Y

]

− 4q = 0,

which leads to the Bessel equations

ξ2 d2X
dξ2 + ξ dX

dξ +

[

λ2ξ2 −
(

1−B2 − B1

z0

)2
]

X = 0, ζ2 d2Y
dζ2 + ζ dY

dζ +

[

(

λ2 + 4q
)

ζ2 −
(

1 + B1

z0

)2
]

Y = 0, (C.12)

where λ2 is a constant of separation. Thus, by taking

y = λξ, α = ±
(

1−B2 − B1

z0

)

and y =
√

(λ2 + 4q)ζ, α = ±
(

1 + B1

z0

)

in the first and second equations, respectively, we obtain

X(ξ) = Z
(i)

±
(

1−B2−B1
z0

) [λξ] , Y (ζ) = Z
(j)

±
(

1+
B1
z0

)

[

√

(λ2 + 4q)ζ
]

. (C.13)

Inserting these solutions into (C.11) we get the kernels (C.8).
Now we let that the transformations Ri transform the parameter λ into λi. Since λ and λi are arbitrary, we conclude

that Ri do not change the kernels. For instance,

R3G
(i,j)
(±,±)(z, t) =

[

(z−z0)(t−z0)
z0

]
1
2
−B2

2
− B1

2z0

[√

zt
z0

]1+
B1
z0 Z

(i)

±
(

1+
B1
z0

)

[

λ3
√

zt
z0

]

Z
(j)

±
(

1−B2−B1
z0

)

[

√

[λ2
3
−4q][z−z0][t−z0]

z0

]

By setting λ23 = λ2 + 4q, we see that the right-hand side is G
(i,j)
(±,±)(z, t).

For Mathieu equation, the kernels (C.8) become

G
(i,j)
(±,±)(z, t) =

√

sin(2σu) sin(2σv)Z
(i)

± 1
2

[λ sin(σu) sin(σv)]Z
(j)

± 1
2

[

√

λ2 + 4q cos(σu) cos(σv)
]

, (C.14)

where the Bessel functions can be expressed in terms of elementary functions since [31]

(

J1/2(x) = Y−1/2(x)

J−1/2(x) = −Y1/2(x)

)

=
√

2
πx

(

sinx

cosx

)

,





H
(1)
1/2(x) = −iH(1)

−1/2(x)

H
(2)
1/2(x) = iH

(2)
−1/2(x)



 =
√

2
πx

(

−ieix

ie−ix

)

. (C.15)

C.2. Second group: products of Bessel and hypergeometric functions

The kernels given by products of Bessel and hypergeometric functions are written as

G
(i,j)
± (z, t) =

[

2
√

q(z + t− z0)
]1−B2

Z
(i)
±(2λ+1−B2)

[

2
√

q(z + t− z0)
]

F j(ζ), [i = 1, · · · , 4; j = 1, · · · , 6] (C.16)

where F j denote the hypergeometric functions written in Eqs. (41-46). We can show that the transformations Ri simply
rearrange the previous kernels.
By using properties (A.13) of the confluent hypergeometric functions, the above kernels may be obtained by applying

the Whittaker-Ince limit to the kernels (32) of the CHE. To derive the kernels directly, we note that the substitutions

ξ = 2
√

q(z + t− z0), ζ =
zt

z0(z + t− z0)
, G(z, t) = ξ1−B2 H(ξ, ζ), (C.17)

transform the second Eq. (C.2) into

ξ2
∂2H

∂ξ2
+ ξ

∂H

∂ξ
+
[

ξ2 − (1−B2)
2
]

H + 4ζ(1− ζ)
∂2H

∂ζ2
+ 4

[

−B1

z0
−B2ζ

]

∂H

∂ζ
= 0. (C.18)

The separation of variables

H(ξ, ζ) = X(ξ) Y (ζ) ⇒ G(z, t) = ξ1−B2 X(ξ) Y (ζ), (C.19)

leads to the following Bessel and hypergeometric equations, respectively,

ξ2 d2X
dξ2 + ξ dX

dξ +
[

ξ2 − (2λ+ 1−B2)
2
]

X = 0, ζ(1 − ζ)d
2Y
dζ2 +

[

−B1

z0
−B2ζ

]

dY
dζ − λ(B2 − λ− 1)Y = 0, (C.20)
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where we have denoted the constant of separation by 4λ(λ+1−B2). Using Eqs. (C.17-C.20) we obtain the kernels (C.16).
To show that the transformations Ri do not produce new kernels we use the fact that the constants of separation are

arbitrary. For example, since

R1G
(i,1)
± (z, t) ∝

[

zt
z+t−z0

]1+
B1
z0

[

2
√

q(z + t− z0)
]1−B2

×

× Z
(i)

±
(

2λ1−1−2− 2B1
z0

)

[

2
√

q(z + t− z0)
]

F
[

λ1, 1 + B2 +
2B1

z0
− λ1; 2 +

B1

z0
; zt
z0(z+t−z0)

]

,

by taking λ1 = λ+ 1 + (B1/z0) we find that the right-hand side is G
(i,2)
± (z, t). Analogously,

R2G
(i,1)
± (z, t) ∝ [(z − z0)(t− z0)]

1−B2−B1
z0

[

2
√

q(z + t− z0)
]B2+

2B1
z0

−1

× Z
(i)

±
(

2λ2−1+B2+
2B1
z0

)

[

2
√

q(z + t− z0)
]

F
[

λ2, 1−B2 − 2B1

z0
− λ2;−B1

z0
; zt
z0(z+t−z0)

]

.

Putting λ2 = λ+ 1−B2 − (B1/z0) and using Eq. (A.8), we find that the right-hand side is proportional to G
(i,1)
± .

For the Mathieu equation, whenever appropriate we use the relations [31]

F
(

ν
2 ,− ν

2 ;
1
2 ; y

2
)

= cos(ν arcsiny), F
(

1+ν
2 , 1−ν

2 ; 3
2 ; y

2
)

= sin(ν arcsin y)
νy

with ν = 2λ. Then, the kernels (C.16) are rewritten as

G
(i,1)
± (u, v) = cos

[

2λ arcsin
√
2 cos(σu) cos(σv)√
cos(2σu)+cos(2σv)

]

Z
(j)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.21)

G
(i,2)
± (u, v) = sin

[

2λ arcsin
√
2 cos(σu) cos(σv)√
cos(2σu)+cos(2σv)

]

Z
(i)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.22)

G
(i,3)
± (u, v) = cos

[

2λ arcsin i
√
2 sin(σu) sin(σv)√

cos(2σu)+cos(2σv)

]

Z
(i)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.23)

G
(i,4)
± (u, v) = sin

[

2λ arcsin i
√
2 sin(σu) sin(σv)√

cos(2σu)+cos(2σv)

]

Z
(i)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.24)

G
(i,5)
± (u, v) =

[

cos2(σu) cos2(σv)
cos(2σu)+cos(2σv)

]−λ

F
[

λ, 12 + λ; 1 + 2λ; cos(2σu)+cos(2σv)
2 cos2(σu) cos2(σv)

]

Z
(i)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.25)

G
(i,6)
± (u, v) =

[

cos2(σu) cos2(σv)
cos(2σu)+cos(2σv)

]λ

F
[

−λ, 12 − λ; 1 − 2λ; cos(2σu)+cos(2σv)
2 cos2(σu) cos2(σv)

]

Z
(i)
±2λ

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

. (C.26)

The kernels (C.21-C.24) are equivalent to the ones given on pp. 190 and 191 of McLachlan [41], but we have not found

G
(i,5)
± and G

(i,6)
± in the literature.

C.3. Third group: Bessel functions

Up to a multiplicative constant, a initial set of kernels given by Bessel functions is

G
(i)
1,±(z, t) =

[√
zt
]1+

B1
z0 Z

(i)

±
(

1+
B1
z0

)

[

2
√

qzt
z0

]

. (C.27)

These kernels are obtained by supposing that H(ξ, ζ) depends only on ζ in Eq. (C.10). Then, the substitution

G(z, t) = H(ξ, ζ) = ζ1+
B1
z0 Y (ζ), ζ =

√

zt/z0

leads to

ζ2 d2Y
dζ2 + ζ dY

dζ +

[

4qζ2 −
(

1 + B1

z0

)2
]

Y = 0,
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which is the Bessel equation (A.9) with argument y = 2
√
qζ = 2

√

qzt/z0 and order α = ±[1 + (B1/z0)]. In this manner,
we find (C.27). The remaining sets are obtained by using the transformations (C.4) as

G
(i)
2,±(z, t) = R2G

(i)
1,±(z, t), G

(i)
3,±(z, t) = R3G

(i)
2,±(z, t), G

(i)
4,±(z, t) = R1G

(i)
3,±(z, t).

Thence,

G
(i)
2,±(z, t) =

[√
zt
]1+

B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0 Z

(i)

±
(

1+
B1
z0

)

[

2
√

qzt
z0

]

, (C.28)

G
(i)
3,±(z, t) = [zt]

1+
B1
z0

[

√

(z − z0)(t− z0)
]1−B2−B1

z0
Z

(i)

±
(

1−B2−B1
z0

)

[

2
√

− q
z0
(z − z0)(t− z0)

]

, (C.29)

G
(i)
4,±(z, t) =

[

√

(z − z0)(t− z0)
]1−B2−B1

z0
Z

(i)

±
(

1−B2−B1
z0

)

[

2
√

− q
z0
(z − z0)(t− z0)

]

. (C.30)

This group of kernels can as well be generated by applying the Whittaker-Ince limit to kernels of the CHE given by
hypergeometric functions in section 2.4.
For the Mathieu equation, up to constant factors, we find

G
(i)
1,±(u, v) =

√

cos(σu) cos(σv) Z
(i)
±1/2 [2k cos(σu) cos(σv)] , (C.31)

G
(i)
2,±(u, v) = sin(σu) sin(σv)

√

cos(σv) cos(σv)Z
(i)
±1/2 [2k cos(σu) cos(σv)] , (C.32)

G
(i)
3,±(u, v) = cos(σu) cos(σv)

√

sin(σu) sin(σv)Z
(i)
±1/2 [2ik sin(σu) sin(σv)] , (C.33)

G
(i)
4,±(u, v) =

√

sin(σu) sin(σv) Z
(i)
±1/2 [2ik sin(σu) sin(σv)] . (C.34)

Kernels of this type have been used to generate solutions in series of Bessel functions out of Fourier-like expansions [34, 41]
(that is, from solutions in series of trigonometric or hyperbolic functions).

C.4. Fourth group: Bessel functions again

Another group, given by products of elementary and Bessel functions, is generated from the initial set of the kernels

G
(i)
1,±(z, t) =

[

2
√

q(z + t− z0)
]1−B2

Z
(i)
±(B2−1)

[

2
√

q(z + t− z0)
]

, (C.35)

which result when H(ξ, ζ) depends only on ξ in Eq. (C.18), that is, when H(ξ, ζ) = X(ξ). In effect, in this case we find

G(z, t)
(C.17)
= ξ1−B2 X(ξ), ξ = 2

√

q(z + t− z0)

where X(ξ) satisfies the Bessel equation

ξ2
d2X

dξ2
+ ξ

dX

dξ
+
[

ξ2 − (B2 − 1)
2
]

X = 0

Taking X(ξ) = Z
(i)
±(B2−1)(ξ) we obtain the kernels (C.35). Then, by using the transformations R1 and R2 as (R3 is

ineffective)

G
(i)
2,±(z, t) = R1G

(i)
1,±(z, t), G

(i)
3,±(z, t) = R2G

(i)
2,±(z, t), G

(i)
4,±(z, t) = R1G

(i)
3,±(z, t).

we find that the other sets are

G
(i)
2,±(z, t) = [zt]

1+
B1
z0

[

2
√

q(z + t− z0)
]−1−B2− 2B1

z0
Z

(i)

±
(

1+B2+
2B1
z0

)

[

2
√

q(z + t− z0)
]

, (C.36)

G
(i)
3,±(z, t) = [zt]

1+
B1
z0 [(z − z0)(t− z0)]

1−B2−B1
z0

[

2
√

q(z + t− z0)
]B2−3

Z
(i)
±(3−B2)

[

2
√

q(z + t− z0)
]

, (C.37)

G
(i)
4,±(z, t) = [(z − z0)(t− z0)]

1−B2−B1
z0

[

2
√

q(z + t− z0)
]B2+

2B1
z0

−1

Z
(i)

±
(

1−B2− 2B1
z0

)

[

2
√

q(z + t− z0)
]

. (C.38)
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The above kernels can as well be generated by applying the Whittaker-Ince limit to kernels of the CHE given by confluent

hypergeometric functions in section 2.5. On the other hand, these kernels are instances of the kernels G
(i,j)
± (z, t) given

in (C.16), corresponding to four choices of λ which permit to write the hypergeometric functions F (j)(ζ) as elementary

functions. Indeed, up to constant factors we find that: (i) the kernels G
(i)
1,± correspond to λ = 0 in G

(i,1)
± , G

(i,3)
± and

G
(i,5)
± ; G

(i)
2,± correspond to λ = −1 − (B1/z0) in G

(i,2)
± ; G

(i)
3,± correspond to λ = B2 − 2 in G

(i,5)
± ; G

(i)
4,± correspond to

λ = B2 + (B1/z0)− 1 in G
(i,5)
± .

Notice that Z
(i)
−ℓ(x) = (−1)ℓZ

(i)
ℓ (x) if ℓ is integer. So, up to multiplicative constants, for the Mathieu equation the

previous kernels read

G
(i)
1 (u, v) = Z

(i)
0

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.39)

G
(i)
2 (u, v) =

cos(σu) cos(σv)√
cos(2σu)+cos(2σv)

Z
(i)
1

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.40)

G
(i)
3 (u, v) =

sin(2σu) sin(2σv)
cos(2σu)+cos(2σv)Z

(i)
2

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

, (C.41)

G
(i)
4 (u, v) =

sin(σu) sin(σv)
√

cos(2σu) + cos(2σv)
Z

(i)
1

[

k
√

2 cos(2σu) + 2 cos(2σv)
]

. (C.42)

These kernels for the Mathieu equation are connected with particular values of λ in the kernels (C.21-C.26). In fact: (i)

for G
(i)
1 we take λ = 0 in (C.21), (C.23), (C.25) or (C.26); (ii) for G

(i)
2 , λ = 1/2 in (C.22); (iii) for G

(i)
3 , λ = −1 in (C.25)

or λ = 1 in (C.26); (iv) for G
(i)
4 , λ = 1/2 in (C.24).

C.5. Fifth group: hypergeometric functions

By taking 2λ+ 1−B2 = 1/2 in (C.16), we find

G
(i,j)
± (z, t) =

[

2
√

q(z + t− z0)
]1−B2

Z
(i)

± 1
2

(

2
√

q(z + t− z0)
) [

F (j)(ζ)
]

λ=
B2
2

− 1
4

, [i = 1, · · · , 4; j = 1, · · · , 6] , (C.43)

where F (j) denote the hypergeometric functions written in Eqs. (41-46), whereas Z
(i)
±1/2 are given by the elementary

functions (C.15). For the Mathieu equation, the explicit form of the kernels is obtained by putting λ = 1/4 in Eqs.
(C.21-C.26).

C.6. Power series and series of Bessel functions for the RCHE

In the Whittaker-Ince limit the power series solution (75a) becomes

Ubaber
1 (z) =

∞
∑

n=0

a1n(z − z0)
n, (|z| = finite) (C.44)

where the series coefficients now satisfy (a1−1 = 0)

z0

(

n+B2 +
B1

z0

)

(n+ 1) a1n+1 +
[

n
(

n+B2 − 1
)

+B3

]

a1n + qa1n−1 = 0. (C.45)

In the following we find that, if

if Re (B1/z0) < 0 and Re [n+B2 + (B1/z0)] > 0 (C.46)

then, by means of an integral transformation, Ubaber
1 (z) generates a known expansion U1(z) in series of Bessel functions

given by [18]

U1(z) =

∞
∑

n=0

(−1)nc1n
(√
qz
)−(n+B2−1)

Jn+B2−1

(

2
√
qz
)

, (C.47)

where the recurrence relations for c1n are obtained by writing

c1n = C(z0)
nΓ
(

n+ B2 +
B1

z0

)

a1n,
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C being a constant independent of n. Thus,

(n+ 1) c1n+1 +
[

n
(

n+B2 − 1
)

+B3

]

c1n + qz0

(

n+B2 +
B1

z0
− 1
)

c1n−1 = 0. (C.48)

In fact, by inserting U1(t) = Ubaber
1 (t) and the kernel G(z, t) = G

(1)
1,−(z, t) given in (C.27) into (13), and taking t1 = 0

and t2 = z0, we find

U(z) = z
1
2
+

B1
2z0

∞
∑

n=0

a(1)n

∫ z0

0

dt

[

t−
1
2
− B1

2z0 (t− z0)
n+B2+

B1
z0

−1J−1−B1
z0

(

2
√

qzt/z0

)

]

.

By using the integral [42]
∫ y

0

x
1
2
ν(y − x)µ−1Jν(a

√
x )dx = 2µy

1
2
(µ+ν)Γ(µ)a−µJµ+ν(

√
ya), [Re(µ) > 1, Re(ν) > −1] ,

we get U = U1, where U1 is given in (C.47). On the other side, since

d

dy

[

y−νJν(y)
]

= −y−νJν+1(y),

the bilinear concomitant (16) takes the form

P1(z, t) = −z
1
2
+

B1
2z0 t

1
2
− B1

2z0 (t− z0)
B2+

B1
z0

×
[√

qz

tz0
J−B1

z0

(

2
√

qzt/z0

)

∞
∑

n=0

a1n(t− z0)
n + J−1−B1

z0

(

2
√

qzt/z0

)

∞
∑

n=1

na1n(t− z0)
n−1

]

.

Thence, the conditions (C.46) assure that P1(z, 0) = P1(z, z0) = 0.

Appendice D. Kernels for the double-confluent Heun equation (DHE)

As z0 → 0 the CHE (1) reduces to the double-confluent Heun equation (DHE)

[Lz +B3]U = z2
d2U

dz2
+ [B1 +B2z]

dU

dz
+
[

ω2z2 − 2ηωz +B3

]

U = 0, (D.1)

where z = 0 and z = ∞ are both irregular points. In this appendix D:

• initially we get the substitutions of variables which preserve the form of the equation for the kernels of the DHE;
• in D.1 we find kernels containing products of two confluent hypergeometric functions and presenting an arbitrary
constant of separation λ; they may be derived by applying the Leaver limit (z0 → 0) to kernels of the CHE given by
products of hypergeometric and confluent hypergeometric functions (section 2.3);

• in D.2, by taking appropriate values for λ, we get kernels given products of elementary and confluent hypergeometric
functions;

• in D.3 we obtain kernels given by elementary functions; these kernels cannot be derived as limits of known kernels of
the CHE.

Since limx→0(1 + x)1/x = e, when z0 → 0 the integral (13) assumes the form

U(z) =

∫ t2

t1

K(z, t)U(t)dt =

∫ t2

t1

tB2−2e−
B1
t G(z, t)U(t)dt, K(z, t) = w(z, t)G(z, t) = tB2−2e−

B1
t G(z, t), (D.2)

where G(z, t) is determined from the equation
[

z2 ∂2

∂z2 + (B1 +B2z)
∂
∂z +

(

ω2z2 − 2ηωz
)

]

G−
[

t2 ∂2

∂t2 + (B1 +B2t)
∂
∂t +

(

ω2t2 − 2ηωt
)

]

G = 0. (D.3)

Similarly, the expression (16) for the bilinear concomitant now reads

P (z, t) = t2
[

U(t)∂K(z,t)
∂t −K(z, t)dU(t)

dt

]

+ [(2−B2) t−B1]U(t)K(z, t) = tB2 e−
B1
t

[

U(t)∂G(z,t)
∂t −G(z, t)dU(t)

dt

]

, (D.4)

In general the solutions U(t) of the DHE and RDHE converge in a domain including only one of the singular points, 0 or
∞. For this reason we must avoid using intervals of integration extending from t1 = 0 to t2 = ∞. In reference [43] this
requirement was satisfied by using endpoints ti which depend on the variable z, that is,

U(z) =

∫ t2(z)

t1(z)

K(z, t)U(t)dt =

∫ t2(z)

t1(z)

tB2−2e−
B1
t G(z, t)U(t)dt. (D.5)

26



Then, the formula

d

dz

∫ t2(z)

t1(z)

F (z, t)dt =

∫ t2(z)

t1(z)

∂F (z, t)

∂z
dt+ F (z, t2)

dt2
dz

− F (z, t1)
dt1
dz

(D.6)

implies that Eq. (17) must be replaced by

[Lz +B3]U(z) = P (z, t2) +Q(z, t1)− [P (z, t1) +Q(z, t2)], (D.7)

where (i = 1, 2)

Q(z, ti) =
[

z2 d2ti
dz2 + (B1 +B2z)

dti
dz

]

U(ti)K(z, ti)

+ z2U(ti)
[

∂K(z,ti)
∂ti

(

dti
dz

)2
+ 2∂K(z,ti)

∂z
dti
dz

]

+ z2
(

dti
dz

)2 dU(ti)
dti

K(z, ti). (D.8)

From Eq. (D.7) we see that the condition P (z, t2) = P (z, t1) must be replaced by P (z, t2) +Q(z, t2) = P (z, t1) +Q(z, t1).
Since the differential operators in Eqs. (D.1) and (D.3) have the same functional form, from the transformations of the

DHE (D.1) we get the transformations for its kernels. In fact, if U(z) = U(B1, B2, B3;ω, η; z) denotes a solution of the
DHE, the substitutions which preserve the form of the equation are represented by the transformations t1, t2 and t3 [25, 44]

t1U(z) = e
B1
z z2−B2U(−B1, 4−B2, B3 + 2−B2;ω, η; z),

t2U(z) = eiωz+
B1
2z z−iη−B2

2 U
(

B
′

1, B
′

2, B
′

3;ω
′

, η
′

;ϑ = iB1

2z

)

,

t3U(z) = U(B1, B2, B3;−ω,−η; z),

(D.9)

where

B
′

1 = ωB1, B
′

2 = 2 + 2iη, B
′

3 = B3 −
(

B2

2 + iη
) (

B2

2 − iη − 1
)

, ω
′

= 1, iη
′

= B2

2 − 1,

From (D.9) we obtain the transformations for the kernels of the DHE, namely,

r1G(z, t) = e
B1
z

+
B1
t (zt)2−B2U(−B1, 4−B2, ;ω, η; z, t),

r2G(z, t) = eiω(z+t)+
B1
2z

+
B1
2t (zt)−iη−B2

2 U
(

B
′

1, B
′

2;ω
′

, η
′

; iB1

2z ,
iB1

2t

)

,

r3G(z, t) = U(B1, B2;−ω,−η; z, t).

(D.10)

D.1. Kernels with products of two confluent hypergeometric functions

We write the kernels before explaining how they are obtained. A group of solutions for (D.3) is given by the 16 kernels

G(i,j)(z, t) = e−iω(z+t)(zt)−λϕi(ξ) ϕ̄j(ζ), [i, j = 1, 2, 3, 4] (D.11)

where λ is a constant of separation, and ϕi(ξ) and ϕ̄j(ζ) are the confluent hypergeometric functions (A.2) with the following
arguments and parameters :

ϕi(ξ) : ξ = 2iω(z + t), a = B2

2 − iη − λ, c = B2 − 2λ;

ϕ̄j(ζ) : ζ = B1(z+t)
zt , a = λ, c = 2λ+ 2−B2.

(D.12)

The kernels given by regular confluent hypergeometric functions are

G(1,1)(z, t) = e−iω(z+t) [zt]
−λ

Φ
[

B2

2 − iη − λ,B2 − 2λ; 2iω(z + t)
]

Φ
[

λ, 2λ+ 2−B2;
B1(z+t)

zt

]

, (D.13)

G(1,2)(z, t) = e−iω(z+t)+
B1
z

+
B1
t [zt]

λ+1−B2 [z + t]B2−1−2λΦ
[

B2

2 − iη − λ,B2 − 2λ; 2iω(z + t)
]

× Φ
[

1− λ,B2 − 2λ;−B1(z+t)
zt

]

, (D.14)

G(2,1)(z, t) = eiω(z+t) [zt]
−λ

[z + t]1+2λ−B2Φ
[

1 + λ+ iη − B2

2 −, 2 + 2λ−B2;−2iω(z + t)
]

× Φ
[

λ, 2λ+ 2−B2;
B1(z+t)

zt

]

, (D.15)
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G(2,2)(z, t) = eiω(z+t)+
B1
z

+
B1
t [zt]

λ+1−B2 Φ
[

1 + iη + λ− B2

2 , 2 + 2λ−B2;−2iω(z + t)
]

× Φ
[

1− λ,B2 − 2λ;−B1(z+t)
zt

]

. (D.16)

The full group is obtained by replacing one or both functions Φ by Ψ. By using these explicit forms of the kernels, we can
show that the transformations r1, r2 and r3 simply rearrange the kernels. For example, we find

r1G
(i,j)(z, t) = e

−iω(z+t)+
B1
z0

+
B1
z0 [zt]2−B2−λ1 ϕ̃i(ξ) ˜̄ϕj(ζ), [i, j = 1, 2, 3, 4] (D.17)

where we have transformed λ into λ1, and now ϕ̃i(ξ) and ˜̄ϕj(ζ) are the confluent hypergeometric functions (A.2) with the
following arguments and parameters :

ϕ̃i(ξ) : ξ = 2iω(z + t), a = 2− iη − λ1 − B2

2 , c = 4−B2 − 2λ1;

˜̄ϕj(ζ) : ζ = −B1(z+t)
zt , a = λ1, c = 2λ1 − 2 +B2.

In particular,

r1G
(1,1)(z, t) = e−iω(z+t)+

B1
z

+
B1
t [zt]

2−B2−λ1 Φ
[

1− iη − λ1 − B2

2 , 4−B2 − 2λ1; 2iω(z + t)
]

× Φ
[

λ1, 2λ1 − 2 +B2;−B1(z+t)
zt

]

.

By taking λ1 = 1− λ and using (A.3), we see that the right-hand side of the above equation is G(2,2)(z, t) given in (D.16).
Thus, in fact r1 simply rearranges the kernels (D.11). The same is true of r2 and r3.
The kernels (D.11) can be found by solving Eq. (D.3), or by applying the limit when z0 → 0 to the kernels (32)

of the CHE. The latter procedure transforms the Gauss hypergeometric functions given in Eqs. (41-46) into confluent
hypergeometric functions due to the relations [37]

lim
c→∞

F
(

a, b; c; 1− c

u

)

= lim
c→∞

F
(

a, b; c;− c

u

)

= uaΨ(a, a + 1− b;u),

lim
b→∞

F
(

a, b; c;
u

b

)

= Φ(a, c;u), lim
y→∞

(

1 +
x

y

)y

= ex.

(D.18)

Thus, up to a multiplicative constant, we find

lim
z0→0

F 1 = lim
z0→0

F 3 = [zt]−λ[z + t]λΨ
(

λ, 2 + 2λ−B2;
B1(z+t)

zt

)

,

lim
z0→0

F 2 = lim
z0→0

F 4 = e
B1
z

+
B1
t [zt]λ−1−B2 [z + t]B2+1−λΨ

(

1− λ,B2 − 2λ;−B1(z+t)
zt

)

,

lim
z0→0

F 5 = [zt]−λ[z + t]λΦ
(

λ, 2 + 2λ−B2;
B1(z+t)

zt

)

,

lim
z0→0

F 6 = e
B1
z

+
B1
t [zt]λ+1−B2 [z + t]B2−1−λΦ

(

1− λ,B2 − 2λ;−B1(z+t)
zt

)

.

(D.19)

To get these limits, in some cases we have to rewrite the functions (41-46) in a convenient form. For example, using (A.8)
we find

F 2 = zt
z+t−z0

[

(z−z0)(t−z0)
z+t−z0

]1−B2 [

1− z0
zt (z + t− z0)

]−B1
z0 F

(

1− λ, 2 + λ−B2; 2 +
B1

z0
; zt
z0(z+t−z0)

)

by suppressing a multiplicative constant depending on z0. After this, we use the limits (D.18).

D.2. Kernels with one confluent hypergeometric function

For particular values of λ, the kernels (D.11) present only one of the confluent hypergeometric functions (A.2). As an
initial set we take

G
(i)
1 (z, t) = G(i,1)(z, t)

∣

∣

λ=0
= e−iω(z+t)ϕi(ξ), ξ = 2iω(z + t), a =

B2

2
− iη, c = B2. (D.20)

This set may also obtained by setting z0 = 0 in the kernels (58) for the CHE and in their partners in terms of Ψ(a, c; ξ).
The kernels in terms of the regular functions Φ(a, c; ξ) read

G
(1)
1 (z, t) = e−iω(z+t)Φ

[

B2

2 − iη, B2; 2iω(z + t)
]

,

G
(2)
1 (z, t) = eiω(z+t)[z + t]1−B2Φ

[

1 + iη − B2

2 , 2−B2;−2iω(z + t)
]

,
(D.21)
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while two other kernels result by replacing Φ(a, c; ξ) by Ψ(a, c; ξ). From the transformations (D.10) we obtain three
additional sets generate as

G
(i)
2 (z, t) = r1G

(i)
1 (z, t), G

(i)
3 (z, t) = r2G

(i)
1 (z, t), G

(i)
4 (z, t) = r2G

(i)
2 (z, t). (D.22)

The transformation r3 does not produce new kernels. Thus, the kernels with Φ(a, c; ξ) are

G
(1)
2 (z, t) = r1G

(1)
1 (z, t) = e−iω(z+t)+

B1
z

+
B1
t [zt]2−B2Φ

[

2− iη − B2

2 , 4−B2; 2iω(z + t)
]

,

G
(2)
2 (z, t) = r1G

(2)
1 (z, t) = eiω(z+t)+

B1
z

+
B1
t [zt]2−B2 [z + t]B2−3Φ

[

iη − 1 + B2

2 , B2 − 2;−2iω(z + t)
]

;

(D.23)

G
(1)
3 = r2G

(1)
1 = G(2,2)(z, t) = eiω(z+t)+

B1
z

+
B1
t [zt]

−iη−B2
2 Φ

[

2 + iη − B2

2 , 2 + 2iη;−B1(z+t)
zt

]

,

G
(2)
3 = r2G

(2)
1 = G(2,1)(z, t) = eiω(z+t) [zt]

1+iη−B2
2 [z + t]−1−2iηΦ

[

B2

2 − iη − 1,−2iη; B1(z+t)
zt

]

;

(D.24)

G
(1)
4 = r2G

(1)
2 = e−iω(z+t)+

B1
z

+
B1
t [zt]iη−

B2
2 Φ

[

2− iη − B2

2 , 2− 2iη;−B1(z+t)
zt

]

,

G
(2)
4 = r2G

(2)
2 = e−iω(z+t) [zt]

1−iη−B2
2 [z + t]2iη−1Φ

[

iη − 1 + B2

2 , 2iη;
B1(z+t)

zt

]

.

(D.25)

D.3. Kernels given by elementary functions

The kernel

G1(z, t) = e−iω(z+t)
[

1 + 2iωzt
B1

]iη−B2
2 (D.26)

has the same form as a kernel found by Schmidt and Wolf [45] who have considered a DCHE with only four parameters.
To obtain (D.26), we insert

G(z, t) = e−iω(z+t)f(z, t),

into Eq. (D.3). This leads to

z2 ∂2f
∂z2 +

[

B1 +B2z − 2iωz2
]

∂f
∂z − t2 ∂2f

∂t2 −
[

B1 +B2t− 2iωt2
]

∂f
∂t − 2iω

(

B2

2 − iη
)

(z − t)f = 0.

By supposing that f(z, t) depends on z and t through the product 2iωzt/B1 = y, the previous equation gives

[1 + y] df
dy −

[

iη − B2

2

]

f = 0 ⇒ f(z, t) =
[

1 + 2iωzt
B1

]iη−B2
2

.

Hence we obtain the kernel (D.26). The transformations (D.10) generate three additional kernels given by

G2(z, t) = r1G1(z, t), G
(i)
3 (z, t) = r3G1(z, t), G

(i)
4 (z, t) = r3G2(z, t). (D.27)

Thus, we have

G2(z, t) = e−iω(z+t)+
B1
z

+
B1
t [zt]2−B2

[

1− 2iωzt
B1

]iη−2+
B2
2

, (D.28)

while G3(z, t) and G4(z, t) are obtained by substituting (η, ω) for (−η,−ω) in G1(z, t) and G2(z, t).

Appendice E. Kernels for the reduced double-confluent Heun equation (RDHE)

For the reduced double-confluent Heun equation (RDHE),

[Lz +B3]U = z2
d2U

dz2
+ [B1 +B2z]

dU

dz
+ [qz +B3]U = 0, (E.1)

in this appendix E:
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• initially we get a substitution of variables which preserve the form of the equation for the kernels;
• in E.1 we find kernels given by products of Bessel and confluent hypergeometric functions; they present an arbitrary
constant of separation λ and may be derived as limits of kernels of the DHE (z0 → 0) or of the RCHE (Whitaker-Ince
limit);

• in E.2, by putting λ = 0, we obtain kernels given by products of elementary and Bessel functions;
• in E.3, by choosing appropriate values for λ, we obtain kernels given by products of elementary and confluent
hypergeometric functions;

• in E.4 we find two kernels given by products of elementary functions; these can be derived by applying the Whittaker-
Ince limit to kernels of the DHE.

For the RDHE, the integral (D.2) remains formally unaltered, that is,

U(z) =

∫ t2

t1

tB2−2e−B1/tG(z, t)U(t)dt, (E.2)

while the equation (D.3) for the kernels becomes

[

z2 ∂2

∂z2 + (B1 +B2z)
∂
∂z + qz

]

G−
[

t2 ∂2

∂t2 + (B1 +B2t)
∂
∂t + qt

]

G = 0. (E.3)

For fixed endpoints of integrations the bilinear concomitant (D.4) is again

P (z, t) = tB2 e−B1/t

[

U(t)
∂G(z, t)

∂t
−G(z, t)

dU(t)

dt

]

. (E.4)

If the endpoints depend on z, we proceed as in appendix D.
On the other side, if U(z) = U(B1, B2, B3; q; z) denotes a known solutions of RDHE, other solution is generated by the

transformation T defined by

TU(z) = e
B1
z z2−B2 U(−B1, 4−B2, B3 + 2−B2; q; z), (E.5)

as we can show by substitutions of variables. Similarly, if G(z, t) = G(B1, B2; q; z, t) denotes a solution of Eq. (E.3), the
corresponding transformation R for this kernel is

RG(z, t) = e
B1
z

+
B1
t (zt)2−B2 G(−B1, 4−B2; q; z, t), (E.6)

E.1. Kernels with products of Bessel and confluent hypergeometric functions

We obtain the kernels given by products of Bessel and confluent hypergeometric functions by taking the limits when
z0 → 0 of the kernels (C.16) for the RCHE. Thus, up to a multiplicative constant

G
(i,j)
± (z, t) = [z + t]

1
2
−B2

2 Z
(i)
±(2λ+1−B2)

[

2
√

q(z + t)
]

lim
z0→0

F j(ζ) (E.7)

where the lim
z0→0

F j are given in Eqs. (D.19). Explicitly, from F 1, F 2, F 5 and F 6 we get, respectively,

G
(i,1)
± (z, t) = [zt]−λ [z + t]λ+

1
2
−B2

2 Z
(i)
±(2λ+1−B2)

[

2
√

q(z + t)
]

Ψ
[

λ, 2 + 2λ−B2;
B1(z+t)

zt

]

,

G
(i,2)
± (z, t) = e

B1
z

+
B1
t [zt]λ+1−B2 [z + t]−λ− 1

2
+

B2
2 Z

(i)
±(2λ+1−B2)

[

2
√

q(z + t)
]

Ψ
[

1− λ,B2 − 2λ;−B1(z+t)
zt

]

,

G
(i,3)
± (z, t) = [zt]−λ [z + t]λ+

1
2
−B2

2 Z
(i)
±(2λ+1−B2)

[

2
√

q(z + t)
]

Φ
[

λ, 2 + 2λ−B2;
B1(z+t)

zt

]

,

G
(i,4)
± (z, t) = e

B1
z

+
B1
t [zt]λ+1−B2 [z + t]−λ− 1

2
+

B2
2 Z

(i)
±(2λ+1−B2)

[

2
√

q(z + t)
]

Φ
[

1− λ,B2 − 2λ;−B1(z+t)
zt

]

.

(E.8)

The transformation R given in Eq. (E.6) simply rearranges the previous kernel provided that we transform the arbitrary
constant λ into another arbitrary constant λ̄. For example, we find

RG
(i,1)
± (z, t) = e

B1
z

+
B1
t [zt]2−B2−λ̄ [z + t]λ̄−

3
2
+

B2
2 Z

(i)

±(2λ̄−3−B2)

[

2
√

q(z + t)
]

Ψ
[

λ̄, 2λ̄− 2 +B2;−B1(z+t)
zt

]

.

Putting λ̄ = λ+ 2−B2 and using the second relation in (A.3), we find that the right-hand side of the above equation is a

constant multiple of G
(i,2)
± (z, t).
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E.2. Kernels given by products of elementary and Bessel functions

If λ = 0 in G
(i,1)
± or G

(i,3)
± , we have the kernels

G
(i)
± (z, t) = [z + t]

1
2
−B2

2 Z
(i)
±(1−B2)

[

2
√

q(z + t)
]

. (E.9)

If λ = 1 in G
(i,2)
± or G

(i,4)
± , we have the kernels

G̃
(i)
± (z, t) = e

B1
z

+
B1
t [zt]2−B2 [z + t]−

3
2
+

B2
2 Z

(i)
±(3−B2)

[

2
√

q(z + t)
]

. (E.10)

G
(i)
± and G̃

(i)
± are connected by the transformation R given in (E.6).

E.3. Kernels given by products of elementary and confluent hypergeometric functions

If λ = (B2/2) − (1/4), the order of the Bessel functions is ±1/2 in the kernels (E.8) and, according to (C.15), these
functions reduce to elementary functions. Then we have the following kernels given by products of elementary and confluent
hypergeometric functions:

G
(i,1)
± (z, t) = [zt]

1
4
−B2

2 [z + t]
1
4 Z

(i)

± 1
2

[

2
√

q(z + t)
]

Ψ
[

B2

2 − 1
4 ,

3
2 ;

B1(z+t)
zt

]

,

G
(i,2)
± (z, t) = e

B1
z

+
B1
t [zt]

3
4
−B2

2 [z + t]−
1
4 Z

(i)

± 1
2

[

2
√

q(z + t)
]

Ψ
[

5
4 − B2

2 ,
1
2 ;−

B1(z+t)
zt

]

,

G
(i,3)
± (z, t) = [zt]

1
4
−B2

2 [z + t]
1
4 Z

(i)

± 1
2

[

2
√

q(z + t)
]

Φ
[

B2

2 − 1
4 ,

3
2 ;

B1(z+t)
zt

]

,

G
(i,4)
± (z, t) = e

B1
z

+
B1
t [zt]

3
4
−B2

2 [z + t]−
1
4 Z

(i)

± 1
2

[

2
√

q(z + t)
]

Φ
[

5
4 − B2

2 ,
1
2 ;−

B1(z+t)
zt

]

.

(E.11)

The transformation (E.6) simply rearranges the above kernels.

E.4. Kernels given by elementary functions

We find two kernels given by elementary functions. Up to multiplicative constants, we have

G1(z, t) = exp
[

qzt
B1

]

, G2(z, t) = rG1(z, t) = [zt]2−B2 exp
[

− qzt
B1

+ B1

z + B1

t

]

. (E.12)

These kernels can be obtained by applying the Whittaker-Ince limit (3) to the kernels (D.26) and (D.28) of the RCHE.
Alternatively, we can compute G1(z, t) by supposing that G(z, t) depends on z and t through the product qzt/B1 = y, in
which case Eq.(E.3) becomes dG/dy = G, whose solution is the kernel G1.
At last we mention that there is an equation called doubly reduced double-confluent Heun equation [7]. However, as we

have found no relation of such equation with the equations discussed here, we do not consider its kernels.
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