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Abstract

How much information does the Laplace Transforms on the real line carry
about an unknown, absolutely continuous distribution? If we measure that
information by the Boltzmann-Gibbs-Shannon entropy, the original question
becomes: How to determine the information in a probability density from the
given values of its Laplace transform. We prove that a reliable evaluation both
of the entropy and density can be done by exploiting some theoretical results
about entropy convergence, that involve only finitely many real values of the
Laplace transform, without having to invert the Laplace transform.

We provide a bound for the approximation error of in terms of the Kullback-
Leibler distance and a method for calculating the density to arbitrary accuracy.
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1 Introduction

Let X be a positive continuous random variable having an (unknown) probability density function

(pdf) fX(x) with respect to the Lebesgue measure on [0,∞), and let us suppose that its Laplace

Transform L(α) = E[e−αX ] =
∫∞
0
e−αxfX(x)dx, is known.

Since the Laplace transform is not a continuously invertible mapping, (i.e., the inverse Laplace

transform exists, but it is not continuous), the inverse problem consisting of numerically determining

fX(x) is be set with difficulties. This is an important consideration if for example, L(α) is to be

estimated numerically. The lack of continuity may cause the errors in the determination of the

Laplace transform to be amplified in the inversion process.

But when we actually do not need to know the exact or true fX(x) but only some quantities

related to it, like perhaps, expected values of some given functions of X, or as in many applications

in statistical information theory, we may only want to estimate the entropy of fX . In such case, one

would not attempt to invert the Laplace transform, but to estimate the quantity of interest directly

from the available data, which may consist of the values of the Laplace transform at finitely many

points.

We will propose a way to use directly real values of Laplace Transform to estimate the Boltzmann-

Gibbs-Shannon entropy (entropy for short) H[fX ] = −
∫∞
0
fX(x) ln fX(x)dx without having to de-

termine fX exactly. This generates an interesting mathematical problem, namely, to determine the

conditions upon which the entropy of the estimates based on partial data converge to the entropy

of (the unknown) fX . See the work of Piera and Parada (2009) and of Silva and Parada (2012) for

interesting results and further references to this problem.

Our task is similar to that previously described in the literature for the case in which X has

support [0, 1] and a few of its integer moments are known. As far as the reconstruction of the

density goes, Gavriliadis and Athanassoulis (2009) and Gavriliadis (2008) obtain some results about

the separation of the main mass interval, the tail interval and the position of the mode. In some

recent papers Mnatsakanov (2008a,b) provides a procedure to recover a probability density function

fX (and the associated distribution function FX) directly from a finite but large number of integer

moments and he estimates the nature of the convergence of the approximants to the true functions.

When the available information consists of integer moments, Tagliani (2002) provides an upper

bound of H[fX ] directly in terms of such moments, and Novi-Inverardi et al. (2012) estimate the

entropy H[fX ] by solving a linear system.
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All the previous results come from the fact that, when X has bounded support, the underlying

moment problem is determinate and the information content about a distribution is spread over the

infinite sequence of its moments. Whereas, when X has unbounded support, the underlying moment

problem may be determinate or indeterminate, and integer moments may prove to be unsuitable to

estimate the above mentioned quantities. In this case, we may rely upon Laplace Transform rather

than on the integer moments. And to transform the unbounded domain onto a bounded domain,

we shall replace X by an appropriate Y so that the available information provided by the Laplace

transform of X becomes information provided by fractional moments of Y.

So, to be specific, let fX have support [0,+∞) and consider the auxiliary random variable

Y = e−X , with support [0, 1]. As said, the Laplace transform L(α) of fX can be thought of as the

moment curve of Y, that is

L(α) = E[e−αX ] = E[Y α] ≡ µY (α) =

∫ 1

0

yαfY (y)dy. (1.1)

Certainly, once the probability density fY is determined, fX(x) = e−xfY (e−x) is obtained by a simple

change of variables. Thus the question becomes: Can we use Laplace transform based techniques to

numerically approximate fY from the knowledge of a finite collection of M real values L(αj ≥ 0),

j = 0, ...,M? The answer is yes under a restrictive hypothesis on fX : As we shall see in what

follows, the entropies H[fX ] and H[fY ] of X and Y respectively are related by relationship H[fX ] =

H[fY ] − L′(0), that requires that fX has a finite first integer moment, i.e., µ1(fX) = −L′(0) < ∞.

The latter condition is direct consequence of introducing the auxiliary random variable Y = e−X .

We shall furthermore see how the approximants to fY may be used to estimate the entropy of the

unknown fY , or that of fX . The latter task requires both H[fX ] and H[fY ] are finite, from which

µ1(fX) = −L′(0) finite too.

The remainder of the paper is organized as follows. In the next section we briefly recall the result

of applying the standard entropy method to estimate the density from a few values of its Laplace

transform. In section three we provide bound and estimate for the entropy that involves only finitely

many real values of the Laplace transform. In section four we present an efficient method to carry

out the estimation of fY from a few values of its Laplace transform, as well as to find the optimal

model approximates fX with an prefixed error in terms of Kullback-Leibler distance. We devote

section five to a numerical examples and then we round up with some concluding remarks.
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2 The method of maximum entropy

The following problem is rather common in a variety of fields. Consider a random variable taking

values in [0, 1], and suppose all that is known about it is the value of a few of its “generalized”

moments (µ0, ..., µM ), given by

µj = E[aj(Y )] =

∫ 1

0

aj(y)fY (y)dy, j = 0, ...,M (2.1)

where the aj : [0, 1] → R are given measurable functions, such that a0 ≡ 1 and µ0 = 1 is the

normalization condition upon fY . For example, we may consider aj(y) = yj and be in the realm

of the standard moments problem, or aj(y) = yαj and be in the realm of the fractional moments

problem, or the can be trigonometric functions aj(y) = e2iπj and we shall have a trigonometric

moment problem in our hands.

As the set of probability densities on [0, 1] satisfying (2.1) is a convex set in L1([0, 1], dy), a simple

way of picking a point from that set is by maximizing a concave function defined over it. This is

a standard variational method procedure, known as the Maximum Entropy (MaxEnt) Principle

(Jaynes, 1957).

It consists of maximizing the entropy functional defined over the class of probability densities

by

H[fY ] = −
∫ 1

0

fY (y) ln fY (y)dy (2.2)

subject to (2.1) as constraints. The procedure is rather standard. For a given set (µ0, ..., µM ) of

moments, when the solution fM exists, it is an approximant to fY given by

fM (y) = exp
(
−

M∑
j=0

λjaj(y)
)

(2.3)

where (λ0, ..., λM ) are the Lagrange’s multipliers, that appear as part of the minimization procedure

as solutions to a dual problem. Actually, the {λj , j = 1, ...,M} are obtained minimizing the dual

entropy function

H(λ, µ) = lnZ(λ) + 〈λ, µ〉. (2.4)

where

Z(λ) =

∫ 1

0

e−
∑M
i=1 λiai(y)dy

At the minimum, e−λ0 = (Z(λ))−1, from which

H[fM ] = λ0 + 〈λ, µ〉 (2.5)
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3 Bound and estimate for the entropy from integer

moments

3.1 An entropy bound

Here we obtain an upper bound on the entropy. In the case of a probability density on a bounded

interval, this measures how far (in entropy) the density is from a uniform density. For a density

on the positive half-line, it measure how far it is from an exponential density. So, we begin by

considering the uniform density f0(y) = 1 on [0, 1], the moments of which are given by

µ0
j =

∫ 1

0

aj(y)dy, j = 1, ...,M. (3.1)

In this case, it is easy to see that, in the notation of the previous section, λj = 0 minimizes the

corresponding version of (2.4), and that the corresponding entropy is H[f0] = H(µ0) = 0. It takes

a few simple calculations, using (3.1) as starting point to notice that, as the first two terms of the

Taylor expansion of H(µ) about µ0 vanish

H[fM ] =
1

2

M∑
i,j=0

(µj − µ0
j )
∂2H[fM ](ν)

∂µi∂µj
(µi − µ0

i ).

Above, the Hessian matrix is evualuated at ν whose entries νj ∈ [min{µj , µ0
j},max{µj , µ0

j}], j =

0, ...,M . Let’s consider MaxEnt density fνM constrained by {νj}Mj=0 and we consider {νj(fνM )}2Mj=M+1

its higher moments. Collecting together previous results (see Tagliani (2002) formulas (3.3)-(3.7)

for details, as well Kesavan-Kapur (2002), pag. 46-48, since

H[fM ] = λ0 + 〈λ, µ〉;
∂H[fM ]
∂µk

= λk − δ0k (δ-Kronecker);

we can compute the Hessian matrix explicitly as follows. {∂
2H[fM ]
∂µj∂µk

}Mj,k=0 = {∂λk∂µj
}Mj,k=0 = −∆−12M ,

where ∆2M is (M + 1)-th order Hankel matrix generated by the vector ν = {νj(fνM )}2Mj=0. Therefore

− 2H[fM ]

‖ µ− µ0 ‖22
= −

∑M
i,j=0(µj − µ0

j )
∂2H[fM ](ν)
∂µi∂µj

(µi − µ0
i )

‖ µ− µ0 ‖22
=

=
(µ− µ0)∆−12M (ν)(µ− µ0)T

‖ µ− µ0 ‖22
> λmin(∆−12M (ν)) =

1

λmax(∆2M (ν))
>

>
1

‖ ∆2M (ν) ‖1
=

1∑M
j=0 νj

≥ 1∑M
j=0 max{µj , µ0

j}
=

1

‖ max{µ, µ0} ‖1
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where λmin and λmax denote smallest and greatest eigenvalues. Collecting together, we find bound

similar to the one provided in (Tagliani, (2002) eq.(3.8)), namely

H[fM ] ≤ − ‖ µ− µ0 ‖22
2 ‖ max{µ, µ0} ‖1

.

Since clearly H[fY ] ≤ H[fM ], ∀M ≥ 0 we obtain an upper bound for H[fY ] for any density fY

having moments, given by µ = {µj(fY )}Mj=0

H[fY ] ≤ inf
M

[
− ‖ µ− µ0 ‖22

2 ‖ max{µ, µ0} ‖1

]
. (3.2)

The previous computations, coupled with the simple relationship H[fX ] = H[fY ] − L′(0), provide

us with the following estimate of the entropy of fX in terms of Laplace transform values L(αj = j).

Proposition 3.1 Let fX be a pdf having Laplace transform L(α) and finite first moment µ1(fX) =

−L′(0). Then its entropy is bounded as follows

H[fX ] = H[fY ]− L′(0) ≤ inf
M

[
− || µ− µ0 ||22

2 || max{µ, µ0} ||1

]
−L′(0) (3.3)

3.2 An approximate computation of the entropy

Now we present a procedure to compute an approximate value for H[fY ] using integer moments.

We combine previous results from [Novi Inverardi et al., 2012] concerning entropy estimate H[fY ]

from its integer moments (equivalently from Laplace transform values L(αj = j)). If fM denotes

the MaxEnt approximation to fY constrained by first M + 1 integer moments {µj = L(αj = j)}M0 ,

we know that the MaxEnt approximations converge in entropy, as M increases, according to

Theorem 3.1 [Tagliani, 1999, Th. 4.1] Let {µj}∞0 the sequence of moments of an unknown density

fY with finite entropy H[fY ], MaxEnt approximate fM converge in entropy to fY , i.e.

lim
M→∞

H[fM ] = H[fY ]. (3.4)

(Entropy-convergence had been proved for a bounded function fY [Forte et al. 1989, Th. 2]. In

the generalized Hausdorff moment problem [Borwein-Lewis, 1991] the authors proved how some

properties of Shannon entropy, i.e. strict convexity, essential smoothness and coercivity lead to

various distinct types of convergence. In particular, if fY is twice continuously differentiable and

strictly positive, the sequences fM converge uniformly to fY [Borwein-Lewis, 1991, Corollary 5.3]).

Denote the Kullback-Leibler distance between fY and fM

K(fY , fM ) =

∫ 1

0

fY (y) ln
fY (y)

fM (y)
dy (3.5)
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since fY and fM share same first M + 1 integer moments {µj}Mj=0, it follows∫ 1

0

fY (y) ln
fY (y)

fM (y)
dy = H[fM ]−H[fY ]. (3.6)

Combining entropy convergence theorem with (3.6) it follows the entropy convergence result

lim
M→∞

H[fM ]−H[fY ] = lim
M→∞

∫ 1

0

fY (y) ln
fY (y)

fM (y)
dy = 0 (3.7)

and then fM converges to fY a.e. Here we recall the inequality (Csiszár and Shields (2004) or

Kullback and Leibler (1951)), which asserts that∫ 1

0

| fM (y)− fY (y) | dy ≤
√

2(H[fM ]−H[fY ]) (3.8)

It follows that fM converges to fY in L1-norm. Calling ∆µj = µj(fM ) − µj(fY ) and taking into

account (3.8) , one has

| ∆µj |=| µj(fM )− µj(fY ) |=|
∫ 1

0

yj
(
fM (y)− fY (y)

)
dy |≤

∫ 1

0

yj | fM (y)− fY (y) | dy ≤

≤
∫ 1

0

| fM (y)− fY (y) | dy ≤
√

2(H[fM ]−H[fY ])→ 0.

(3.9)

µj(fM ) closely approximate µj(fY ), j = M + 1, ..., 2M , as M increases. As a consequence, we may

identify µj(fM ) =
∫ 1

0
yjfM (y)dy with µj(fY ) =

∫ 1

0
yjfY (y)dy for each fixed j and sufficiently large

> M . Collecting together just above results the following approximate procedure to calculating

Lagrange multipliers may be formulated.

Integrating by parts
∫ 1

0
yjfM (y)dy = µj , j = 1, ...,M the relationship relating (λ1, ..., λM ) with

{µj = µj(fM )}2Mj=1 is obtained

M∑
k=1

kλk(µk − µk+j) = 1− (j + 1)µj , j = 1, ...,M (3.10)

For sufficiently large M , thanks to (3.9), the moments {µj(fM )}2Mj=M+1 are identified with mo-

ments {µj(fY )}2Mj=M+1 (which are known). Then (3.10) may be considered a linear system with

unknown (λ1, ..., λM ) which admits an unique solution being an identity relating (λ1, ..., λM ) with

{µj(fM )}2Mj=1. Here comes the ansatz: We shall suppose that the solution to (3.10) coincides with

that obtained by minimizing (2.4). This brings this section close to experimental mathematics. The

necessary analysis to compute the error in this approximation is hard, and the verification comes in

a posteriori as the numerical results based on it make good sense. And finally, to compute λ0, note

that asfM integrates to one, λ0 = ln
∫ 1

0
exp
(
−
∑M
j=1 λjy

j
)
dy. All this taken together, allows us to
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obtain H[fM ] = λ0 + 〈λ, µ〉 solving a linear system solely without solving the underlying moment

problem. We gather these comments as

Proposition 3.2 (Plausible) Let fX be a pdf having Laplace transform L(α) and having a first

moment finite µ1(fX) = −L′(0). For high M values the entropy H[fX ] is given by

H[fX ] = H[fY ]− L′(0) ' H[fM ]− L′(0)

where H[fM ] is obtained by solving a linear system solely.

This, for high M values, it allows us to identify H[fY ] with H[fM ] (numerical evidence in Figures

1,3,5 below).

The remainder of this section is to make the ansatz plausible.

The above procedure of calculating λ′s through a linear system is meaningful when M takes large

values and the convergence of H[fM ] to H[fY ] is fast.

To examine the crucial numerical issue, note that the matrix in (3.10) becomes severly ill-

conditioned and we explain next. Let us consider (3.10) and call ∆2M the corresponding matrix

∆2M =

 µ1 − µ2 · · · µM − µM+1

...
...

...
µ1 − µM+1 · · · µM − µ2M


=

1 · · · 1
...

...
...

1 · · · 1

diag(µ1, ..., µM )−

 µ2 · · · µM+1

...
...

...
µM+1 · · · µ2M


= ∆

(1)
2M −∆

(2)
2M

(3.11)

that is, we split ∆2M into two matrices, ∆
(1)
2M and ∆

(2)
2M , where the last one is an Hankel matrix. Now

∆2M is a moments matrix relating the Lagrange multipliers λ wto the moments {µj(fM )}2Mj=1, which,

as expected, is ill-conditioned. A previous result [Fasino, (1995), Th. 3.2] states Hankel matrices

∆
(2)
2M generated by moments of a strictly positive weight function with support on the interval [0, 1],

is asymptotically conditioned in the same way as Hilbert matrices HM of the same size, i.e.

lim
M→∞

(
Cond(∆

(2)
2M )

)1/M
= lim
M→∞

(
Cond(HM )

)1/M
' e3.525 (3.12)

Then Hilbert matrix HM is a good preconditioner for this class of matrices ([Fasino, (1995), Th.

3.3), as the conditioning of the preconditioned matrix grows at most linearly with M . Now let’s

conjecture ill-conditioning of ∆2M is mainly due to ∆
(2)
2M and then ∆

(2)
2M and ∆2M have condition
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number comparable (for a graphical comparison see Novi et al. (2012)). As a final result the

Hilbert matrix HM is chosen (by rule of thumb) as preconditioner for ∆2M . Thus we can indirectly

solve (3.10), written as ∆2Mλ = b, by solving the preconditioned system H−1M ∆2Mλ = H−1M b or,

equivalently CM∆2MC
′
My = CMb and λ = C ′My. Here C ′MCM = H−1M and C ′ stands for the

transpose of C; CM = [cij ] is the inverse of the lower triangular Cholesky factor of the Hilbert

matrix HM with entries cij = (2i+ 1)1/2(−1)j
(
i
j

)(
i+j
j

)
, i, j = 0, 1, ...,M − 1 (see Talenti, (1987) for

details). By solving the above preconditioned system CM∆2MC
′
My = CMb from which λ = C ′My,

higher M values may be taken into account with consequent improved estimate of H[fY ].

As a final remark, the computation of products like CM∆2MC
′
M and CMb is very unstable due to

presence of large entries, both positive and negative, in the matrix CM . Only for moderate M , say,

up to 12-13, this computation is feasible in double precision arithmetics, since for larger dimensions

the error in last entries of the computed matrix and vector grow exponentially, so that high precision

arithmetics is needed.

4 Density and entropy estimation from fractional

moments

This section is devoted to the two related problems: one hand, there is the need of the estimation

of the entropy of a pdf fX when the only information available consists of the values of the Laplace

transform along the positive real axis, and on the other, the estimation of a density from a few

given values of its Laplace transform. But the first issue to take care of is to decide whether a

pdf fX is determined by an appropriate collection of his values on the real axis. That this is so,

is explained by the following Theorem by Lin (1992), the proof of which relies on the fact that an

analytic function is determined by its values on a countable set having an accumulation point in the

domain of analyticity.

Theorem 4.1 [Lin, 1992] Let FY be the distribution function of a positive random variable Y.

Let {αn}n≥0 be a sequence of positive and distinct numbers in (0, a) for some a > 0, satisfying

limn→∞αn = α0 < a. If E[Y a] <∞, the sequence of moments E[Y αn ] characterizes FY .

As the Laplace transform L(α) of fX can be thought of as the moment curve µY (α) of Y, the

former problem translates into a similar problem for fY . The MaxEnt technique uses the information

contained in the moment curve to determine an approximate density and an approximate value of the
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entropy of the unknown density. And by using a sufficiently large number of fractional moments an

approximation to the entropy of the true density can be obtained. With these remarks in mind, our

problem consists of determining which values of the parameter α, or which moments µY (α) will at

the same time yield a value of H[fM ] as large (as informative) as possible, and as close as possible to

H[fY ]. The answer is provided by the following procedure, devised by Novi-Inverardi and Tagliani

(2003). Note that given a finite collection of fractional moments {µY (αk)}M0 , the corresponding

MaxEnt solution to the fractional moment problem is given by

fM (y) = exp

(
−

M∑
k=0

λky
αk

)
(4.1)

where the λk are such that the constraints∫ 1

0

e−
∑M
k=1 λky

αk
dy = µY (αk), k = 0, ...,M. (4.2)

are satisfied, and fM (y) depends on the µY (αk) (thus on the αk) through the λk. Actually, the λ′s

are obtained by minimizing the “dual” entropy

ln
(∫ 1

0

exp(−
M∑
j=1

λjy
αj )dy

)
+

M∑
j=1

λjµY (αj) (4.3)

At the minimum, the value of this function coincides with the value of H[fM ]. This is the key idea

behind the nested minimization procedure proposed below. Therefore, minimizing (3.5) amounts to

arg min{
∫ 1

0

fY (y) ln
fY (y)

fM (y)
dy |α1, ..., αM} = arg min{H[fM ] |α1, ..., αM}. (4.4)

Indeed, the quantity to be minimized (minK(fY , fM )) depends on fY but, the fact that fY is un-

known is unnecessary if we keep (3.5) in mind. Consequently, the knowledge of fY is superfluous at

the end to solve the minimization problem (4.4) and the choice of (α1, ...αM ) depends on the mini-

mization with respect to α’s of H[fM ]. The latter depends uniquely from the available information

{µY (αj)}Mj=1, according to the MaxEnt procedure.

That is, fM is obtained through a nested minimization procedure, namely

(α1, ..., αM , λ1, ..., λM ) : min
α1,...,αM

min
λ1,...,λM

H[fM (λ,α)] =

= min
α1,...,αM

min
λ1,...,λM

[
ln
(∫ 1

0

exp(−
M∑
j=1

λjy
αj )dy

)
+

M∑
j=1

λjµY (αj)
]
, M = 1, 2, ...

(4.5)

The crucial issue solving the above nested minimization consists of finding the optimal M value.

We will consider that in next section. Now we prove the above procedure (4.5) arises approximate
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fM converging in entropy to fY , so that we identify H[fY ] with H[fM ]. Indeed, whenever nodes

at αj = j a/M , j = 0, ...,M for some a > 0, are selected, Novi and Tagliani (2003) proved fM

converge in entropy to the underlying unknown density fY . As a consequence, entropy convergence

is guaranteed and accelerated when nodes αj = ja/M are replaced by optimal nodes obtained in

(4.5). Loosely speaking, the αj = j a/M , j = 0, ...,M yield a constrained minimum, whilst yields

(4.5) an unconstrained minimum.

We also prove explicitly that the sequence {H[fM ]} coming from (4.5) is strictly monotonic de-

creasing. Indeed, let’s consider (4.5), fix M and calculate (α1, ..., αM ) from which H[fM ]. Next

put M + 1 in (4.5). As a first step, take the special set (α1, ..., αM+1) where the first entries

(α1, ..., αM ) coincide with the just above found and αM+1 > αM is kept arbitrarily (that is con-

strained minimization running on αM+1 only, whilst (α1, ..., αM ) is held fixed). Calculate H[fM+1]

and call it H∗[fM+1], with H∗[fM+1] < H[fM ]. As a second step take M + 1 in (4.5), where the

minimum runs on (α1, ..., αM+1), from which H[fM+1] (that is unconstrained minimization). It

follows H[fM+1] < H∗[fM+1] < H[fM ]. The sequence {H[fM ]} is strictly monotonic decreasing

and convergent to H[fY ].

4.1 Optimal model

The true densities are related by fX(x) = e−xfY (e−x), whilst fX is approximated is given by

e−xfM (e−x); here fM is from (4.1), with parameters estimated by (4.5). The optimal model is

found by requiring that the Kullback-Leibler distance satisfies K(fX , e
−xfM (e−x)) < Tol, where

Tol indicates a prefixed error. It holds

K(fX , e
−xfM (e−x)) =

∫ ∞
0

e−xfY (e−x) ln
[ e−xfY (e−x)

e−xfM (e−x)

]
dx =

=

∫ 1

0

fY (y) ln
fY (y)

fM (y)
dy = H[fM ]−H[fY ]

According to our previous results

1. H[fY ] is calculated by using finitely many real values L(αj = j) of the Laplace transform, or

integer moments of fY . (It must not be confused with the H[fM ] in point 2, coming up next, where

H[fM ] is calculated by fractional moments according to (4.5));

2. H[fM ] is calculated from (4.5) assigning increasing values to M .

Optimal model in terms of Kullback-Leibler distance is identified by
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Proposition 4.1 If fY has finite entropy H[fY ], optimal M comes from

min
M

[
K(fX , e

−xfM (e−x)) = H[fM ]−H[fY ]
]
< Tol (4.6)

4.2 Cumulative distribution function

Let FM and FX denote the cumulative distribution functions of e−xfM (e−x) and fX respectively.

Taking into account (3.8) one has

sup
x∈[0,+∞)

| FM (x)− FX(x) |≤ sup
x∈[0,+∞)

∫ x

0

e−t | fM (e−t)− fY (e−t) | dt =

= sup
s∈(0,1]

∫ 1

s

| fM (t)− fY (t) | dt ≤

≤
∫ 1

0

| fM (t)− fY (t) | dt ≤
√

2(H[fM ]−H[fY ])

Optimal model in terms of distribution function FM is identified by

Proposition 4.2 If fY has finite entropy H[fY ], optimal M comes from

sup
x∈[0,+∞)

| FM (x)− FX(x) |≤
√

2(H[fM ]−H[fY ]) < Tol

Remark. Analogous error estimate is found in [Mnatsakanov-Sarkisian (2013), Th. 1]. Using

equispaced real valued L(αj = j) only, the authors construct an approximate cumulative distribution

function FM converging uniformly to FX . Nevertheless the error supx∈[0,+∞) | FM (x) − FX(x) |

requires bounded fX and f ′X and which are unknown.

4.3 Entropy estimation

Entropies H[fX ] and H[e−xfM (e−x)] of fX and e−xfM (e−x) respectively are compared. With easy

computation, and recalling both (4.1) and µ′Y (0) = L′(0), one has

H[e−xfM (e−x)]−H[fX ] = (H[fM ]− µ′fM (0))− (H[fY ]− µ′Y (0)) =

= H[fM ]−H[fY ]−
∫ 1

0

ln(y)
(
fM (y)− fY (y)

)
dy

(4.7)

(here µfM (α) denotes the moment curve of fM ). Taking into account limM→∞H[fM ] = H[fY ] from

(4.7) it follows

lim
M→∞

H[e−xfM (e−x)]−H[fX ] = lim
M→∞

∫ 1

0

ln(y)(fY (y)− fM (y))dy = lim
M→∞

µ′Y (0)− µ′fM (0) (4.8)
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In general, (µ′Y (0) − µ′fM (0)) may not converge to zero. The hypothesis that H[fY ] finite, is not

enough to guarantee that e−xfM (e−x) converges to fX in entropy. Additional hypotheses, like for

instance, that fY being twice continuously differentiable and strictly positive, imply the sequences

fM converge uniformly to fY (see [Borwein-Lewis, 1991, Corollary 5.3]). It is not evident how only

the knowledge of L(α) is enough to guarantee such hypotheses are fulfilled). In this case, in (4.8) we

have that limM→∞
∫ 1

0
ln(y)(fY (y) − fM (y))dy = 0 and then limM→∞ µ′fM (0) − µ′Y (0) = 0. Under

the above restrictive hypotheses on fY the following conclusions can be drawn

1. limM→∞H[e−xfM (e−x)]−H[fX ] = 0, i.e. e−xfM (e−x) converges to fX in entropy.

2. The moment curves µfY (α) and µfM (α) are tangent at α = 0.

This last result allows us to extend a previous one about geometric meaning of the moment curves

µfM (α) and µfY (α) presented in Gzyl et al., (2014), and and formulated as follows: the two moment

curves generated by the unknown density and its MaxEnt approximation are interpolating at the

nodes (α0 = 1, α1, ..., αM ) and tangent at the nodes (α1, ..., αM ). Therefore, the geometrical meaning

of the MaxEnt procedure can be reformulated as

Proposition 4.3 Supposing that fY is twice continuously differentiable and strictly positive, the

moment curves µfY (α) and µfM (α) are interpolating in the Hermite-Birkoff sense; that is, they are

both interpolating and tangent at the selected nodes (α0 = 1, α1, ..., αM ).

By summarizing, if µY (α) =  L(α) is the moment curve with pdf fY and finite entropy H[fY ], and

fM denoting its MaxEnt approximant constrained by fractional moments, we have

a) The sequence {H[fM ]} converges to H[fY ];

b) And e−xfM (e−x) converges to fX = e−xfY (e−x) in directed Kullback-Leibler divergence, i.e.,

limM→∞K[fX , e
−xfM (e−x)] = 0.

With additional hypotheses fY twice continuously differentiable and strictly positive, fX = e−xfY (e−x)

and its approximate e−xfM (e−x) satisfy both the above conditions a), b) and the following c), d)

where

c) fX and e−xfM (e−x) converge in entropy, i.e. limM→∞H[e−xfM (e−x)] = H[fX ];

d) moment curves µfY (α) and µfM (α) are interpolating in Hermite-Birkoff sense; that is, they are

both interpolating and tangent at the selected nodes (α0 = 1, α1, ..., αM ).

The latter are found by means of (4.5). Equivalently, the Laplace transforms of fX and its ap-

proximant e−xfM (e−x) interpolate at selected nodes (α0 = 1, α1, ..., αM ). In other words, with a

proper choice of nodes (the ones minimizing H[fM ]), the Laplace Transforms of fX and e−xfM (e−x)

become tangent too at such nodes.
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5 Numerical example

We illustrate the procedures described in the previous sections taking bounded and unbounded

densities fY with fast or slow entropy convergence rate, so that general criteria cannot be drawn.

Example 1. For that, let us suppose that the Laplace transform that we have to start with, is

given by

L(α) = µY (α) =
Γ(p+ q)Γ(p+ α)

Γ(p+ q + α)Γ(p)

The corresponding density fY comes from Beta distribution

fY (y) =
1

B(p, q)
yp−1(1− y)q−1

We chose p = 4 and q = 2. The density fY has Shannon entropy given in terms of Beta and Digamma

function

H[fY ] = lnB(p, q)− (p− 1)[ψ(p)− ψ(p+ q)]− (q − 1)[ψ(q)− ψ(p+ q)]

= ln 20 + 79/30 ' −0.3623989402206575,

and L′(0) = −0.45. L(αj = j), j = 1, ...,M easy to obtain. Now, from (4.3) the upper bound

H[fY ] ≤ −0.011933, and therefore H[fX ] = H[fY ] − L′(0) ≤ 0.43807. Note that latter bound is

not tight, since H[fX ] = H[fY ]− L′(0) = 0.087601059 is the correct value. Next, the linear system

(3.10) with an increasing number M of integer moments µj = L(j) is solved. Using that, the

entropy H[fM ] = λ0 + 〈λ, µ〉 is calculated and then, for high M values, H[fY ] may be replaced

with H[fM ]. The approximate values of H[fM ] (constrained by integer moments) are reported in

Figure 1 and compared with exact H[fY ] (several examples are illustrated in Novi et al., 2012). As

a final step, MaxEnt density fM constrained by fractional moments µY (αj) = L(αj), αj ∈ IR+ is

considered. The parameters of fM are calculated according to (4.5) from which H[fM ] reported

in Table 1 for some values of M (here exact H[fY ] = −0.3623989402206575 is used). The latter

allows us the choice of the optimal model, i.e. the one with assigned Kullback-Leibler distance

K(fX , e
−xfM (e−x)) = H[fM ] − H[fY ] < Tol according to (4.6). In Figure 2 the comparison

between fX and its approximate e−xfM (e−x) as M = 4, where Tol = 10−4 is chosen.

Example 2. In analogy with Example 1 the same Laplace Transform

L(α) = µY (α) =
Γ(p+ q)Γ(p+ α)

Γ(p+ q + α)Γ(p)

is considered, but this time we chose p = q = 0.5. The corresponding densities fY (y) = 1

π
√
y(1−y)

and fX are unbounded with H[fY ] ' −0.24156427 (analytical expression of H[fY ] and moments
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see Example 1) and L′(0) = −1.38629436112, from which H[fX ] = H[fY ]− L′(0) = 1.14473. From

(4.3) the upper bound H[fY ] ≤ −0.015175 and then H[fX ] = H[fY ] − L′(0) ≤ 1.3711. Note that

latter bound is more reliable if compared with Example 1. The comparison of H[fM ] (constrained

by fractional moments µj = L(αj)) and H[fY ] is reported in Table 2. From Figure 3 entropy

convergence is visibly much slower than Example 1. In Figure 4 the comparison between unbounded

fX and its approximate e−xfM (e−x) as M = 12, where Tol = 5 · 10−3 is chosen.

Example 3. The following Laplace Transform is considered

L(α) =
1

ln(b/a)
· ln α+ b

α+ a

with

fX(x) =

{ 1
x (e−ax − e−bx)/ ln(b/a) if x > 0
b−a

ln(b/a) if x = 0

for a = 1 and b = 2. The corresponding densities fY and fX are bounded, andH[fY ] ' −0.04868969144

and L′(0) = − 1
2 ln 2 ' −0.72134752, from which H[fX ] = H[fY ]−L′(0) = 0.67265782899. From (4.3)

the upper bound H[fY ] ≤ −0.0048739 and then the bound H[fX ] = H[fY ]−L′(0) ≤ 0.71647352 are

obtained. The comparison of H[fM ] (constrained by fractional moments) and H[fY ] is reported in

Table 3. From Figure 5 entropy convergence is visibly fast. In Figure 6 we display the comparison

between fX and its approximant e−xfM (e−x) for M = 3, when Tol = 2 · 10−7 is chosen.

6 Conclusions

We considered the problem of estimating Boltzmann-Gibbs-Shannon entropy of a distribution with

unbounded support on the positive real line. The entropy is to be obtained from the values of the

Laplace transform without having to extend the Laplace transform to the complex plane to apply the

Fourier based inversion. We only make use of a few well chosen values of the parameter of the Laplace

transform to determine the probability density. The underlying methodology amounts to transform

the unbounded domain onto a bounded domain, so that one replaces X with an appropriate Y .

Then available information provided by the Laplace transform of X becomes information provided

by fractional moments of Y. The results available for random variables with bounded support may

be therefore applied. The methodology that we develop allows us to obtain both an estimate of

the entropy of the unknown distribution and a good approximation to that density. Entropy and

density estimates lead to a nested minimization procedures involving fractional moments.

Then the computational cost is comparable with the case of random variables having bounded

support. Ill-conditioning plays a crucial role when high number of Laplace Transform values are
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considered; it arises just from ill-conditioned matrices involved in the linear system to be solved.

Several authors investigated the question of whether or not the detrimental effects of ill-conditioning

can be removed or mitigated by the use of special techniques. Here we adopt the preconditioning and

the use of high-precision float arithmetics. Therefore, if L(α) is determined with small uncertainty,

the uncertainty in the reconstruction may be large. What may save the situation is the fact that

in many cases, we know that the function fX we are looking for has no high-frequency components

and, as a matter of fact, is actually quite a smooth function. This may help the user in choosing

among possible solutions. Indeed, through the Maxent technique, we select a solution which is

essentially smooth; in other terms, we use knowledge of the structural behavior of unknown density

to obtain numerical values. In [Gautschi, 1969] the author concludes that there is no escape from

ill-conditioning, which, after all, only reflects indirectly the fact the original inversion problem is not

well posed.
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M H[fM ] H[fM ]−H[fY ]
1 -0.24232990 0.12006904
2 -0.35963377 0.00276517
3 -0.36149744 0.00090150
4 -0.36235147 0.00004740
6 -0.36236427 0.00003466
8 -0.36238158 0.00001736

Table 1: Entropy for increasing number of fractional moments

M H[fM ] H[fM ]−H[fY ]
1 -0.09403989 0.14752437
2 -0.20756106 0.03400320
3 -0.22698956 0.01457470
4 -0.22884011 0.01272415
5 -0.23102261 0.01054165
6 -0.23244454 0.00911972
7 -0.23469685 0.00686741
8 -0.23535919 0.00620507
10 -0.23569185 0.00587241
12 -0.23617640 0.00538786

Table 2: Entropy for increasing number of fractional moments

M H[fM ] H[fM ]−H[fY ]
1 -0.048689391 0.0000002996
2 -0.048689451 0.0000002398
3 -0.048689493 0.0000001980

Table 3: Entropy for increasing number of fractional moments
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Figure 6: Fractional moments. (top) Approximate e−xfM(e−x) (continuous line), fX
(dashed line), M = 3; (bottom) Difference ∆f = e−xfM(e−x)− fX
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