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Abstract

A mathematical model describing motion of an inhomogeneous incompressible

fluid in a Hele-Shaw cell is considered. Linear stability analysis of shear flow class

is provided. The role of inertia, linear friction and impermeable boundaries in

Kelvin–Helmholtz instability development is studied. Hierarchy of simplified one-

dimensional models of viscosity- and density-stratified flows is obtained in long-wave

approximation. Interpretation of Saffman–Taylor instability development is given

in the framework of these models.
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1 Introduction

A general property of fluid shear flows is the Kelvin–Helmholtz instability. This type

of the interface instability of ideal fluid layers moving with different velocities is studied

clearly enough. Classical examples of linear analysis of such flows are described in [1, 2]

and in others monographs. Recent review [3] is devoted to stability analysis of viscosity-

stratified shear flows. A substantial theoretical object having practical applications is

the Hele-Shaw shear flows [4]. Displacing more viscous fluid by less viscous one leads

to formation of viscous fingers. It is caused by Suffman–Taylor instability [5]. Classical

models of fluid motions in a porous medium are based on linear Darcy law [6, 7]. However

shear instability can develop on the longitudinal interface in the case of fast flow at formed

viscous fingers also [8]. It is necessary to use the nonlinear Darcy law for analysis of this

phenomenon. It takes into account inertia terms in the momentum equations. Such

models are considered in [9, 10]. There are exact and experimental studies of viscous

fingers formation with inertia effect for immiscible fluids in the papers cited. The same

problem for miscible fluids is described in [11]. It is shown that inertia slows down the

growth of viscous fingers. Effect of Hele-Shaw cell constriction and walls elasticity on

Saffman–Taylor instability is analyzed in [12, 13].
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In the manuscript the nonlinear system of equations describing inhomogeneous fluid

flow in a Hele-Shaw cell is under study. The model admits a class of shear flows. The

class is characterized by arbitrary dependence of the horizontal velocity component and

density on the vertical spatial coordinate. One of the main purpose of the study is stability

analysis of this class of flow. The equation for amplitudes of small perturbations is

obtained. The conditions on the interface are formulated for fluids with different physical

properties. Stability analysis of two-layer Hele-Shaw flow is carried out in details. It is

shown that the interface of layers moving with different velocities is instable for short-wave

perturbations and stable for long-wave ones.

The pressure changes weakly in the vertical direction for prevailing horizontal fluid

motion [14]. It allows to consider long-wave approximation and class of layered flows.

A hierarchy of one-dimension models is constructed basing on two simplifications of the

momentum equations. They are linearization and using of Darcy law. Two-layer flow

of viscosity- and density-stratified fluid is studied. Additionally the evolutionary form

of the governing equations is obtained both in multi-layer and two-layer cases. The

hyperbolicity property is proved for the models above. It enables to apply Godunov

method modifications for numerical calculations. In particular Nessyahu–Tadmor central

scheme is used in the paper. Instability of the interface is proved at displacing more

viscous fluid by less viscous one if density stratification is neglected.

The paper is organized as follows. In Section 2 we introduce the mathematical model

of the process described above. In Section 3 stability analysis of shear flows is carried

out. The cases of homogeneous and stratified flows are studied. In Section 4 we consider

layered flows in long-wave approximation. We describe two simplified models of such flows

which are treated both analytically and numerically.

2 Mathematical model

Equations of motion of a viscous incompressible fluid in a Hele-Shaw cell (region between

two parallel plates separated by a small gap) have the form

ρ(vt + (v · ∇)v) +∇p = µvzz + ρg, ∇ · v = 0. (1)

Here x = (x, y, z) are the coordinate vector, t is the time, v = (u, v, w) is the velocity

vector, p is the pressure, ρ is the density, µ is the viscosity and g = (0,−g, 0) is the

acceleration of gravity vector. The operator∇ is calculated with respect to the coordinate

vector. The characteristic sizes of cell (L,H) in the x and y direction respectively are

significantly higher than the cell gap b. That is why the summands vxx and vyy vanish in

the momentum equations. They are negligible compared to vzz. We assume the density

and viscosity are monotonic dependencies of concentrations κ: µ = µ(κ) and ρ = ρ(κ).

The variable κ varies from zero to one and satisfies the equation

κt + v · ∇κ = 0. (2)
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It should be noted that κ can change continuously or take piecewise constant values.

The first case corresponds to an inhomogeneous fluid, the second one characterizes a

multicomponent fluid.

We consider the velocity field in the form

u =
3

2

(

1−
(2z

b

)2)

u′(t, x, y), v =
3

2

(

1−
(2z

b

)2)

v′(t, x, y), w = 0.

It provides the fulfillment of no-slip conditions on the cell walls z = ±b/2. We also

suppose that the functions p and κ do not depend on z. Integrating equations (1) and

(2) from −b/2 to b/2 leads to the system

ρ(ut + β(uux + vuy)) + px = −µu,

ρ(vt + β(uvx + vvy)) + py = −µv − ρg,

ux + vy = 0, κt + uκx + vκy = 0.

(3)

The primes are omitted. Here and below µ denotes the modified fluid viscosity 12µ/b2.

The coefficient β is equal to 6/5. The simplifications above are connected with inequali-

ties b << L, b << H and often used for modeling of Hele-Shaw flows. For the constant

density and using of linear Darcy law equations (3) reduce to the classical problem with-

out diffusion consideration [7]. In the framework of the model described the interface

instability is provided if displaced fluid is more viscous than the displacing one.

The following Sections are devoted to stability analysis of steady shear solutions of

equations (3). Also a class of layered flows is considered in long-wave approximation.

3 Stability analysis of shear flows

Equations (3) admit the class of solutions

u = U(y), v = 0, p = P (y)− αx, κ = C(y), (4)

where α > 0 is constant, U , P and C are arbitrary smooth functions. The following

relations are valid

µ = µ(C) =
α

U(y)
, ρ = ρ(C) = R(y), P ′(y) = −gR(y).

The vector of velocity components, pressure and concentration of perturbed flow deviate

from the basis flow weakly. That is why these values take the form

u = U(y) + ũ, v = ṽ, p = P (y)− αx+ p̃, κ = C(y) + κ̃. (5)

Here ũ, ṽ, p̃ and κ̃ are the functions of all independent variables. Dependencies µ = µ(κ)

and ρ = ρ(κ) have the form

µ =
α

U(y)

(

1− U ′(y)κ̃

U(y)C ′(y)

)

, ρ = R(y) +
R′(y)κ̃

C ′(y)
.
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Substitution of solution (5) into equations (3) and linearization of the system obtained

give the equations for small perturbations finding

ut + β(Uux + U ′v) +
1

R
px =

α

UR

(U ′
κ

C ′
− u
)

,

vt + βUvx +
1

R
py = − 1

R

(αv

U
+
gR′

κ

C ′

)

,

ux + vy = 0, κt + Uκx + vC ′ = 0.

(6)

The tildes are omitted. The prime denotes the derivative with respect to y.

We use the stream function ψ(t, x, y) for the perturbations of the basic flow. It satisfies

the equalities u = ψy and v = −ψx. We differentiate the first equation in (6) with respect

to y and the second one with respect to x. Then we eliminate the pressure p and obtain

the system for perturbations of the stream function and the concentration only

(∂t + βU∂x)
(

∆ψ +
R′

R
ψy

)

−
(

U ′′ +
R′U ′

R

)

βψx =
gR′

RC ′
κx−

− αU ′

RU2

(U ′
κ

C ′
− ψy

)

+
α

UR

(

(

U ′′ − U ′C ′′

C ′

)

κ

C ′
+
U ′

C ′
κy −∆ψ

)

,

(∂t + U∂x)κ − C ′ψx = 0.

(7)

A solution of these equations is sought in the form

(ψ,κ) = (Ψ(y),M(y)) exp (ik(x− ct)), (8)

where c is the phase velocity, k > 0 is the wave number, 2π/k is the wave length and i is the

imaginary unit. Substitution of formulas (8) into (7) leads to equations for perturbation

amplitudes Ψ(y) andM(y). Due to the second equation in (7) we haveM = (U−c)−1C ′Ψ.

The first equation in (7) reduces to the second order ODE for the function Ψ(y)

(

βU − c− iα

kUR

)

(

Ψ′′ − k2Ψ
)

−
(

(U − c)β − iα

kUR

) U ′′Ψ

U − c
=

= − iαU ′

kRU2

2U − c

U − c

(

Ψ′ − U ′Ψ

U − c

)

+

(

( g

U − c
+βU ′

)

Ψ−(βU − c)Ψ′

)

R′

R
.

(9)

If the flow region is restricted by the horizontal walls y = ±h then the boundary conditions

for equation (9) have the form Ψ(−h) = Ψ(h) = 0 and correspond to impermeability

conditions on the rigid walls. In the absence of walls the limit relations Ψ → 0 fulfill at

y → ±∞.

3.1 Conditions on the interface

We consider shear flow (4) with discontinuity at y = 0. We do not take into account the

surface tension. The limit values U± and R± of functions U(y) and R(y) are different at
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y → ±0. The superscript “+” corresponds to the upper fluid. The linearized kinematic

condition takes the form

(∂t + U±∂x)ζ = v± = −ψ±

x ,

where ζ(t, x) is the small perturbation of the interface. Eliminating the function ζ(t, x)

from the latter equation gives the formula (∂t + U+∂x)ψ
−

x = (∂t + U−∂x)ψ
+
x . For wave

solutions (8) this formula is rewritten as

(U+ − c)Ψ− = (U− − c)Ψ+. (10)

On the interface the linearized dynamic condition has the form

[p− gRζ ]+
−
= 0,

where [f ]+− = f+−f− is the difference between limit values at the discontinuous. In order

to obtain the dynamic condition for the stream function we apply the differential operator

(∂t + U+∂x)∂x to the latter equation. Taking into account equations (6) the kinematic

condition on the interface and form of solution (8) we have the formula

[

(

(βU − c)R− iα

kU

)

Ψ′ −
(

(U − c)βR− iα

kU

) U ′Ψ

U − c

]+

−

=
gΨ+

U+ − c

[

R
]+

−
. (11)

The solution of equation (9) and conditions (10), (11) allow to obtain the dispersion

relation c = c(k). Analysis of this relation gives the conclusion about the flow stability.

It should be noted that at α = 0, β = 1 formulas (9), (10) and (11) reduce to the classical

relations of linear stability theory of plane-parallel shear flows of ideal fluid [1, 2].

3.2 Stability analysis of two-layer flow

We consider two-layer motion of fluid with the interface y = 0 between impermeable walls

y = ±h. The flow scheme is presented in Fig. 1. The fluid layers move with constant

positive velocities U1, U2, have constant viscosities µj and densities ρj (j = 1, 2). The

compatibility condition Ujµj = α follows from formulas (4) and is assumed to be valid. In

the case of piecewise constant distribution of velocity and density equation (9) takes the

form Ψ′′ − k2Ψ = 0. We solve this equation with conditions Ψ(±h) = 0 and use formulas

(10), (11). As the result we have the dispersion relation

(

(βU1 − c)kρ1 − iαU−1

1

)

(U1 − c) +
(

(βU2 − c)kρ2−
−iαU−1

2

)

(U2 − c)− g(ρ2 − ρ1)ϕ(h, k) = 0,
(12)

where ϕ(h, k) = tanh(2hk). When the impermeable walls are absent, i.e. Ψ(y) → 0

at y → ±∞, the dispersion relation has also form (12) but ϕ(h, k) = 1. Formula (12)

connects the complex phase velocity c = cr+ ici and wave number k at given values of Uj,

ρj , α and β. If there are such values of parameter k for which equation (12) has complex

roots with positive imaginary part ci then the considered flow is instable.
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Figure 1: Two-layers flow scheme.
Figure 2: Dispersion curves (U1/U2 =6/5, α=

1/2): 1 — β = 1; 2 — β = 6/5.

3.3 Two-layer flow of a homogeneous fluid

We consider two-layer fluid with identical densities ρ1 = ρ2 = 1. Then the gravity force

and walls do not influence on the stability of the flow studied. Following [4] the coefficient

β = 6/5 is often considered to be equal to one. When α = 0 (α = µ1U1 = µ2U2)

and β = 1 we have ci = Im c = ±(U1 − U2)/2 from dispersion relation (12). These

dependencies are presented by dashed lines in Fig. 2 and correspond to instability of

the contact discontinuity in homogeneous ideal fluid. When α > 0 the roots of quadratic

equation (12) depend on the wave number k. Special dependencies ci = ci(k) are presented

in Fig. 2 (lines 1). The plots are obtained at parameters U1 = 6/5, U2 = 1, α = 1/2 and

µj = α/Uj. The values are pointed out for the CGS system. Also they can be assumed

to be dimensionless. It is justified because we are interested in qualitative behavior of

solutions. The upper branch of the graph ci = ci(k) increases monotonically from zero to

(U1 − U2)/2. The long waves (k → 0) are stable neutrally while perturbations of short

waves grow with the same velocity as at α = 0.

When β = 6/5 the dispersion curves ci = ci(k) have the same qualitative behavior as

at β = 1 (lines 1 in Fig. 2) if the following inequality fulfills

f ≡ (1 + β)2(U1 + U2)
2 − 8β(U2

1 + U2

2 ) < 0.

At β = 1 this inequality holds because −(U1 − U2)
2 < 0. One can readily see that at

β > 1 and considerably small difference |U1 − U2| the inverse inequality f > 0 is valid.

The roots of equation (12) take the form

c1,2 =
1

4

(

(1 + β)(U1 + U2)±
√

f

)

in the case of α = 0. It corresponds to instability of two-layer ideal flow with correction

factor β > 1 in the momentum equations. At α > 0, β = 6/5 and f > 0 the inherent
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velocity behavior is presented in Fig. 2 (lines 2). In this case the greatest growth of

disturbances occurs in the middle range of wavelengths.

It is interesting that at β = 0 the flow is stable. Applying Vieta theorem to the

quadratic equation

c2 − U1 + U2

2

(

1− iα

kU1U2

)

c− iα

k
= 0

proves that there are no complex roots with positive imaginary part. Actually let c1 =

c1r + ic1i and c2 = c2r + ic2i be the roots of the latter equation. Then from Vieta theorem

we conclude the fulfillment of the following inequalities

c1i/c2r = c1r/c2i < 0, c1r/c1i = c2i/c2r < 0.

Due to the inequalities c1r + c2r = (U1 + U2)/2 > 0, c1r > 0 and/or c2r > 0 we infer that

c1i < 0 and c2i < 0.

3.4 Two-layer flow of a stratified fluid

We consider the shear flow (Fig. 1) with density stratification ρ2 = 1, λ = ρ1/ρ2 < 1. The

function ϕ(h, k) varies in the interval (0, 1) and makes adjustments to the last summand of

the left part in (12). It does not influence on the qualitative results. At α = 0 dispersion

relation (12) has the following roots

c =
1

1 + λ

(1 + β

2
(λU1 + U2)±

±
√

(1 + β)2

4
(λU1 + U2)2 − (λ+ 1)(λU2

1 + U2
2 )β +

gϕ

k
(1− λ2)

)

.

As in the previous example there is difference between the cases β = 1 and β = 6/5. At

β = 1 and α = 0 the flow is instable always because at k → ∞ the following relation is

valid

Im c→ ∓(U1 − U2)(1 + λ)−1
√
λ.

It is pointed out in Fig. 3,a by dashed lines. At β = 6/5 there are parameters for stable

flow.

Fig. 3,a presents the dispersion curves obtained from solution of equation (12) for

the parameters β = 1.2, U1 = 1.5, U2 = 1, g = 980, h = 10 and λ = 0.99. Lines 1

correspond to α = 0 and lines 2 are pictured for α = 9. The stability area is essentially

wider compared to the homogeneous flow because of the positive values ci only for k > k∗,

where k∗ is the critical value. In the example under study k∗ ≈ 83 at α = 0 and k∗ ≈ 55

for α 6= 0. The values k∗ increase monotonically with the growth of the shift value

|U1 − U2|. When the parameter α decreases curves 2 draw close to lines 1. We note that

at β = 1 the qualitative behavior of dispersion curves is the same. The values of critical

wave numbers coincide for α = 0 and α 6= 0. For the example considered these values are

k∗ ≈ 79 and 76. We take U1 = 6/5 and the other parameters do not change. This case

7
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Figure 3: Dispersion curves: a — α = 0 (curves 1) and α = 9 (curves 2) at U1/U2 = 3/2; b —

α = 9 at U1/U2 = 6/5.

corresponds to stability of flow for α = 0 due to the positive radicand in formula for c(k)

for all k > 0. The flow with α 6= 0 loses stability for the sufficiently large values k. In the

case considered k∗ ≈ 353.

After analysis described above we conclude that long-wave perturbations (k → 0)

are stable in a viscous fluid (α > 0). It gives grounds for the study of layered flows in

long-wave approximation in details.

4 Layered flows

We consider the motion of an incompressible fluid in a Hele-Shaw cell. Its horizontal size

L is much more than its depth H , i.e. H/L = ε << 1. Further we assume

t→ ε−1t, x→ ε−1x, v → εv, µ → εµ

and omit all terms of order ε2 in equations (3). It corresponds to the long-wave approxi-

mation [15, 16]. As the result we have the model

ρ(ut + β(uux + vuy)) + px = −µu, py = −gρ,
ux + vy = 0, κt + uκx + vκy = 0;

ρ = ρ(κ), µ = µ(κ); v
∣

∣

y=0
= v
∣

∣

y=H
= 0.

(13)

Here y = 0 and y = H are the lower and upper boundaries in the y-direction. Note that

stability of Hele-Shaw shear flows for weakly compressible barotropic fluid for β = 1 is

studied in [17] in the framework of hyperbolicity of integro-differential motion equations

[15, 16]. However for the long-wave models of incompressible inhomogeneous fluid the

transition to the semi-Lagrangian variables does not lead to simplifications of motion

equations and does not apply here.

We deal with the class of layered flows

u = ui(t, x), κ = κi = const,
(

y ∈ (yi−1, yi), i = 1, . . . , N
)

,

8



wherein 0 = y0 < y1(t, x) < . . . < yN(t, x) = H . For this class equations (13) take the

form

ρi

(

uit + βuiuix + g
i
∑

j=1

hjx

)

+ g
N
∑

j=i+1

hjx = −p0x − µiui,

hit + (uihi)x = 0,
N
∑

i=1

hi = H,
N
∑

i=1

uihi = Q,

(14)

where hi = yi−yi−1 is the depth of layer i with the density ρi and the velocity ui; Q is the

constant flow rate through the vertical section of the cell; p0 is the pressure on the upper

lid. For the derivation of the equations we use the kinematic condition on the interface.

The similar models for unstratified fluid (ρi = ρ = const) are studied in [14].

System (14) is reduced to evolutionary form using new dependent variables si =

ρiui − ρNuN . Then the motion equations are rewritten as follows

sit +
β

2

(

ρiu
2

i + ρNu
2

N + 2gρi

i
∑

j=1

hj − 2gρN

N
∑

j=1

hj + 2g

N−1
∑

j=i+1

hj

)

x

=

= −µiui + µNuN ,

hit + (uihi)x = 0,

N
∑

i=1

hi = H,

N
∑

i=1

uihi = Q, i = 1, . . . , N − 1.

Depth and velocity of the last layer have the form

hN = H −
N−1
∑

j=1

hj , uN =
(

H +
N−1
∑

j=1

(ρN
ρj

− 1
)

hj

)−1(

Q−
N−1
∑

j=1

sjhj
ρj

)

.

In some cases it is suitable to use a moving coordinate system. It has the average flow

velocity U = Q/H . The corresponding change of variables is x′ = x − Ut, u′ = u − U ,

U = const. Then the first equation in (14) takes the form

uit +
(

βui + (β − 1)U
)

uix +
g

ρi

i
∑

j=1

hjx +
1

ρi
p0x = −µi

ρi

(

ui + U
)

.

The primes are omitted. The other equations in (14) do not vary. Further we consider

modifications of system (14) and make numerical calculations of the interface position

between two fluids with different physical properties. In particular it is discussed that in-

terpretation of Saffman–Taylor instability can be given with the help of the one-dimension

models.

4.1 Two-layer flow of stratified fluid

Equations (14) for two-layer flow in the moving coordinate system have the form

ρ1u1t + ρ1(βu1 + γU)u1x + gρ1h1x + gρ2h2x + p0x = −µ1(u1 + U),

ρ2u2t + ρ2(βu2 + γU)u2x + p0x = −µ2(u2 + U),

h1t + (u1h1)x = 0, h2t + (u2h2)x = 0,

(15)

9



where γ = β − 1. The depth and velocity of the second layer are given by formulas

h2 = H − h1, u2 = −(H − h1)
−1u1h1.

We linearize the momentum equations in (15) and obtain the modified system

ρ1u1t + ρ1γUu1x + g(ρ1 − ρ2)h1x + p0x = −µ1(u1 + U),

ρ2u2t + ρ2γUu2x + p0x = −µ2(u2 + U).

Using the change of variables mentioned above s = ρ1u1 − ρ2u2 we obtain the motion

equations in the evolutionary form

st +
(

γUs+ g(ρ1 − ρ2)h
)

x
= (µ2 − µ1)U − µ2h+ µ1(H − h)

(H − h)ρ1 + hρ2
s ,

ht + (uh)x = 0,

(16)

where

h = h1, u = u1 =
(H − h)s

(H − h)ρ1 + hρ2
.

It is not difficult to rewrite equations (16) in the form Ut +AUx = F, where U = (s, h)T

is the vector of unknown variables. The right part F and matrix A have the following

form

F =
(

− (µ2h + µ1(H − h))s

(H − h)ρ1 + hρ2
+ (µ2 − µ1)U, 0

)T

,

A =

(

γU g(ρ1 − ρ2)

ψs ψh

)

, ψ =
(H − h)hs

(H − h)ρ1 + hρ2
.

Direct calculations show that the matrix A has the eigenvalues

λ1,2 =
1

2

(

γU +
∂ψ

∂h
±
√

(

γU − ∂ψ

∂h

)2

+ 4g
(

ρ1 − ρ2
)∂ψ

∂s

)

.

Correspondingly the characteristics of system (16) can be obtained from the solution of

equation dx/dt = λ1,2. Due to 0 ≤ h ≤ H and ψ′

s = ψ/s > 0 system (16) is hyperbolic in

the case of ρ1 ≥ ρ2. Standard methods developed for integrating the hyperbolic conserva-

tion laws can be used for the numerical solution of equations (16). We apply the simple

and robust Nessyahu–Tadmor scheme for calculations of the interface position between

two fluids with different physical properties.

If we assume that the summands containing the velocity derivatives are equal to zero

in equations (15) then we have Darcy-like model

g(ρ1 − ρ2)h1x + p0x = −µ1(u1 + U), p0x = −µ2(u2 + U),

h1t + (u1h1)x = 0, u2 = −(H − h1)
−1u1h1.

We can eliminate the pressure from these equations and specify the velocity u1 as the

function of layer height h = h1 and its derivative hx. Now the system reduces to Burgers-

like equation

ht +
(

Φ(h, hx)
)

x
= 0, (17)
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where

Φ(h, hx) = uh =
(H − h)h

(H − h)µ1 + hµ2

(

(µ2 − µ1)U − g(ρ1 − ρ2)hx

)

.

If a fluid moves without gravity action (g = 0) or without stratification (ρ1 = ρ2) the

equation obtained is replaced by the kinematic-wave model where Φ does not depend on

hx.
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Figure 4: The interface: µ1 = 1, ρ1 = 1,

µ2 = 2, ρ2 = 0.98. Curve 1 — g = 0, 2 —

g = 980

Figure 5: The interface: µ1 = 2, ρ1 = 1,

µ2 = 1, ρ2 = 0.98, g = 980

We use parameters U = 1, H = 1 and β = 6/5 for calculations with respect to models

(16) and (17). We assume that initial interface position is as follows

h
∣

∣

t=0
=

{

1, x < x0

0, x > x0.

It is shown in Figs. 4 and 5 by the dashed line. We suppose additionally s(0, x) = 0 for

equation (16). Results for model (17) are presented in Fig. 4 at t = 3. It corresponds

to displacing more viscous fluid (µ2 = 2) by less viscous one (µ1 = 1). The flow without

gravitation (g = 0) is shown by curve 1. In this case we have the Saffman–Taylor instabil-

ity, i.e. the interface position changes due to less viscosity of displacing fluid. Note that

in the case of displacing more viscous fluid µ1 > µ2 the interface holds the initial position

for all time at g = 0. Curve 2 corresponds to g = 980 and shows that positive stratifica-

tion fades up the viscous finger velocity. Fig. 5 displays Rayleigh–Taylor instability (more

viscous and denser fluid displaces less viscous and less dense one due to gravitation) in the

framework of model (17). Although displacing fluid is more viscous the interface deviates

from the initial position because the gravity prevails for the parameters given.

Fig. 6 presents comparison of calculations of the interface position with respect to

models (16) (curves 2) and (17) (curves 1). Fig. 6, a corresponds to t = 9 and demonstrates

change of the interface position without gravity action. It is not difficult to see that

qualitative behavior of curves calculated with respect to different models coincides. If we
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Figure 6: The interface at µ1 = 1, ρ1 = 1, µ2 = 2, ρ2 = 0.98; curve 1 corresponds to (17), curve

2 corresponds to (16); a — g = 0, b — g = 980

change displacing and displaced fluids then instability does not develop and the interface

does not move.

There is the interface position for the gravity action in Fig. 6, b at t = 3. The calcula-

tion results coincide in the main flow region and differ in the vicinity of walls only. Note

that flow structure for hyperbolic model (16) has strong discontinuities adjacent to non-

constant solution region. It is caused by the characteristics of equations (16) are linearly

degenerate at the initial data considered [19]. Truly the eigenvectors corresponding to the

eigenvalues λj (j = 1, 2) of matrix A have the form rj = (λj − ψh, ψs)
T. We construct

the vectors qj = ∇λj . The gradient is calculated with respect to dependent variables s

and h. Direct calculations show that scalar products qj · rj are equal to zero at s = 0 and

h = 1 (h = 0). It explains the qualitative behavior of system (16) solution in Fig. 6, b.

5 Conclusion

The class of shear flow stability is studied for model (3). It describes Hele-Shaw flows of

an inhomogeneous incompressible fluid taking into account dependence of viscosity and

density on concentration. The latter holds along the trajectories. As a result of linearized

equation solution the eigenvalues problem is formulated. In particular case this problem

reduces to well-known Rayleigh equation. Analysis of two-layer flows of binary mixture

with piecewise constant velocity, viscosity and density is provided (Fig. 1). Boundary

conditions at the interface (10) and (11) are obtained. These formulas with equations

(9) lead to dispersion relation (12). Unlike a number of other papers the factor β = 6/5

in front of convective terms is taken into account. This factor is generated at averaging

through a cell gap. The dispersion curves are presented in Fig. 2 and demonstrate that

viscosity stabilizes the long-wave perturbations. If the factor β 6= 1 then flow with slip

line (contact discontinuity) without viscosity effect can be stable in a certain range of

parameters. The stability region extends for the stratified flows (Fig. 3). The growing

perturbations exist for the wave numbers k > k∗, where k∗ is the critical number. Walls do
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not influence on qualitative character of results in the framework of the scheme considered.

With the help of equations of layered flows it is shown that the simplified models are

very suitable for the interface position modeling. The calculations with respect to these

models demonstrate that the interface is not stable when more viscous fluid is displaced

by less viscous one (at least for fluid without density stratification). The hyperbolicity of

linearized model (16) is proved for two-layer fluid at certain density relation. In the case

of model based on Darcy law (17) it is shown that it can be reduced to one Burgers-like

equation. The kinematic-wave model (Hopf equation) can be obtained for homogeneous

fluid with respect to density or without gravity action flow. The numerical calculations

of the interface position using models (16) and (17) display qualitative coincidence of the

results. They differ in slower interface velocity close walls in the case of hyperbolic system

(16) only.
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