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Products of Bessel functions and associated polynomials
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Abstract

Symbolic methods of umbral nature are exploited to derive series expansion for the products of Bessel functions. It is

shown that the product of two cylindrical Bessel functions can be written in terms of Jacobi polynomials. The proce-

dure is extended to products of an arbitrary number of functions and the link with previous researchers is discussed.

We show that the technique we propose and the use of the Ramanujan master theorem allow the derivation of integrals

of practical interest.
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1. Introduction

In a recent paper Moll and Vignat [1] have considered the series expansion of powers of the modified Bessel

function (BF) of first kind. They found that the expansion procedure involves a family of polynomials introduced in

[2] and, upon extending the relevant properties, the authors obtained a link with the umbral formalism of ref. [3].

In a previous paper [4] an analogous problem has been addressed by Brychkov who provided a formalism for the

derivation of products of special functions in general and of BF in particular.

We reconsider here the problem addressed in refs [1, 4], within the framework of the formalism (also of umbral

nature) developed in [5], which will be reviewed in this introduction. We will prove that it is naturally suited to obtain

the power series of the product of two BF’s and in the forthcoming sections we will discuss the extension to any

arbitrary number.

One of the main results of [5] has been the conclusion that the 0-th order cylindrical BF is the Umbral (U-) image

of a Gaussian function. By setting indeed that

J0(x) = e−c̃( x
2 )

2

ϕ0 (1)

where the U- operator c̃ is defined in such a way that

c̃νϕ0 =
1

Γ(ν + 1)
(2)

with ν being not necessarily a positive real integer and, using an expression partially borrowed from field theory, ϕ0

will be said the U-”vacuum”. From the previous identities we recover the expansion

e−c̃( x
2 )

2

ϕ0 =

∞∑

r=0

(−1)r

r!

(
x

2

)2r

c̃rϕ0 =

∞∑

r=0

(−1)r

(r!)2

(
x

2

)2r

(3)
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which is the ordinary series defining the 0-th order cylindrical Bessel [6].

According to eq.(1) a 0-th order cylindrical BF is essentially a Gaussian and, provided that the operator c̃ can be

treated as an ordinary algebraic quantity, they can be handled by taking advantage from the elementary properties of

exponential functions. Even though the notion of vacuum is extremely doubtful from the mathematical point of view

it will be used here as a computational tool, a more appropriate definition is provided in the concluding section.

Let us now consider the product

f (x; a, b) = J0(ax)J0(bx) (4)

which can be formally written as the product of two Gaussians , namely 1

f (x; a, b) = e−(a2 c̃1+b2 c̃2)( x
2 )

2

ϕ
(1)

0
ϕ

(2)

0
(5)

where ϕ
(α)

0
are the U-vacua on which the operators c̃α act. The series expansion of the exponential and the use of the

previously outlined rules yield

f (x; a, b) =

∞∑

r=0

(−1)r

r!
lr(a

2, b2)

(
x

2

)2r

lr(a, b) = r!

r∑

s=0

a(r−s)bs

(s!)2 [(r − s)!]2

(6)

In case of a = b the expression for f (x; a, b) is equivalent to that reported in ref [1]

f (x; a, a) =

∞∑

r=0

(−1)r

[r!]2
Br(2)

(
ax

2

)2r

(7)

where Br(2) is calculated with a recursive formula

Bn(r) =

n∑

s=0

(
n

s

)
n!

s!(n − s)!
Bs(r − 1) with B0(r) = 0; Bn(0) = δn,0 (8)

Leaving for the moment unspecified the nature of the polynomials lr(a, b), we note that the function f (x; a, b) can be

cast in the U-form

f (x; a, b) = e−l̃( x
2 )

2

Φ0

l̃νΦ0 = lν(a
2, b2)

(9)

The action of the operator l̃ on the corresponding U-vacuum holds for any real (positive/negative) or complex value of

the exponent ν. We have concluded that the product of two cylindrical Bessel is the U-equivalent of a BF and thus the

umbra of a Gaussian. Such a conclusion turns particularly useful if we are interested in the evaluation of the integrals

of the function f (x; a, b), a straightforward use of the so far developed procedure yields
∫ +∞

−∞
f (x; a, b)dx =

∫ +∞

−∞
e−l̃( x

2 )
2

dxΦ0 = 2
√
πl̃−

1
2Φ0 = 2

√
πl− 1

2
(a2, b2), | a |>| b |

l− 1
2
(a2, b2) = Γ

(
1

2

) ∞∑

s=0

a−2( 1
2
+s)b2s

(s!)2Γ

(
1

2
− s

)2
=

1
√
π | a |

K

(
b

a

)
,

K(k) = 2F1

(
1

2
,

1

2
; 1; k2

)
=

∞∑

s=0

[
(2s)!

22s(s!)2

]2

k2s

(10)

1Even though not explicitly stated, it is evident that in the present formalism we have

[J0(x)]2 = e
−c̃

(
x
2

)2

e
−c̃

(
x
2

)2

ϕ0

2



This result can however be viewed as an application of the Ramanujan master theorem [7], it has, indeed, been de-

rived by treating the U-operator l̃ as an ordinary constant and then by applying the rules of the Gaussian integrals. The

correctness of the result has then been checked numerically.

We have left open the question on the nature of the polynomials lr(a, b), although we will discuss more deeply this

point in the forthcoming sections, here we note that they can be viewed as a particular case of the Jacoby polynomials

[6], as it can be inferred from the identity [8]:

lr

(
x − 1

2
,

x + 1

2

)
=

1

r!
P(0,0)

r (x)

P
(α,β)
n (x) =

n∑

s=0

(
n + α

s

)(
n + β

n − s

) (
x − 1

2

)n−s (
x + 1

2

)s (11)

Furthermore, since in U-form the cylindrical Bessel functions of n-th order read [6]

Jν(x) =

(
x

2

)ν
c̃νe−c̃( x

2 )
2

ϕ0 (12)

we obtain the following general expression for the product of two cylindrical Bessel functions of order ν, µ respectively

fν,µ(x; a, b) = Jν(ax)Jµ(bx) =

(
x

2

)ν+µ
(ac̃1)ν(bc̃2)µe−(a2 c̃1+b2 c̃2)( x

2 )
2

ϕ
(1)

0
ϕ

(2)

0
=

=

(
x

2

)ν+µ
aνbµ

∞∑

r=0

(−1)r

r!
l
(ν,µ)
r (a2, b2)

(
x

2

)2r

;

l
(ν,µ)
r (a, b) = r!

r∑

s=0

a(r−s)bs

Γ(µ + s + 1)Γ(ν + r − s + 1)s!(r − s)!

(13)

We have so far provided a first idea of how the U−formalism of ref. [6] works and how it can be exploited to study

the properties of products of (cylindrical) Bessel functions, in the forthcoming section we will take advantage from

its simplicity to extend the method to arbitrary products.

2. Products of Bessel functions

According to the tools outlined in the previous section, the product of three 0-th order Bessel functions, can be

written as

f (x; a1, a2, a3) = e−(a2
1
c̃1+a2

2
c̃2+a2

3
c̃3)( x

2 )
2

ϕ
(1)

0
ϕ

(2)

0
ϕ

(3)

0
(14)

Or, in explicit form

f (x; a1, a2, a3) =

∞∑

r=0

(−1)r

r!
lr(a

2
1, a

2
2, a

2
3)

(
x

2

)2r

lr(x1, x2, x3) = r!

r∑

s=0

x
(r−s)

3

(s!)[(r − s)!]2
ls(x1, x2)

(15)

It is evident that the extension to the case of n BF writes as in the first of eqs.(15) with

lr(x1, . . . , xn) = r!

r∑

s=0

x
(r−s)
n

(s!)[(r − s)!]2
ls(x1, . . . , xn−1) (16)

in ref. [1] all the α parameters (actually the variables of the l polynomials) are assumed to be 1.
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From a formal point of view the use of the multinomial expansion allows to define the previous family of polyno-

mials as

lr(x1, . . . , xn) = (x1c̃1 + · · · + xnc̃n)rϕ
(1)

0
. . . ϕ

(n)

0
(17)

and the use of the multinomial expansion yields

lr(x1, . . . , xn) =
∑

k1+···+kn=r

(
r

k1 . . . . . . . . . kr

)
x

k1

1

(k1!)2
. . .

x
kn
n

(kn!)2
(18)

Going back to the two variable case it is easy to check that they satisfy the differential equation

∂x1
x1∂x1

lr(x1, x2) = ∂x2
x2∂x2

lr(x1, x2) = rlr−1(x1, x2) (19)

With ∂xx∂x being the so called Laguerre derivative [9]. The Laguerre polynomials can indeed cast in the form of

eq.(12)

Ln(x, y) = (y − c̃1x)nϕ
(1)

0
(20)

To obtain the extension to the product of arbitrary cylindrical Bessel, it will be sufficient to replace in the previous

equations the function lr(a
2
1
, . . . , a2

n) with l
(ν1,...,νn)
r (a2

1
, . . . , a2

n)

l(ν1 ,...,νn)
r (x1, . . . , xn) = c̃

ν1
1
. . . c̃νnn (x1c̃1 + · · · + xnc̃n)rϕ

(1)

0
. . . ϕ

(n)

0
=

=
∑

k1+···+kn=r

(
r

k1 . . . . . . . . . kr

)
x

k1

1

k1!Γ(ν1 + k1 + 1)
. . .

x
kn
n

kn!Γ(νn + kn + 1)

(21)

Thus getting an expression closely similar to that derived by Brychkov in [4]

n∏

s=1

Jνs
(asx) =

(
x

2

)∑n
s=1 νs


n∏

k=1

a
νk
k


∞∑

r=0

(−1)r

r!
l(ν1,...,νn)
r

(
a2

1, . . . , a
2
n

) ( x

2

)2r

(22)

In the case of modified BF of first kind the procedure is the same, the function can be formally expressed as a quadratic

exponential and we can recover the results of ref. [1], by noting that the functions actually used in that paper the BF

are given by

Ĩν(x) =

∞∑

r=0

Γ(ν + 1)

r!Γ(r + ν + 1)

(
x

2

)2r

= Γ(ν + 1)c̃νec̃( x
2 )

2

ϕ0 (23)

According to our formalism the relevant k-th power reads

(Ĩν(x))k = Γ(ν + 1)k

∞∑

r=0

1

r!
l(ν,...,ν)r (1, . . . , 1)

(
x

2

)2r

(24)

The polynomials defined in [1] are expressible in terms of our l
(ν1,...,νn)
r (x1, . . . , xn) as

B(ν)
r (k) = Γ(ν + 1)k−1Γ(r + ν + 1)l{ν}r (k)

l(ν,...,ν)r (1, . . . , 1) = l{ν}r (k)

l
{ν}
r+1

(k) =

k∑

j=1

l
{ν+1 j}
r (k)

{ν + 1 j, k} = (ν, . . . , ν + 1, . . . , ν)

(25)

The nature of the polynomials l
{ν}
r (k) will be further discussed in the forthcoming concluding section.
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3. Final Comments and Applications

In the previous sections we have used umbral concepts without an appropriate justification. The operators c̃ have

been assumed to act on a naively defined ”vacuum” ϕ0 introduced by borrowing the terminology and the formalism

from quantum field theory. Notwithstanding the results we have obtained in the present note and in precedent papers

as well have been shown to be fairly efficient computational tools.

We will frame the previous definitions within a more rigorous context by the use of Borel-Laplace transform (BLT)

method.

Given a function fB(x) we define the relevant BLT [11]

fB(x) =

∫ ∞

0

e−t f (tx)dt (26)

Such a definition can be further elaborated by using the operational identity [7]

f (tx) = tx∂x f (x) (27)

which allows to write

fB(x) = B̂[ f (x)]

(28)

B̂ =

∫ ∞

0

e−ttx∂x dt = Γ(x∂x + 1)

The BLT can be generalized by introducing its α − th order counterpart; by defining indeed the operator

B̂α =

∫ ∞

0

e−ttαx∂x dt = Γ(αx∂x + 1) (29)

we set

f
(α)

B
= B̂(α)[ f (x)] =

∫ ∞

0

e−t f (tαx)dt (30)

In the case of the α = 1
2
, BLT applied to the 0-th order Bessel yields

B̂( 1
2

)[J0(x)] = Γ

(
1

2
x∂x + 1

) ∞∑

r=0

(−1)r

(r!)2

(
x

2

)2r

=

∞∑

r=0

(−1)r

r!

(
x

2

)2r

(31)

By assuming that the α order BLT admits an inverse, namely that

(
B̂(α)

)−1
B̂(α) = 1̂

(32)
(
B̂(α)

)−1
=

1

Γ(αx∂x + 1)

we can also state that [
B̂( 1

2 )
]−1

[
e−(

x
2 )

2
]
= J0(x) (33)

The extension of eq.(33) to negative α yields

B̂(−α) = Γ(−αx∂x + 1) =
1

Γ(αx∂x)

π

sin(απx∂x)
(34)

and it is worth stressing that

B̂(−α)
,

[
B̂(α)

]−1
(35)

After the previous remarks we can state the following proposition:

5



Conjecture 1. Given the function having the integral

∫ ∞

−∞
f (x)dx = k (36)

then ∫ ∞

−∞
B̂(α) [ f (x)

]
dx = kΓ(1 − α) (37)

which can be viewed as a restatement of the Ramanujan Master theorem [7].

Postponing the proof of our conjecture to a forthcoming dedicated note, we provide here an example, regarding

the particular case of Bessel functions.

According to the previous definitions we obtain

∫ ∞

−∞
e−(

x
2 )

2

dx =

∫ ∞

0

dte−t

∫ ∞

−∞
J0(
√

tx)dx = IJ0
Γ

(
1

2

)

(38)

IJ0
=

∫ ∞

−∞
J0(x)dx

assuming IJ0
unknown, we find from eq. (38)

IJ0
=

[
Γ

(
1

2

)]−1 ∫ ∞

−∞
e−(

x
2 )

2

dx = 2 (39)

Analogous statements hold for the ”transposition” of other properties of the Gaussian function (like those under

derivative) to the Bessel function.

The previous remarks suggest that integral transform of Laplace type can be exploited as the appropriate environment

to justify the umbral formalism developed so far and which will be further extended in this section.

We go therefore back to the polynomials l
(ν1,...,νn)
r (x1, . . . , xn), which can also be associated with multidimensional

Jacobi like polynomials.

We observe in particular that the relevant generating function is expressible in terms of product of Bessel like

functions, namely

∞∑

r=0

(−t)r

r!
l(ν1 ,...,νn)
r (x1, . . . , xn) =

n∏

j=1

Cν j
(tx j)

Cν(x) =

∞∑

r=0

(−x)r

r!Γ(ν + r + 1)

(40)

where Cν(x) denotes the Bessel Tricomi function [8] of order ν 2.

The polynomials l
{ν}
r (k) are something else

l{ν}r (k) = c̃ν1 . . . c̃
ν
k(c̃1 + · · · + c̃k)rϕ

(1)

0
. . . ϕ

(k)

0
(41)

2The link between Tricomi and Bessel functions is provided by

Cν(x) = (x)−
ν
2 Jν(2

√
x)

6



We find that

l{ν}r (k + 1) = c̃νk+1c̃ν1 . . . c̃
ν
k(c̃1 + · · · + c̃k + c̃k+1)rϕ

(1)

0
. . . ϕ

(k)

0
ϕ

(k+1)

0
=

= c̃νk+1

r∑

j=0

(
r

j

)
c̃

r− j

k+1
l
{ν}
j

(k)ϕ
(k+1)

0
=

r∑

j=0

(
r

j

)
1

Γ(r − j + ν + 1)
l
{ν}
j

(k)
(42)

The various identities reported in [1] follow from the above equation, which can be generalized in various ways, as

e.g.

l{ν}r (k + s) = c̃νk+1 . . . c̃
ν
k+sc̃

ν
1 . . . c̃

ν
k(c̃1 + · · · + c̃k + c̃k+1 + · · ·+

+ · · · + c̃k+s)
rϕ

(1)

0
. . . ϕ

(k)

0
ϕ

(k+1)

0
. . . ϕ

(k+s)

0
=

=

r∑

j=0

(
r

j

)
l
{ν}
r− j

(s)l
{ν}
j

(k)

(43)

The use of the U−formalism has been proven to be a powerful tool allowing a very quick understanding of the various

technicalities underlying the handling of products or powers of Bessel functions.

We have noted in the introductory section that the use of straightforward algebraic manipulations allows the

derivation of an expression yielding the integral of the product of two cylindrical Bessel functions. We have checked

that the extension to the products of three or more is anyway feasible. Regarding the case of an integral of the product

of three Bessel functions we find

∫ +∞

−∞
f (x; a1, a2, a3)dx = 2

√
πl− 1

2
(a2

1, a
2
2, a

2
3), | a3 |>| a2 |>| a1 |

l− 1
2
(a1, a2, a3) = Γ

(
1

2

) ∞∑

s=0

a
−( 1

2
+s)

3

(s!)Γ

(
1

2
− s

)2
ls(a1, a2)

(44)

In eq.(10) we have recognized that the series defining l− 1
2
(a, b) can be recognized as that defining a quarter period

elliptic integral, in this case we obtain

l− 1
2
(a1, a2, a3) =

1
√
π | a3 |

F(a1, a2, a3)

F(a1, a2, a3) =

∞∑

s=0

[
(2s)!

22s(s!)2

]2
ls(a1, a2)

as
3

= 2F1

(
1

2
,

1

2
; 1;

f̃

a3

)
χ0

f̃ rχ0 = s!ls(a1, a2)

(45)

namely, we have reduced the series at least formally to the same hypergeometric defining the elliptic integral period.

This result can be easily generalized to the case of an arbitrary product.

A further element of interest concerns the fact that, since, as already remarked, by replacing f̃ with c̃ the functions

defining the product of Bessel and the Bessel functions are U-equivalent, we can take advantage from the formalism

to establish e.g. the n-th derivative of the f (x; a, b) functions. By noting again that it is formally written as a Gaussian,

we use the following property [6]

D̃n
xeax2

= Hn(2ax, a)eax2

Hn(x, y) = n!

[ n
2 ]∑

r=0

xn−2ryr

(n − 2r)!r!

(46)

7



we can write the n-th derivative of the product of two Bessel functions in terms of the two variable Hermite polyno-

mials Hn(x, y) as

D̃n
x f (x; a, b) = D̃n

xe−l̃( x
2 )

2

Φ0 = Hn

(
−l̃

x

2
,− l̃

4

)
e−l̃( x

2 )
2

Φ0 = (−1)nHn

(
l̃
x

2
,− l̃

4

)
e−l̃( x

2 )
2

Φ0 (47)

The use of the properties of the −l̃ operator finally yields the explicit result as

D̃n
x f (x; a, b) =

(−1)n

2n
n!

[ n
2 ]∑

r=0

(−1)rxn−2r

r!(n − 2r)!
(n−r) f (x; a, b)

s f (x; a, b) =

∞∑

r=0

(−1)r

r!
lr+s(a

2, b2)

(
x

2

)2r

(48)

The method we have proposed here has further elements of flexibility which should be carefully examined. A more

general problem, which will be just touched here and treated in a dedicated paper is the application of the formalism to

the theory of multi-index Bessel functions. We remind that the Humbert functions [10] within the present formalism

are defined as

Im1,m2
(x) = c̃

m1

1
c̃

m2

2
ec̃1c̃2 xϕ1(0)ϕ2(0) =

∞∑

r=0

xr

r!(m1 + r)!(m2 + r)!
(49)

The relevant properties are easily deduced, for example we find

D̃xIm1,m2
(x) = c̃

m1+1

1
c̃

m2+1

2
ec̃1c̃2 xϕ1(0)ϕ2(0) = Im1+1,m2+1(x) (50)

Or, by applying the same integration procedure as before, we obtain
∫ +∞

−∞
I0,0(x)e−βx2

dx =

√
π

β
I0,0

(
1

4β
| 2

)

Im1,m2
(x | k) =

∞∑

r=0

xr

r!Γ(kr + 1 + m1)Γ(kr + 1 + m2)

(51)

The second of eq. (51) is a two index Bessel-Wright equation and the Gaussian integral in the first of eq. (51) can be

viewed as the integral transform adopted for their definition.

A computational application of the methods we have just discussed and more in general of the umbral procedure

regarding the use of Bessel functions is an extension of the Lagrange expansion method [12] for the solution of non-

linear algebraic equation involving special functions.

To this aim we remind that if f (x) is any continuous infinitely differential function in a point a, then the solution of

the equation

x = η + ǫ f (x) (52)

can be written as

x = η +

∞∑

n=1

ǫn

n!
(D̂n−1

x

[
f (x)

]n
)|x=a (53)

Assuming e.g. f (x) = e−ax2+bx we obtain the solution of our problem in the form

X(η) = η +

∞∑

n=1

ǫn

n!
Hn−1(−2nη + bn,−an)e−anη2+bnη (54)

In Fig.1a we have accordingly reported X(η) vs. η for some values of the parameters, while in Fig.1b we have proven

the correctness of our solution by checking the coincidence of the interception between the curves



l(η)(x) = x − η

g(ǫ)(x) = ǫ f (x)

(55)
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Figure 1: Solution of the Lagrangian inversion formula for a function f given by f (x) = e−ax2+bx with a = 0.3, b = 0.7; a) X(η) vs. η for ǫ = 0.2; b)

graphical solution of eqs. (55) for different η values at fixed ǫ = 0.2 and the dashed horizontal lines correspond to νη = g(ǫ)(X(η)) for η = 0.5 and

η = 2.

and the numerical solutions reported in Fig.1a .

The range of parameters have been chosen to ensure the convergence of the series on the rhs of eq.54. Without

entering the details concerning the range of validity of the solution 54 we consider its extension to the case of Bessel

functions.

We consider therefore the equation

x = η + ǫJ0(x) (56)

an d the relevant solution in the form

x = η +

∞∑

n=1

ǫn

n!
(D̂n−1

x [J0(x)]n)|x=a (57)

The use of generalization of the Leibniz rule on repeated product of derivatives yields

∂m
x ( f1... fm) =

m∑

k1+...+km=n

(
m

k1, ..., km

) m∏

r=1

∂kr
x fr (58)

Where the multifactorial is defined as

(
n

k1, ..., km

)
=

n!

k1!...km!
(59)

The use of our umbral notation yields

x = η +

∞∑

n=1

ǫn

n!

n−1∑

k1+...+km=n

(
n − 1

k1, ..., km

) m∏

r=1

(−1)rHr

(
1

2
c̃r, x,−

1

2
c̃r

)
ec̃r( x

2 )
2

ϕ̃r (60)

In this paper we have shown that a formalism of umbral nature can be exploited to simplify in a significant way

the technicalities underlying the theory of Bessel functions and of their manipulations leading to combinations or to

the introduction of new forms. In forthcoming investigations we will further extend the method.
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