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ABSTRACT 
 One common problem encountered in many fields is the generation of surfaces 

based on values at irregularly distributed nodes. To tackle such problems, we present a 

modified, robust Moving Least Squares (MLS) method for scattered data smoothing and 

approximation. The error functional used in the derivation of the classical MLS 

approximation is augmented with additional terms based on the coefficients of the 

polynomial base functions. This allows quadratic base functions to be used with the same 

size of the support domain as linear base functions, resulting in better approximation 

capability. The increased robustness of the modified MLS method to irregular nodal 

distributions makes it suitable for use across many fields. The analysis is supported by 

several univariate and bivariate examples.   
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1. INTRODUCTION 

 

 Interpolation of scattered data is a common problem in many engineering fields. 

We are mostly interested in problems which occur in medicine, especially medical image 

registration. A reliable method for interpolating scattered data is required both for 

visualization as well as for performing numerical computations (using state of the art 

meshless methods [1-5]). 

 The use of the Moving Least Squares (MLS) method for smoothing and 

approximating scattered data was proposed by Lancaster and Salkauskas [6]. Since then, 

due to the smoothness and continuity of the approximation field it generates, the method 

has been adopted in multiple fields, such as surface definition from points [7], 

approximation of implicit surfaces [8], animations [9], simulations [2, 10], and 

computational biomechanics [3, 11].  

 In most applications a local evaluation of the approximating function is desired, 

and therefore the compact support domain for each data point (the domain over which the 

shape function associated with the point is non-zero) is chosen as a sphere or a 

parallelogram box centered on the point [1, 2, 6]. This simplifies the computation of 

influence domains for a given point, i.e. finding which support domains contain that 

point. Each data point has an associated dilatation parameter, which characterizes the size 

of its compact support domain.  

 Not all node distributions can be used in numerical computations, as shape 

functions cannot always be computed over the entire problem domain. A valid node 

distribution is referred to as an “admissible node distribution” [1]. The number of 

admissible node distributions can be increased by increasing the size of the support 

domains (the dilatation parameters), but this leads to an increased number of data points 

inside influence domains, an increased number of shape functions covering a local area, 

more linearly-dependent shape functions in the local area and increased computational 

cost. 
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 Higher order polynomial base functions can create better approximations for 

complex data distributions. Nevertheless, as the degree of the polynomial base function 

increases, it becomes more difficult to ensure the independence of the shape functions, 

and the least squares minimization problem becomes ill-posed. The usual solution 

requires increased size of the support domains so that more data points are included in the 

influence domain for each evaluation point.  

 There have been several techniques developed for handling ill-posed least squares 

problems. A first class of techniques, developed in the context of regression analysis in 

statistics, consists of regularization methods. These include the Tikhonov-Miller 

regularization [12-14], also known as ridge regression or constrained linear regression 

method, the least absolute shrinkage and selection operator (LASSO) [15], or a 

combination of the two, known as elastic net regularization [16]. These techniques have 

been developed for linear regression of statistical data, which is equivalent to a least 

squares optimization using linear basis. These techniques can be easily extended to 

weighted least squares regularization and higher degree polynomial basis functions. In 

the context of moving least squares (MLS) and our intended applications, only the 

Tikhonov-Miller regularization is of interest, as the other two techniques lead to non-

smooth approximations.  

 Several techniques have been proposed for handling a singular moment matrix in 

the context of MLS based mesh-free methods, such as perturbation of nodal positions, 

coordinate transformation, or the matrix triangularization algorithm (MTA) [2]. These 

techniques have been developed in the context of the point interpolation method (PIM), 

and therefore assume that sufficient nodes exist in the support domain; they also do not 

ensure the smoothness and continuity of the approximation. 

 This paper presents a modified MLS (MMLS) approximation which allows higher 

order polynomial base functions to be used under the same conditions as lower degree 

base functions. This is achieved by augmenting the error functional used in the derivation 

of the MLS shape functions with additional terms based on the coefficients of the 

polynomial base functions, therefore introducing additional constraints. The technique 

used is similar to the Tikhonov-Miller regularization. 
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 The paper is organized as follows: the classical MLS approximation, the modified 

MLS approximation with second order polynomial bases and important properties of the 

proposed approximation are discussed in the next Section, several univariate and 

bivariate examples are presented in Section 3, followed by discussion and conclusions in 

Section 4.  
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2. THEORY 

2.1. The classical MLS approximation 

 We succinctly present the classical MLS approximation with polynomial bases 

using the notations and derivation procedure from [2]. This will form the basis for the 

development of the modified MLS approximation in the next section. Given n data points 

(nodes) located at positions xj in ℝ!, j = 1 .. n, we can obtain a function uh(x) that 

approximates the given scalar values uj at points xj by minimizing the error functional 

𝐽 𝐱 = 𝑢! 𝐱! − 𝑢!
! 𝑤 𝐱− 𝐱!

!

!!!

 (1) 

where the error between the defined function and the given scalar values is weighted 

using the positive weight function w based on the Euclidean distances between the 

evaluation point and the positions of the nodes. We use ||.|| as the notation for Euclidean 

distance. 

 The function uh(x) is chosen as a polynomial  

𝑢! 𝐱 =  𝑝!

!

!!!

𝐱 𝑎! 𝐱 =  𝐩! 𝐱 𝒂 𝐱  (2) 

where m is the number of terms in the bases 𝐩 𝐱  and  𝑎! 𝐱  are the coefficients that 

depend on spatial coordinates x (due to the weight functions which depend on x). For 

example, commonly used bases and the corresponding coefficients in 2D are: 

- linear bases:          

𝐩! 𝐱 = 1, 𝑥,𝑦 ,     aT 𝐱 = [𝑎!,𝑎! ,𝑎!] (3) 

- quadratic bases:    

𝐩! 𝐱 = 1, 𝑥,𝑦, 𝑥!, 𝑥𝑦,𝑦! ,     aT 𝐱 = [𝑎!,𝑎! ,𝑎! ,𝑎!! ,𝑎!" ,𝑎!!] (4) 

The coefficients 𝑎! 𝐱  are obtained by minimizing the weighted least-square 

functional 𝐽 𝐱  given by (1), which can be rewritten in matrix form as: 

𝐉 = 𝐏a− 𝐮 !𝐖(𝐏a− 𝐮) (5) 

where   
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𝐮! = [𝑢!,𝑢!,…𝑢!] (6) 

𝐏 =  

𝑝!(𝐱!) 𝑝!(𝐱!)
𝑝!(𝐱!) 𝑝!(𝐱!)

⋯
⋯

𝑝!(𝐱!)
𝑝!(𝐱!)

⋮             ⋮ ⋱ ⋮
𝑝!(𝐱!) 𝑝!(𝐱!) ⋯ 𝑝!(𝐱!)

=

𝐩(𝐱!)!

𝐩(𝐱!)!
⋮

𝐩(𝐱!)!
  (7) 

𝐖 =  

𝑤 𝐱− 𝐱! 0
0 𝑤 𝐱− 𝐱!

⋯
⋯

0
0

⋮                        ⋮ ⋱ ⋮
0                       0 ⋯ 𝑤 𝐱− 𝐱!

  (8) 

We can minimize (5) by setting the partial derivatives of the error functional 𝐉 to 

zero: 

𝜕𝐉
𝜕a = 𝐏!𝐖𝐏a(x)− 𝐏!𝐖𝐮 = 0 (9) 

If the square matrix  

𝐌 = 𝐏!𝐖𝐏 (10) 

also known as the moment matrix, is non-singular, the values of the coefficients at the 

evaluation point are obtained as: 

a(𝐱) = (𝐏!𝐖𝐏)!!𝐏!𝐖𝐮 (11) 

The approximation function can therefore be expressed, based on (2), as: 

𝑢! 𝒙 =  𝐏!(𝐏!𝐖𝐏)!!𝐏!𝐖𝐮 = ∅!

!

!!!

𝐱 𝑢! (12) 

where the shape functions are defined as:  

Φ 𝐱 = ∅! 𝐱  …  ∅! 𝐱  =  𝐏!(𝐏!𝐖𝐏)!!𝐏!𝐖 (13) 

It should be noted that the approximation in equation (12) and the shape functions 

are not polynomials even if the bases 𝐩 𝐱  are polynomials. 

The weight function plays an important role in the formulation of the MLS 

approximation: it provides weightings for the residuals at different nodes within the 

(compact) support domain and it ensures that nodes enter and leave the influence domain 

smoothly so that the shape functions satisfy the compatibility condition and the 

approximation is globally continuous.  

 As shown by (13) the shape functions can be constructed only if the moment 

matrix (10) is non-singular. The necessary conditions for the moment matrix to be non-
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singular depend on the bases used. For linear bases, as in (3), the moment matrix is non-

singular as long as in the support domain there are at least three non-collinear nodes (in 

2D). For the quadratic bases in (4), the conditions for obtaining a non-singular moment 

matrix are more complex. At least six nodes are needed in the support domain (in 2D), 

but even if more nodes are included, some nodal distributions can still lead to singular 

moment matrices (for example nodes distributed on two parallel lines).  

 To avoid the nodal configurations which lead to a singular moment matrix, the 

usual solution is to enlarge the support domains in order to include more nodes. The 

proposed MMLS method will avoid singular moment matrices for higher order 

polynomial bases by adding additional constraints to the error functional, as shown in the 

following section.  
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2.2. A modified MLS approximation method for second order 

polynomial bases 

2.2.1 Shape functions derivation 

 For simplicity, the following derivation will be made for bivariate data, but can be 

easily extended to higher dimensions. A singular moment matrix basically means that 

equation (9) used to compute the coefficients a(x) has multiple solutions, and therefore 

the functional (1) does not include sufficient constraints to guarantee a unique solution 

for the given node distribution. Based on this observation we propose to add additional 

constraints to the functional (1) as follows: 

𝐽 𝐱 = 𝑢! 𝐱! − 𝑢!
! 𝑤 𝐱− 𝐱! + 𝜇!!𝑎!!

! + 𝜇!"𝑎!"! + 𝜇!!𝑎!!
!

!

!!!

  (14) 

where  

𝛍 = 𝜇!!   𝜇!"  𝜇!!  (15) 

is a vector of positive weights for the additional constraints.  

 The choice of the additional constraints ensures that, when the classical MLS 

moment matrix is singular (multiple solutions), we favor the solution having the 

coefficients for the higher order monomials in the bases equal to zero. This has a similar 

effect to the procedure of bases terms elimination used in the MTA [2] – it ensures that a 

solution with zero coefficients for some higher order monomials is selected when the 

standard MLS minimization procedure has multiple solutions. By choosing the weights 

for the additional constraints as small positive numbers we can ensure that the classical 

MLS solution is little changed when the moment matrix is not singular.  

Therefore, the new functional can be rewritten in matrix form as 

𝑱 = 𝐏a− 𝐮 !𝐖(𝐏a− 𝐮) + a!𝐇a  (16) 

where H is a matrix with all elements equal to zero except the last 3 diagonal entries, 

equal to µ: 
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𝐇 =
𝐎!! 𝐎!!
𝐎!! 𝑑𝑖𝑎𝑔 𝛍  (17) 

Following the same solution method as before, the minimization of the modified 

functional gives: 

𝜕𝐉
𝜕a = [𝐏!𝐖𝐏+ 𝐇]a(x)− 𝐏!𝐖𝐮 = 0 (18) 

Therefore, as long as the modified moment matrix 

𝐌 = 𝐏!𝐖𝐏+ 𝐇 = 𝐌+ 𝐇 (19) 

is non-singular, the new coefficients can be computed as: 

a(𝐱) = (𝐏!𝐖𝐏+ 𝐇)!!𝐏!𝐖𝐮 (20) 

The modified approximant becomes  

𝑢! 𝐱 =  𝐏!(𝐏!𝐖𝐏+ 𝐇)!!𝐏!𝐖𝐮 = ∅!

!

!!!

𝐱 𝑢! (21) 

with the new shape functions: 

𝚽(𝐱) =  ∅! 𝐱  …   ∅! 𝐱  =  𝐏!(𝐏!𝐖𝐏+ 𝐇)!!𝐏!𝐖 (22) 

2.2.2 Comparison with Tikhonov-Miller regularization 

 The Tikhonov-Miller regularization [12-14] can be extended to quadratic basis, 

resulting in the same relations as above; the only difference would be the Tikhonov 

matrix H, chosen as a multiple of the identity matrix H* = µI. The matrix H derived 

using the above procedure confers the obtained shape functions special properties which 

make them appropriate for use in meshless methods, such as being a partition of unity 

and having the linear field reproduction property [2]. We will not derive these properties 

in this paper; only the properties important for scattered data interpolation will be 

presented in the next Section.  
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2.3. Properties of the Modified MLS approximation 

 In this section we demonstrate some useful and important properties of the 

proposed modified MLS.  

2.3.1 Acceptable nodal distribution 

We will consider a nodal distribution as acceptable only if the moment matrix is non-

singular, allowing the computation of shape functions at any point in the domain. 

Lemma 1: A nodal distribution which is acceptable for the classical MLS method with 

linear bases is also acceptable for the new modified MLS method with quadratic bases. 

Proof: 

The moment matrix given by (19) can be rewritten as: 

𝐌 = 𝐏
!
𝐖 𝐏 (23) 

with 

𝐏 =  

1 𝑥! 𝑦!
⋮ ⋮ ⋮
1 𝑥! 𝑦!

𝑦!! 𝑥!𝑦! 𝑦!!
⋮ ⋮ ⋮
𝑥!! 𝑥!𝑦! 𝑦!!

0   0   0
0  0  0
0   0   0

1   0     0
0    1     0
0    0      1

 (24) 

and 

𝐖 =
𝐖 𝐎!!
𝐎!! 𝑑𝑖𝑎𝑔 𝛍  (25) 

Equation (23) can be further transformed into: 

𝐌 = 𝐏
!
𝐘!𝐘𝐏 = 𝐑!𝐑 (26) 

where 

𝐘 = 𝑠𝑞𝑟𝑡 𝐖 ,      𝐑 = 𝐘𝐏 (27) 

Based on the matrix rank properties, because Y is a diagonal matrix with non-zero 

(positive) diagonal elements (based on (25), (27), the positive W and µ): 

𝑟𝑎𝑛𝑘 𝐑 = 𝑟𝑎𝑛𝑘 𝐏  (28) 

From (26): 
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𝑟𝑎𝑛𝑘 𝐌 = 𝑟𝑎𝑛𝑘 𝐑!𝐑 = 𝑟𝑎𝑛𝑘 𝐑  (29) 

and therefore, by combining (28) and (29): 

𝑟𝑎𝑛𝑘 𝐌 = 𝑟𝑎𝑛𝑘 𝐏  (30) 

 Equation (30) shows that in order for the modified moment matrix to be non-

singular, matrix 𝐏 needs to have full rank (six in our case). Based on its definition (24), 

matrix 𝐏 has full rank only if matrix  

𝐏! =
1 𝑥! 𝑦!
⋮ ⋮ ⋮
1 𝑥! 𝑦!

 (31) 

has full rank. This condition is the same as the condition needed for the classical MLS 

method with linear bases to have a non-singular moment matrix - the support domain 

needs to contain at least three non-collinear nodes. 

 

 This demonstration can be easily extended to 3D, where the moment matrix is 

non-singular if the support domain contains at least four non-coplanar nodes. 

 These restrictions on nodal distribution are a lot less severe than the restrictions 

for the classical MLS method with quadratic bases. The shape functions can be computed 

based on a reduced number of nodes, allowing smaller support domains and increased 

computational efficiency of the method. 

2.3.2 Continuity of approximation 

One of the major advantages of MLS approximation is its compatibility, which 

means the approximation field function is continuous and smooth in the entire problem 

domain.    

Lemma 2: Let 𝑤! 𝐱 =  𝑤 𝐱− 𝐱! ∈ 𝐶!(Ω) (derivatives up to order l are 

continuous).  If µ is a constant vector and the moment matrix 𝐌 is invertible at every 

point of  Ω , then  𝑢! 𝐱 ∈ 𝐶!(Ω)  

Proof: 

From Equation (21), the approximation 𝑢! 𝐱  on the whole problem domain is a 

span of all shape functions. Therefore, like for traditional MLS, the smoothness (or the 
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order of continuity) of the approximation equals the smoothness of the shape functions, 

which is determined by the functions with the minimum order of continuity in (22).  

Following the assumption that the moment matrix 𝐏!𝐖𝐏+ 𝐇 is non-singular and since 

the monomials in the bases have 𝐶! continuity, the smoothness of the shape functions is 

determined by the weight function and the vector µ (which defines matrix  𝐇). As a 

constant, µ  has  𝐶! continuity, therefore the smoothness of the approximation function is 

solely determined by the smoothness of the weight functions, similar to the classical MLS 

approximation.  
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3. NUMERICAL EXPERIMENTS 

 

 The modified MLS (MMLS) method has been implemented in Matlab for 1D and 

2D. A quartic weight function with a circular domain is used:  

𝑤 𝑠 = 1− 6𝑠! + 8𝑠! − 3𝑠!    , 𝑠 ≤ 1
0                                         , 𝑠 > 1  (32) 

where s is the normalized distance 

𝑠! =
𝐱− 𝒙!
𝑅!

 (33) 

and Rj is the radius of influence domain of node xj [2]. For simplicity, in our 

implementations we use the same weights for all the additional constraints 

𝜇!! = 𝜇!" = 𝜇!! = 𝜇 (34) 

and a constant radius of influence for all nodes Rj = R (as we use nodal distributions with 

an almost constant density of nodes within the domain).  

3.1. MLS and modified MLS (MMLS) shape functions in 1D 

 A comparison between the MLS, Tikhonov-Miller regularization and the MMLS 

shape functions is presented in Fig. 1 for different values of 𝜇 and R. For the radius of 

influence, the larger value (R=2.5) was chosen such that more than three nodes are in the 

support domain of any point in the interval, while the lower value (R=1.3) only ensures 

that two nodes are in the support domain of any point in the interval. For small radius of 

influence R the classical MLS with quadratic base functions has singular moment matrix 

for parts of the domain, while the modified MLS does not have such a problem. The 

value of the weight parameter 𝜇 influences the shape functions: the smaller the value, the 

closer the MMLS shape functions are to those of the classical MLS with quadratic base 

functions (when these exist). The Tikhonov-Miller regularization shape functions do not 

form a partition of unity. 
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a)  

b)  
Fig. 1 MLS, Tikhonov-Miller regularization and MMLS shape functions comparison for node 6. a) R = 2.5. b) R = 1.3; 
the classical MLS with quadratic base functions (BF) has a singular moment matrix for part of the domain   
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3.2. Approximation accuracy in 1D 

 Using the same nodal distribution as in the above example, we approximated a 

non-polynomial function, u(x) = sin(x), using MLS, Tikhonov-Miller regularization and 

the MMLS, for different values of 𝜇 and R. The approximation accuracy was determined 

using the root mean square error 

𝑅𝑀𝑆𝐸 =
𝑢 𝐱! − 𝑢!(𝐱!) !!

!!!
𝑁  (35) 

computed using N=801 points equally distributed in the interval [-4, 4]. The results are 

presented in Fig. 2 and Table 1. 

 
Fig. 2 Approximation capability for MLS, Tikhonov-Miller regularization and MMLS, R = 2.5  

Table 1. Root mean square error in approximating u(x)=sin(x) using the points presented in Fig. 2. 

Approximation method Radius of nodal influence domain, R 
2.5 1.3 

MLS, linear BF 0.1765 0.0597 
MLS, quadratic BF 0.0297 Singular M 

Tikhonov-Miller, 𝜇 = 0.1 0.0922 0.0934 
Tikhonov-Miller, 𝜇 = 0.01 0.0488 0.0603 

MMLS, 𝜇 = 0.1 0.0355 0.0559 
MMLS, 𝜇 = 0.01 0.0301 0.0501 
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 The results show that the approximation accuracy of the MMLS is better than that 

of the classical MLS with linear base functions, approaching the accuracy of classical 

MLS with quadratic base functions as the value of parameter 𝜇 decreases. Fig. 2 clearly 

shows the advantage of using higher degree base functions in terms of approximation 

accuracy. The MMLS also leads to better approximation than Tikhonov-Miller 

regularization for the same values of the parameter 𝜇. 

3.3. Approximation accuracy in 2D 

 The following function was used for testing the approximation accuracy in 2D: 

𝑢 𝑥,𝑦 = 𝑥! − 𝑦! 𝑒!!!!!! (36) 

using MLS and the MMLS, for different values of 𝜇 and R. The chosen function 

combines rapid transitions between peaks and dips with almost flat regions over the 

domain. Both regular and irregular node distributions were used, consisting of 324 nodes, 

as shown in Fig. 3. The RMSE was computed using a regular distribution of N=81*81 

points. The results, presented in Table 2, support the conclusions drawn from the 

univariate results.  

Table 2. Root mean square error in approximating 𝒖 𝒙,𝒚 = 𝒙𝟐 − 𝒚𝟐 𝒆!𝒙𝟐!𝒚𝟐  using the nodes presented in Fig. 3. 

Approximation 
method 

Regular node distribution Irregular node distribution 
Radius of nodal influence domain, R 

1.5 0.8 1.5 0.8 
MLS, linear BF 0.0366 0.0136 0.0372 0.0168 

MLS, quadratic BF 0.0107 Singular M 0.0134 Singular M 
MMLS, 𝜇 = 0.1 0.0158 0.0127 0.0185 0.0162 

MMLS, 𝜇 = 0.001 0.0108 0.0058 0.0135 0.0091 
MMLS, 𝜇 = 0.0001 0.0107 0.0053 0.0134 0.0062 
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a)  

b) c)  
Fig. 3 a) Approximated function – eq. (36). b) Regular node distribution. c) Irregular node distribution. The obtained 
approximation surfaces are visually identical to the approximated function. 

 

3.4. Accuracy evaluation of a meshless method based on MMLS 

We used the proposed MMLS and the classical MLS to implement a meshless 

method using a Total Lagrangian Explicit Dynamics framework [11]. We performed a 

simulation of a soft tissue extension using a 2D geometry (10cm x 4cm). The problem 

domain was discretised using 57 nodes. To ensure integration accuracy, a dense regular 

background grid was used consisting of 4000 integration cells with one integration point 

per cell. For each node, the radius of the influence domain was constant (R = 1.4). The 

nodes on the right boundary were displaced by 3cm while the left boundary nodes were 
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fixed. The steady state solution was computed using adaptive dynamic relaxation [17, 

18], with the stable time step estimated as described in [19]. 

 Following [17, 20] a hyper-elastic Neo-Hookean material model was chosen to 

capture the behaviour of soft tissues undergoing large deformation. A similar finite 

element analysis was performed in the commercial finite element software Abaqus, with 

identical constitutive material law, loading and boundary conditions; the steady state 

solution was obtained using the static solver with the default configuration. The 

difference in computed displacement fields between the results obtained using the MLS 

and MMLS meshless methods and the reference results obtained using Abaqus are 

presented in Fig. 4 and Table 3.   

 

a)  

b)  

Fig. 4 Differences in the computed deformation field a) between classic MLS (linear basis) and Abaqus; b) between 
MMLS and Abaqus. 
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Table 3.  Difference in displacement fields between the meshless methods and Abaqus results. 

Approximation method Average 
difference (mm) 

Maximum difference 
(mm) 

Classical MLS  0.15 0.73 
MMLS (µ =10-10)  0.1 0.48 

 

 For the given nodal influence domain radius, the classical MLS with quadratic 

basis failed due to the singularity of moment matrix. The results show that the maximum 

and average difference in displacements between MMLS and Abaqus are lower as 

compared to those between classic MLS using linear basis and Abaqus.  
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4. DISCUSSION AND CONCLUSIONS 

 

 The modified Moving Least Squares (MMLS) presented in this paper is based on 

the error functional used in the derivation of the classical MLS approximation augmented 

with additional terms based on the coefficients of the polynomial base functions. This 

allows quadratic polynomial base functions to be used with the same size of the support 

domain as linear base functions, resulting in better approximation capability while 

maintaining the continuity and smoothness of the approximation.  

 The numerical examples show that the approximation accuracy of the MMLS is 

better than that of the classical MLS with linear base functions, approaching the accuracy 

of classical MLS with quadratic base functions as the value of parameter 𝜇 (the weights 

for the additional constraints) decreases. An important benefit of the proposed method is 

the ability to provide an approximation for cases when classical MLS with quadratic base 

functions fails due to a singular moment matrix. 

 The proposed method has been presented for bivariate functions and quadratic 

base functions for simplicity, but can be extended to 3D and higher order polynomial 

bases. 

 The proposed MMLS method is similar to Tikhonov-Miller regularization; 

compared to Tikhonov-Miller regularization, the MMLS has better approximation 

properties, the resulting shape functions form a partition of unity and have the linear field 

reproduction property, therefore being appropriate for use in meshless methods. We 

intend to use the presented MMLS approximation in the development of a more robust 

Element Free Garlekin meshless method [5, 11] for surgical simulations. The initial 

results show that the MMLS approximation leads to better solution accuracy as compared 

to the classical MLS approximation. 
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