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Abstract

We present a convergence analysis for a Damped Newton-like method with modified right-hand side vector in or-
der to approximate a locally unique solution of a nonlinear equation in a Banach spaces setting. In the special case
when the method is defined on Rm, our method provides computable error estimates based on the initial data. Such
estimates were not given in relevant studies such as [1, 2]. Numerical examples further validating the theoretical
results are also presented in this study.
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1. Introduction

In this study we are concerned with the problem of approximating a locally unique solution x∗ of the nonlinear
equation

F (x) = 0, (1)

where F is a Fréchet-differentiable operator defined on a open convex subset D of a Banach space X with values
in a Banach space Y.

Many problems from Computational Sciences and other disciplines can be brought in a form similar to equation
(1) using Mathematical Modeling [3, 4, 5]. For example in data fitting, we have X = Y = Rm, m is the number
of parameters and observations.

The solution of (1) can rarely be found in closed form. That is why the solution methods for these equations
are usually iterative. In particular, the practice of Numerical Analysis for finding such solutions is essentially
connected to Newton-like methods [3, 4, 6, 7]. The study about convergence matter of iterative procedures is
usually centered on two types: semilocal and local convergence analysis. The semilocal convergence matter is,
based on the information around an initial point, to give criteria ensuring the convergence of iteration procedures;
while the local one is, based on the information around a solution, to find estimates of the radii of the convergence
balls.

In the present paper, we study the convergence of the Damped Newton-like method defined by

xn+1 = xn − Λ−1 (I − αn (A(xn)− Λ))F (xn), for each n = 0, 1, 2, . . . , (2)

where Λ ∈ L(X,Y) is the space of bounded linear operators from X into Y, Λ−1 ∈ L(Y,X), A(x) ∈ L(X,Y)
(x ∈ D) is an approximation to F ′(x), αn is a sequence of real numbers chosen to force convergence of sequence
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{xn}, x0 is an initial point and I is the identity operator. If Λ = F ′(x0) and αn = 0 for each n = 0, 1, 2, . . ., we
obtain the modified Newton’s method

yn+1 = yn − F ′(x0)
−1F (yn), y0 = x0, for each n = 0, 1, 2, . . . , (3)

which converges linearly [3, 5]. If A(x) = F ′(x), Damped Newton-like method (2) reduces to

vn+1 = vn − Λ−1(I − αn(F
′(vn)− Λ))F (vn), for each n = 0, 1, 2, . . . , (4)

The local convergence of Damped Newton-like method (4) was studied by Krejić and Lužanin [2] (see also
[1]) in the case when X = Y = Rm.

Newton’s method
zn+1 = zn − F ′(zn)

−1F (zn), for each n = 0, 1, 2, . . . , (5)

converges quadratically provided that the iteration starts close enough to the solution. However, the cost of a
Newton iterate may be very expensive, since all the elements of the Jacobian matrix involved must be computed,
as well as the need for an exact slowdown of a system of linear equations using a new matrix for every iterate. As
noted in [2] Newton-like method (2) uses a modification of the right hand side vector, which is cheaper than the
Newton and can be faster and more flexible than the modified Newton method. Notice also that modified Newton’s
method (3) is a special case of Newton’s method (2). One step of the method requires the solution of a linear
system, but the system matrix is the same in all iterations.

We present a new local and semilocal convergence analysis for Damped Newton-like method (2). In the local
case the radius of convergence can be computed as well as the error bounds on the distances ∥xn − x∗∥ for each
n = 0, 1, 2, . . .. In the semilocal case, we provide estimates on the smallness of ∥F (x0)∥ as well as computable
estimates for ∥xn − x∗∥. Notice that such estimates were not given in [1, 2] for Damped Newton-like method (4).

We denote by U(ν, µ) the open ball centered at ν ∈ X and of radius µ > 0. Moreover, by U(ν, µ) we denote
the closure of U(ν, µ).

The paper is organized as follows. Sections 2 and 3 contain the semilocal and local convergence analysis of
Newton-like method (2), respectively. The numerical examples are given in the concluding Section 4.

2. Semilocal convergence

In this section we present the semilocal convergence of Damped Newton-like method (2). We shall use the
following conditions:

(C0) F : D ⊆ X → Y is Fréchet-differentiable and there exists Λ ∈ L(X,Y) such that Λ−1 ∈ L(Y,X) with
∥Λ−1∥ ≤ a;

(C1) There exists L > 0 such that for each x, y ∈ D the Lipschitz condition

∥F ′(x)− F ′(y)∥ ≤ L∥x− y∥ (6)

holds;

(C2) There exist L0 > 0, a0 ≥ 0 such that for each x ∈ D the center-Lipschitz condition

∥F ′(x)− F ′(x0)∥ ≤ L0∥x− x0∥ (7)

and
∥Λ− F ′(x0)∥ ≤ a0 (8)

hold;

(C3) There exist x0 ∈ D, A(x) ∈ L(X,Y), (x ∈ D), M ≥ 0, λ ≥ 0, µ ≥ 0, λ0 ≥ 0, such that for each x ∈ D

∥A(x)−A(x0)∥ ≤ M∥x− x0∥+ µ,

∥A(x0)− Λ∥ ≤ λ

and
∥Λ−1(A(x0)− Λ)∥ ≤ λ0.
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(C4) There exists α ≥ 0 such that
|αn| ≤ α for each n = 0, 1, 2, . . .

(C5) There exist q ∈ (0, 1) and x0 ∈ D such that

Lq2

2
∥F (x0)∥+

(
L0q

1− q
∥F (x0)∥+ a0

)
q + α

(
Mq∥F (x0)∥

1− q
+ λ

)
≤ q; (9)

and

a+ α

(
aMq∥F (x0)∥

1− q
+ aµ+ λ0

)
≤ q (10)

hold;

(C6) There exist q ∈ (0, 1) x0 ∈ D such that the second inequality in (C5) and(
2

1− q
+

1

2

)
L0q∥F (x0)∥+

(
L0q

1− q
∥F (x0)∥+ a0

)
q + α

(
Mq∥F (x0)∥

1− q
+ λ

)
≤ q (11)

hold;

(C7) U(x0, r) ⊆ D with r = q∥F (x0)∥
1−q .

Notice that (C1) implies (C2),
L0 ≤ L (12)

holds in general and L
L0

can be arbitrarily large [3, 8, 4]. The conditions involving ∥F (x0)∥ and q in (C5) and
(C6) can be solved for ∥F (x0)∥ and q. However, these representations are very long and unattractive. That is why
we decided to leave these conditions as uncluttered as possible. Notice also that these conditions determine the
smallness of ∥F (x0)∥ and q. From now on we shall denote (C0)-(C5), (C7) and (C0), (C2)-(C7) as the (C) and (C0)
conditions, respectively. Next, we present the semilocal convergence of the Damped Newton-like method (2) first
under the (C) conditions.

Theorem 1. Suppose that the (C) conditions hold. Then sequence {xn} generated by the Damped Newton-like
method (2) is well defined, remains in U(x0, r) for each n = 0, 1, 2, . . ., and converges to a solution x∗ ∈ U(x0, r)
of equation (1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − xn∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥, (13)

and
∥F (xn+1)∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥, (14)

where q is defined in (C5) and r in (C7).

Proof. We have by (2) and Λ−1 ∈ L(Y,X) that sequence {xn} is well defined. Then, we shall show that
x1 ∈ U(x0, r), ∥x1 − x0∥ ≤ q∥F (x0)∥ and ∥F (x1)∥ ≤ q∥F (x0)∥. Indeed, we have by (2) for n = 0 and (C0),
(C2), (C3), (C4), (C5) and (C7) that

∥x1 − x0∥ = ∥Λ−1 (I − α0 (A(x0)− Λ))F (x0)∥
≤

[
∥Λ−1∥+ |α0|∥Λ−1 (A(x0)− Λ) ∥

]
∥F (x0)∥

≤
[
∥Λ−1∥+ αλ0

]
∥F (x0)∥

≤ q∥F (x0)∥ < r.

Hence, x1 ∈ U(x0, r) and (13) holds for n = 0. Using (2) and some algebraic manipulation, we obtain the
Ostrowski-type approximation

F (xn+1) =

∫ 1

0

[F ′ (xn + θ(xn+1 − xn))− F ′(xn)] (xn+1 − xn) dθ

+ [(F ′(xn)− F ′(x0)) + (F ′(x0)− Λ)] (xn+1 − xn)

+ αn [(A(xn)−A(x0)) + (A(x0)− Λ)]F (xn).

(15)
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Using (15), and the (C) conditions, for n = 0 we get in turn that

∥F (x1)∥ =
∥∥∥∫ 1

0

F ′ (x0 + θ(x1 − x0))− F ′(x0)∥∥x1 − x0∥ dθ

+ (∥F (x0)− F ′(x0)∥+ ∥F ′(x0)− Λ∥) ∥x1 − x0∥
+ |α0|∥A(x0)− Λ∥∥F (x0)∥

≤ L0

2
∥x1 − x0∥2 + a0∥x1 − x0∥+ αλ∥F (x0)∥

≤ L

2
q2∥F (x0)∥2 + a0q∥F (x0)∥+ αλ∥F (x0)∥

≤
(
L

2
q2∥F (x0)∥+ a0q + αλ

)
∥F (x0)∥

≤ q∥F (x0)∥.

That is (14) holds for n = 0. It follows from the existence of x1 ∈ U(x0, r) and Λ−1 ∈ L(X,Y) that x2 is well
defined. Using (2) for n = 1, we get by (C0)-(C5) and (C7) that

∥x2 − x1∥ = ∥Λ−1 (I − α1 (A(x1)− Λ))F (x1)∥
≤

[
∥Λ−1∥+ |α1|

(
∥Λ−1∥∥ (A(x1)−A(x0)) ∥+ ∥Λ−1 (A(x0)− Λ) ∥

)]
∥F (x1)∥

≤ [a+ α (aM∥x1 − x0∥+ aµ+ λ0)] ∥F (x1)∥
≤ [a+ α (aMq∥F (x0)∥+ aµ+ λ0)] ∥F (x1)∥
≤ q∥F (x1)∥ ≤ q2∥F (x0)∥.

We also have that

∥x2 − x0∥ ≤ ∥x2 − x1∥+ ∥x1 − x0∥
≤ q2∥F (x0)∥+ q∥F (x0)∥

= q∥F (x0)∥
1− q2

1− q
<

q∥F (x0)∥
1− q

= r. (16)

That is, x2 ∈ U(x0, r). Then, using (15) for n = 1, as above we get in turn that

∥F (x2)∥ ≤ L

2
∥x2 − x1∥2

+ (∥F ′(x1)− F ′(x0)∥+ ∥F ′(x0)− Λ∥) ∥x2 − x1∥
+ |α1| (∥A(x1)−A(x0)∥+ ∥A(x0)− Λ∥) ∥F (x1)∥

≤ L

2
q2 ∥F (x1)∥2

+ (L0∥x1 − x0∥+ a0) q∥F (x1)∥
+ α (M∥x1 − x0∥+ µ+ λ∥) ∥F (x1)∥

≤
[
L

2
q3∥F (x0)∥+ (L0q∥F (x0)∥+ a0) q

+ α (Mq∥F (x0)∥+ µ+ λ∥) ∥F (x1)∥]
≤ q∥F (x1)∥ ≤ q2∥F (x0)∥.

Similarly, we have using (1.2) that

∥x3 − x2∥ ≤
[
∥Λ−1∥+ |α2|

(
∥Λ−1 (A(x2)−A(x0)) ∥+ ∥Λ (A(x0)− Λ) ∥

)]
∥F (x2)∥

≤
[
a+ α

(
∥Λ−1∥∥A(x2)−A(x0)∥+ λ0

)]
∥F (x2)∥

≤ [a+ α (a(M∥x2 − x0∥+ µ) + λ0)] ∥F (x2)∥

≤
[
a+ α

(
aM

q∥F (x0)∥
1− q

+ aµ+ λ0

)]
∥F (x2)∥

≤ q∥F (x2)∥ ≤ q3∥F (x0)∥
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where we used (2.3). We also have that

∥x3 − x0∥ ≤ ∥x3 − x2∥+ ∥x2 − x1∥+ ∥x1 − x0∥
≤ (q3 + q2 + q)∥F (x0)∥

= q∥F (x0)∥
1− q3

1− q
< r.

That is x3 ∈ U(x0, r). Moreover, using (2.10) as above we have that

∥F (x3)∥ ≤ L

2
∥x3 − x2∥2

+ (∥F ′(x2)− F ′(x0)∥+ ∥F ′(x0)− Λ∥) ∥x3 − x2∥
+ |α3| (∥A(x2)−A(x0)∥+ ∥A(x0)− Λ∥) ∥F (x2)∥

≤ L

2
q2∥F (x2)∥2

+ (L0∥x2 − x0∥+ a0) q∥F (x2)∥+ α (M∥x2 − x0∥+ λ) ∥F (x2)∥

≤
[
L

2
q2∥F (x2)∥+

(
L0

q∥F (x0)∥
1− q

+ a0

)
q

+α

(
Mq∥F (x0)∥

1− q
+ λ

)]
∥F (x2)∥

≤
[
L

2
q4∥F (x0)∥+

(
L0

q∥F (x0)∥
1− q

+ a0

)
q

+α

(
Mq∥F (x0)∥

1− q
+ λ

)]
∥F (x2)∥

≤ q∥F (x2)∥ ≤ q3∥F (x0)∥.

The rest follows in analogous way using induction (simply replace x2, x3 by xn, xn+1 in the preceding estimates).
By letting n → ∞ in (13) we obtain F (x∗) = 0.

Condition (C1) may not be satisfied but weaker condition (C2) may be satisfied. In this case condition (C1) can
be dropped. Then, using instead of approximation (15) the approximation

F (xn+1) =

∫ 1

0

[F ′ (xn + θ(xn+1 − x0))− F ′(x0) + (F ′(x0)− F ′(xn))] (xn+1 − xn) dθ

+ [(F ′(xn)− F ′(x0)) + (F ′(x0)− Λ)] (xn+1 − xn)

+ αn [(A(xn)−A(x0)) + (A(x0)− Λ)]F (xn),

(17)

we arrive in an analogous way to Theorem 1 at the following semilocal convergence result for the Newton-like
method (2) under the (C0) conditions.

Theorem 2. Suppose that the (C0) conditions hold. Then sequence {xn} generated by the Damped Newton-like
method (2) is well defined, remains in U(x0, r) for each n = 0, 1, 2, . . ., and converges to a solution x∗ ∈ U(x0, r)
of equation (1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − xn∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥,

and
∥F (xn+1)∥ ≤ q∥F (xn)∥ ≤ qn+1∥F (x0)∥,

where q is defined in (C6) and r in (C7).

Concerning the uniqueness of the solution x∗ in U(x0, r) we have the following result.

Proposition 1. Suppose that the (C) or (C0) conditions hold. Moveover, suppose that there exist x0 ∈ D and
r1 ≥ r such that F ′(x0)

−1 ∈ L(Y,X) and

∥F ′(x0)
−1∥L0(r1 + r) < 2. (18)

Then the solution x∗ is the only solution of equation (1) in U(x0, r1), where r is defined in (C7).
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Proof. The existence of the solution x∗ is guaranteed by conditions (C) or (C0). To show uniqueness, let
y∗ ∈ U(x0, r1) with F (y∗) = 0. Define Q =

∫ 1

0
F ′(x∗ + θ(y∗ − x∗)) dθ. Then, using (C2) and (18) we obtain in

turn that

∥F ′(x0)
−1∥∥Q − F ′(x0)∥ ≤ ∥F ′(x0)

−1∥L0

∫ 1

0

∥(x∗ − x0) + θ(y∗ − x∗)∥ dθ

≤ ∥F ′(x0)
−1∥L0

∫ 1

0

∥(1− θ)(x∗ − x0) + θ(y∗ − x0)∥ dθ

≤ ∥F ′(x0)
−1∥L0

2
(r + r1) < 1. (19)

It follows from (19) and the Banach lemma on invertible operator [5] that Q−1 ∈ L(Y,X). Moreover, we have
that 0 = F (y∗)− F (x∗) = Q(y∗ − x∗), which implies x∗ = y∗.

3. Local convergence

In this section we present the local convergence of Damped Newton-like method (2). We shall use the following
conditions:

(H0) F : D ⊆ X → Y is Fréchet-differentiable and there exists Λ ∈ L(X,Y), x∗ ∈ D, β ≥ 0, c ≥ 0 such that
Λ−1 ∈ L(Y,X), F (x∗) = 0 with ∥Λ−1∥ ≤ a, ∥F ′(x∗)∥ ≤ β and ∥Λ−1(Λ− F ′(x∗))∥ ≤ c.

(H1) There exists L > 0 such that for each x, y ∈ D the Lipschitz condition (6) holds;

(H2) There exists l0 > 0 such that for each x ∈ D the center-Lipschitz condition

∥F ′(x)− F ′(x∗)∥ ≤ l0∥x− x∗∥

holds;

(H3) There exists A(x) ∈ L(X,Y)(x ∈ D), M ≥ 0, µ ≥ 0 and γ ≥ 0 such that for each x ∈ D

∥A(x)−A(x∗)∥ ≤ M∥x− x∗∥+ µ

and
∥A(x)−A(x∗)∥ ≤ γ

hold;

(H4) |αn| ≤ α
and

c(1 + αβ) + a(µ+ γ) < 1. (20)

Denote by R1 the positive root of quadratic polynomial

p1(t) :=
αal20
2

t2 +

(
aL

2
+

cαl0
2

+ 2al0 + aαl0β + aM

)
t+ c(1 + αβ) + a(µ+ γ)− 1. (21)

Moreover, denote by R2 the positive root of quadratic polynomial

p2(t) :=
αal20
2

t2 +

(
3al0
2

+
acl0
2

+ 2al0 + αβal0 + aM

)
t+ c(1 + αβ) + a(µ+ γ)− 1; (22)

(H5) U(x∗, R) ⊆ D, where R is R1 or R2.
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Notice that (H1) implies (H2),
l0 ≤ L (23)

holds in general and L
l0

can be arbitrarily large [3, 4, 8]. The quadratic polynomials in (H4) have a positive root by
(20) and since the coefficients of t and t2 are positive. From now on we shall denote (H0), (H1), (H2), (H3), (H4)
and (H5) and (H0), (H2), (H3), (H4) and (H5) as the (H) and (H0) conditions, respectively. Next, we present the
local convergence of Damped Newton-like method (2) first under the (H) conditions. In view of (2) and F (x∗) = 0,
we can have the following identity

xn+1 − x∗ = −Λ−1

{∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(xn)] dθ

− ((Λ− F ′(x∗)) + (F ′(x∗)− F ′(xn)))
[
(I − αnF

′(x∗))

− αn

∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)]
]

− ((A(xn)−A(x∗) + (A(x∗)− F ′(x∗)) + (F ′(x∗)− F ′(xn))))

}
(xn − x∗)

(24)

Then, using (24), and the (H) conditions, it is standard to arrive at [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]:

Theorem 3. Suppose that the (H) conditions hold. Then sequence {xn} generated by the Damped Newton method
(2) is well defined, remains in U(x∗, R1) for each n = 0, 1, 2, . . ., and converges to x∗ provided that x0 ∈
U(x∗, R1). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − x∗∥ ≤ en∥xn − x∗∥ < ∥xn − x∗∥ < R1, (25)

where

en =
La

2
∥xn − x∗∥+ (c+ l0a∥xn − x∗∥)×(

1 + αβ +
αl0
2

∥xn − x∗∥+ a(M∥xn − x∗∥+ µ+ γ + l0∥xn − x∗∥)
)

< p1(R1) + 1 < 1.

In cases (H1) cannot be verified by (H2) holds, we can present the local convergence of the Damped Newton
method (2) under the (H0) conditions using the following modification of the Ostrowski representation (24) given
by

xn+1 − x∗ = −Λ−1

{∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)] dθ

+ [F ′(x∗)− F ′(xn)]

− ((Λ− F ′(x∗)) + (F ′(x∗)− F ′(xn)))
[
(I − αnF

′(x∗))

− αn

∫ 1

0

[F ′ (x∗ + θ(xn − x∗))− F ′(x∗)]
]
×

((A(xn)−A(x∗) + (A(x∗)− F ′(x∗)) + (F ′(x∗)− F ′(xn))))

}
(xn − x∗)

(26)

Theorem 4. Suppose that the (H0) conditions hold. Then sequence {xn} generated by the Damped Newton
method (2) is well defined, remains in U(x∗, R2) for each n = 0, 1, 2, . . ., and converges to x∗ provided that
x0 ∈ U(x∗, R2). Moveover, the following estimates hold for each n = 0, 1, 2, . . .,

∥xn+1 − x∗∥ ≤ e0n∥xn − x∗∥ < ∥xn − x∗∥ < R2, (27)

where

e0n =
3l0a

2
∥xn − x∗∥+ (c+ l0a∥xn − x∗∥)

(
1 + αβ +

αl0
2

∥xn − x∗∥
)

+ a(M∥xn − x∗∥+ µ+ γ + l0∥xn − x∗∥)
< p2(R2) + 1 < 1.
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4. Numerical Examples

In the following, we will present some numerical tests. These have been made by using software package
Matlab 7.11.0 (R2011a) with Intel(R) Core(TM) i5-2500 CPU@3.30 GHz, RAM 16GB. For each example, we
firstly analyze the conditions of semilocal and local convergence and then compare the numerical results obtained
by different iterative schemes. In these tests, we use the approximated computational order of convergence ACOC,
defined in [13] as

ACOC =
ln(∥xn+1 − xn∥/∥xn − xn−1∥)
ln(∥xn − xn−1∥/∥xn−1 − xn−2|)

.

Example 1: Semilocal convergence. Let X = Y = C[0, 1], the space of continuous functions defined in [0, 1]
equipped with the max-norm. Let Ω = {x ∈ C[0, 1]; ∥x∥ < R}, such that R > 1 and F defined on Ω and given by

F (x)(s) = x(s)− f(s)−
∫ 1

0

G(s, t)x(t)3 dt, x ∈ C[0, 1], s ∈ [0, 1], (28)

where f ∈ C[0, 1] is a given function and the kernel G is the Green function

G(s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

In this case, for each x ∈ Ω, F ′(x) is a linear operator defined on Ω by the following expression:

[F ′(x)(v)](s) = v(s)− 3λ

∫ 1

0

G(s, t)x(t)2v(t) dt, v ∈ C[0, 1], s ∈ [0, 1].

Let us consider the particular case of the constant function f(s) = 1. If we choose x0(s) = 1, it follows ∥I −
F ′(x0)∥ ≤ 3/8. Thus, F ′(x0)

−1 is defined and

∥F ′(x0)
−1∥ ≤ 8

5
.

Moreover,

∥F (x0)∥ ≤ 1

8
.

On the other hand, for x, y ∈ Ω we have

[(F ′(x)− F ′(y))v](s) = 3

∫ 1

0

G(s, t)(x(t)2 − y2(t))v(t) dt.

Consequently,

∥F ′(x)− F ′(y)∥ ≤ ∥x− y∥3(∥x∥+ ∥y∥)
8

≤ ∥x− y∥6R
8

,

∥F ′(x)− F ′(1)∥ ≤ ∥x− 1∥1 + 3|λ|(∥x∥+ 1)

8
≤ ∥x− 1∥4 + 3R

8
.

Choosing R = 2.25, αn =
1

20
and Λ = 2 and defining A(x) =

3

8
we have that

L =
3

2
, L0 = 1, a =

1

2
, M = µ = 0, a0 =

5

8
, λ =

13

8
and λ0 =

13

16
.

Hence, for every q ∈ (0.540625, 0.59343) conditions (9) and (10) are satisfied. Moreover, considering q =

0.55 condition (C7) is satisfied with r =
q∥F (x0)|∥

1− q
= 0.152778 . . . As a consequence, we can ensure the

convergence of {xn} by Theorem 1.
To find an estimated solution of the integral equation (28) we transform it into a finite dimensional problem by

using a process of discretization. For this, we approximate the integral by the Gauss-Legendre formula∫ 1

0

h(t) dt ≈
m∑
i=1

wih(ti),
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where the nodes ti and the weights wi are known.
If we denote the approximation of x(ti) by xi (i = 1, 2, . . . ,m), then (28) is transformed into the following

nonlinear system of equations

xi = 1 +

m∑
j=1

aij x
3
j , i = 1, 2, . . . ,m, (29)

where

aij =

{
wjtj(1− ti) if j ≤ i,

wjti(1− tj) if j > i.

System (29) is now written as

H(x) = x− 1̄−Avx = 0, H : Rm → Rm, (30)

where

x = (x1, x2, . . . , xm)T , 1̄ = (1, 1, . . . , 1)T , A = (aij)
m
i,j=1, and vx = (x3

1, x
3
2, . . . , x

3
m)T .

Moreover, H ′(x) = Im − 3AD(x), where D(x) = diag{x2
1, x

2
2, . . . , x

2
m} and Im denotes the identity matrix of

size m×m.
In order to apply Theorem 1 with x0 = (1, 1, . . . , 1)T and m = 8 it is necessary to calculate the involved

constants. It is easy to check that
∥H ′(x)−H ′(y)∥ ≤ 6∥A∥∥x− y∥

and
∥H ′(x)−H ′(x0)∥ ≤ 6∥A∥∥x− x0∥.

So, L = L0 = 0.627 and ∥F (x0)∥ = 0.2285. Now, we choose Λ = A(x) = I8 + 3A; then,

a = 0.6154, M = µ = 0, a0 = 0.6264, λ = λ0 = 0

and for every q ∈ (0.6154, 0.6936), conditions (C) are satisfied. By considering q = 0.62, we obtain r = 0.3728
as the convergence radius. Under these assumptions, the proposed Damped Newton method has the following
iterative expression:

xn+1 = xn − (I8 + 3A)−1H(xn),

that will be denoted by DN1.
In the following, we will present some numerical tests. These have been made by using the stopping criterium

∥F (xn+1)∥ < 10−9 or ∥xn+1 − xn∥ < 10−9. In Table 1 , we show the numerical results obtained for this
problem, with different initial estimations and by applying iterative methods DN1, Newton’s scheme N and also
Modified Newton MN. We show, the number of iterations, the approximated computational order of convergence
ACOC, the difference between the last iteration and the preceding one ∥xn+1 − xn∥, the residual of the function
at the last iteration, ∥F (xn+1)∥ and the mean elapsed time (CPU-time) after 500 executions.

In all cases, every method has converged to the solution

(1.0147 . . . , 1.0711 . . . , 1.1460 . . . , 1.2000 . . . , 1.2000 . . . , 1.1460 . . . , 1.0711 . . . , 1.0147 . . .)T ,

except in the third case for Newton’s method, that has converged to another solution.
Let us observe that the lower number of iterations of method DN1 corresponds to the initial estimation

(1, . . . , 1)T ; it is clear as the iterative expression has been built for this specific initial guess. However, for an-
other initial approximations, the behavior of the method can be even better than the one of Modified Newton’s
scheme.

Example 2: Local convergence. To solve the equation of molecular interaction, (see [14])

uxx + uyy = u2, (x, y) ∈ [0, 1]× [0, 1], (31)
u(x, 0) = 2x2 − x+ 1, u(x, 1) = 2,

u(0, y) = 2y2 − y + 1, u(1, y) = 2,

9



we need to deal with a boundary value problem with a nonlinear partial differential equation of second order. To
estimate its solution numerically, we have used central divided differences in order to transform the problem in a
nonlinear system of equations, which is solved by using the proposed method.

The discretization process yields to the nonlinear system of equations,

ui+1,j − 4ui,j + ui−1,j + ui,j+1 + ui,j−1 − h2u2
i,j = 0 i = 1, . . . , nx, j = 1, . . . , ny, (32)

where ui,j denotes the estimation of the unknown u(xi, yj), xi = ih with i = 0, 1, . . . , nx, yj = jk with
j = 0, 1, . . . , ny, are the nodes in both variables, being h = 1

nx , k = 1
ny and nx = ny.

In this case, we fix nx = ny = 4, so a mesh of 5×5 is generated. As the boundary conditions give us the value
of the unknown function at the nodes (x0, yj), (x4, yj) for all j and also at (xi, y0), (xi, y4) for all i, we have only
nine unknowns, that are renamed as:

x1 = u1,1, x2 = u2,1, x3 = u3,1, x4 = u1,2, x5 = u2,2, x6 = u3,2, x7 = u1,3, x8 = u2,3, x9 = u3,3.

So, for X = Y = R9 and D = R9, the system can be expressed as

F (x) = Ax+ ϕ(x)− b = 0,

where

A =

 M −I3 0
−I3 M −I3
0 −I3 M

 , being M =

 4 −1 0
−1 4 −1
0 −1 4

 , ϕ(x) = h2(x2
1, x

2
2, . . . , x

2
9)

T ,

I3 is the 3× 3 identity matrix and b =
(
7
4 , 1,

27
8 , 1, 0, 2, 27

8 , 2, 4
)T . In this case,

F ′(x) = A+ 2h2diag(x1, . . . , x9)

and the solution of the problem is in Table 2, with 15 exact digits.
Now, we consider Λ = 7I9, A(x) = A and αn = 10−3, for all n ≥ 0. It can be checked that, by using

α = 10−3, β = 7.007, L = l0 = 1
8 , M = µ = γ = 0, c = 0.81 and a = 1

7 , conditions (H) are fulfilled. On the
other hand, the positive root of polynomial p1(t) is R1 = 4.11225. So, convergence is assured by Theorem 3 (the
same values allow us to apply Theorem 4, obtaining the same radius of convergence). Under these assumption, the
iterative expression of the proposed method, that will be denoted by DN2, is

xn+1 = xn − 1

7

(
I9 − 10−3 (A− 7I9)

)
F (xn).

Now, we will check the performance of the methods by means of some numerical tests. These tests have been
made by using the stopping criterium ∥F (xn+1)∥ < 10−9 or ∥xn+1 − xn∥ < 10−9. In Table 3, we show the
numerical results obtained for the problem of molecular interaction (32), with different initial estimations and by
applying the iterative methods DN2. We show the number of iterations, the approximated computational order of
convergence ACOC, the difference between the last iteration and the preceding one ∥xn+1 − xn∥, the residual of
the function at the last iteration, ∥F (xn+1)∥ and the mean elapsed time after 500 executions.

As we can see in Table 3, although the convergence is only linear we can choose initial estimations far from
the solution, with assured convergence. In this case, we have not included in Table 3 a comparison with Newton’s
method and Modified Newton’s scheme, because these methods are always clearly better than DN2 in terms of
number of iterations.

Example 3: Local convergence. Let X = Y = R3, D = U(0, 1) and x∗ = (0, 0, 0). Define function F on D for
w = (x, y, z) by

F (w) = (ex − 1,
e− 1

2
y2 + y, x+ z). (33)

Then, the Fréchet derivative of F is given by

F ′(w) =

ex 0 0
0 (e− 1) y + 1 0
1 0 1


10



Notice that we have F (x∗) = 0,

F ′(x∗) =

1 0 0
0 1 0
1 0 1

 , and F ′(x∗)−1 =

 1 0 0
0 1 0
−1 0 1

 .

We take Λ = F ′(x∗), A(x) = eI3 and αn = 10−3. Computing we obtain l0 = e − 1 < L = e, a = 1.62,
β = 1.62, c = 0, M = 0, µ = 0 and γ = 0. So the (H) conditions are satisfied and Theorem 3 ensures
the convergence of the method 2 in U(x∗, R1), being R1 = 0.1286 . . .. The iterative expression of the resulting
scheme, will be denoted by DN3.

In the following, we will test DN3, N and MD methods by using the stopping criterium ∥F (wn+1)∥ < 10−12

or ∥wn+1 − wn∥ < 10−12. In Table 4 , we show the number of iterations, the approximated computational order
of convergence ACOC, the difference between the last iteration and the preceding one ∥wn+1 − wn∥, the residual
of the function at the last iteration, ∥F (wn+1)∥ and the the mean elapsed time after 500 executions.

Let us remark that the mean elapsed time of DN3 is, in the first and second cases, better than the one of
Newton’s method. In all cases, DN3 has a better performance than Modified Newton’s scheme.
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Method x0 iter ACOC ∥xn+1 − xn∥ ∥F (xn+1)∥ e-time
DN1 (1, . . . , 1)T 34 1.0000 9.53e-10 7.09e-10 0.0145

N (1, . . . , 1)T 4 1.9972 2.78e-8 1.81e-16 0.0017
MN (1, . . . , 1)T 11 1.0000 3.79e-9 4.78e-10 0.0042
DN1 (1.5, . . . , 1.5)T 36 1.0000 1.19e-9 8.82e-10 0.0149

N (1.5, . . . , 1.5)T 5 1.9972 2.78e-8 1.81e-16 0.0029
MN (1.5, . . . , 1.5)T 178 1.0000 3.67e-9 9.88e-10 0.0709
DN1 (2, . . . , 2)T 40 1.0000 1.2e-9 8.89e-10 0.0163

N (2, . . . , 2)T 6 2.0007 1.98e-7 1.47e-14 0.0023
MN (2, . . . , 2)T > 104 - - - -

Table 1: Numerical tests for different initial estimations in Example 1
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x∗

u1,1 1.025911711690039. . .
u2,1 1.209713887135790. . .
u3,1 1.516703030959235. . .
u1,2 1.209713887135790. . .
u2,2 1.387703786439461. . .
u3,2 1.625872491958707. . .
u1,3 1.516703030959235. . .
u2,3 1.625872491958707. . .
u3,3 1.764299485442884. . .

Table 2: Approximated solution
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x0 iter ACOC ∥xn+1 − xn∥ ∥F (xn+1)∥ e-time
(0.5, . . . , 0.5)T 95 1.0000 8.86e-10 4.97e-9 0.0032
(1, . . . , 1)T 91 1.0000 9.32e-10 5.23e-9 0.0031

(1.5, . . . , 1.5)T 83 1.0000 9.28e-10 5.21e-9 0.0028
(2, . . . , 2)T 92 1.0000 9.67e-10 5.43e-9 0.0031

(2.5, . . . , 2.5)T 95 1.0000 9.19e-10 5.16e-9 0.0032
(2.7, . . . , 2.7)T 96 1.0000 8.69e-10 4.87e-9 0.0033

Table 3: Numerical tests for different initial estimations in Example 3
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Method w0 iter ACOC ∥wn+1 − wn∥ ∥F (wn+1)∥ e-time
DN3 (0.06, 0.06, 0.05)T 6 1.0267 4.77e-11 1.05e-13 1.56e-4

N (0.06, 0.06, 0.05)T 4 1.9310 3.89e-11 1.11e-16 1.87e-4
MN (0.06, 0.06, 0.05)T 11 0.9999 1.35e-12 1.39e-13 2.5e-4
DN3 (0, 0.12, 0)T 5 1.0113 4.66e-10 8.03e-13 1.56e-4

N (0, 0.12, 0)T 4 1.9999 6.78e-9 3.95e-17 1.87e-4
MN (0, 0.12, 0)T 15 1.0000 8.59e-13 1.77e-13 2.5e-4
DN3 (−0.05, 0.02,−0.06)T 6 1.0236 3.46e-11 7.53e-14 2.18e-4

N (−0.05, 0.02,−0.06)T 3 1.9486 1.15e-6 3.26e-13 9.36e-5
MN (−0.05, 0.02,−0.06)T 9 1.0000 1.78e-12 6.15e-14 2.5e-4

Table 4: Numerical tests for different initial estimations in Example 3
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