
ar
X

iv
:1

40
9.

26
71

v3
  [

m
at

h.
N

A
] 

 2
3 

M
ar

 2
01

5

Efficient merging of multiple segments of Bézier curves
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Abstract

This paper deals with the merging problem of segments of a composite Bézier curve, with
the endpoints continuity constraints. We present a novel method which is based on the idea
of using constrained dual Bernstein polynomial basis (P. Woźny, S. Lewanowicz, Comput.
Aided Geom. Design 26 (2009), 566–579) to compute the control points of the merged curve.
Thanks to using fast schemes of evaluation of certain connections involving Bernstein and dual
Bernstein polynomials, the complexity of our algorithm is significantly less than complexity
of other merging methods.

Keywords: Composite Bézier curve, constrained dual Bernstein basis, merging, multiple
segments, Ck,l continuity.

1. Introduction

This paper deals with the merging problem of segments of a composite Bézier curve, in
other words: multiple adjacent Bézier curves, with the endpoints continuity constraints. More
specifically, we consider the following approximation problem.

Problem 1.1. [Merging of multiple segments of Bézier curves] Let 0 = t0 < t1 < . . . < ts = 1
be a partition of the interval [0, 1]. Let be given a composite Bézier curve P (t) (t ∈ [0, 1])
which in the interval [ti−1, ti] (i = 1, 2, . . . , s) reduces to a Bézier curve P i(t) of degree ni,
i.e.,

P (t) = P i(t) :=

ni
∑

j=0

pij B
ni

j

(

t− ti−1

∆ti−1

)

(ti−1 ≤ t ≤ ti), (1.1)

where ∆ti−1 := ti − ti−1, and

Bn
j (t) :=

(

n

j

)

tj(1− t)n−j (0 ≤ j ≤ n)

are Bernstein basis polynomials of degree n. Find a degree m (≥ maxi ni) Bézier curve

R(t) :=

m
∑

j=0

rj B
m
j (t) (0 ≤ t ≤ 1) (1.2)
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such that the error
∫ 1

0
‖P (t) −R(t)‖2 dt

is minimized in the space Πd
m of parametric polynomials in R

d of degree at most m (for
simplicity, we write Πm := Π1

m) under the additional conditions that

R(i)(0) = P (i)(0) (i = 0, 1, . . . , k − 1),

R(j)(1) = P (j)(1) (j = 0, 1, . . . , l − 1),
(1.3)

where k ≤ n1 + 1, l ≤ ns + 1, and k + l ≤ m. Here ‖ · ‖ is the Euclidean vector norm.

There have been many papers relevant to this problem. As for merging of two Bézier curves,
besides the pioneering work by Hoschek [3], we should mention papers [4, 8, 10, 11, 13]. Solving
problem of merging more than two segments may be reduced to repeated merging of two
curves. This, however, may generate loss in accuracy of results and increase of computational
cost. The only existing algorithms to solve the problem of merging multiple Bézier adjacent
curves are those of [1] and [9]. In the first one, only C0 continuity at the endpoints can be
imposed, which results in its limited applicability in CAGD. The second algorithm is much
more general, accepting Cr,s (r, s ≥ 0) continuity conditions. Notice that the G1 multiwise
merging also was studied in [9].
We present a novel method which is based on the idea of using constrained dual Bernstein

polynomial basis [12] to compute the control points ri. Thanks to using fast schemes of evalu-
ation of some connections involving Bernstein and dual Bernstein polynomials, our algorithm
is rather efficient. Its complexity is O(sm2), which is significantly less than complexity of the
methods in [1] and [9].
The outline of this paper is as follows. Section 2 has preliminary character. Section 3

brings a complete solution to Problem 1.1. Section 4 deals with algorithmic implementation of
the proposed method. In Section 5, we give some examples showing efficiency of our method.
Conclusions are given in Section 6.

2. Preliminaries

Let Π
(k,l)
m , where k and l are nonnegative integers such that k+ l ≤ m, be the space of all

polynomials of degree at most m, whose derivatives of order less than k at t = 0, as well as
derivatives of order less than l at t = 1, vanish:

Π(k,l)
m :=

{

P ∈ Πm : P (i)(0) = 0 (0 ≤ i ≤ k − 1) and P (j)(1) = 0 (0 ≤ j ≤ l − 1)
}

.

Obviously, dim Π
(k,l)
m = m− k− l+ 1, and the Bernstein polynomials

{

Bm
k , Bm

k+1, . . . , B
m
m−l

}

form a basis of this space. There is a unique dual constrained Bernstein basis of degree m
(see, e.g., [5]),

D
(m,k,l)
k ,D

(m,k,l)
k+1 , . . . ,D

(m,k,l)
m−l ,

satisfying
〈

D
(m,k,l)
i , Bm

j

〉

= δij (i, j = k, k + 1, . . . ,m− l),

where δij is 1 if i = j and 0 otherwise, and the inner product 〈·, ·〉 is given by

〈f, g〉 :=

∫ 1

0
f(t)g(t) dt.
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For k = l = 0 (the unconstrained case), we have dual Bernstein basis Dm
i := D

(m,0,0)
i

(i = 0, 1, . . . ,m) of the space Π
(0,0)
m = Πm.

Lemma 2.1. Let n and m be positive integers such that n ≤ m. The following formula holds:

Bn
i (t) =

m
∑

j=0

a
(n,m)
ij Dm

j (t) (0 ≤ i ≤ n; n ≤ m),

where

a
(n,m)
ij :=

1

m+ n+ 1

(

n

i

)(

m

j

)(

n+m

i+ j

)

−1

. (2.1)

Proof. Obviously, we have

a
(n,m)
ij = 〈Bn

i , B
m
j 〉 =

∫ 1

0
Bn

i (t)B
m
j (t) dt,

and the result follows by the well known properties of Bernstein polynomials (see, e.g., [2,
§6.10]):

Bn
i (t)B

m
j (t) =

(

n

i

)(

m

j

)(

n+m

i+ j

)

−1

Bn+m
i+j (t),

∫ 1

0
Bn+m

i+j (t) dt =
1

n+m+ 1
.

�

Lemma 2.2. Let m,k, l ∈ N be such that 0 ≤ k + l ≤ m and let f be a function defined on

[0, 1]. The polynomial S ∈ Π
(k,l)
m , which gives minimum value of the norm

‖f − S‖L2
:= 〈f − S, f − S〉

1

2 ,

is given by

S =
m−l
∑

i=k

〈f,Bm
i 〉D

(m,k,l)
i . (2.2)

Proof. Obviously, S has the following representation in the dual Bernstein basis of the space

Π
(k,l)
m :

S =

m−l
∑

i=k

〈S,Bm
i 〉D

(m,k,l)
i .

On the other hand, a classical characterization of the best approximation polynomial S is

that 〈f − S,Q〉 = 0 holds for any polynomial Q ∈ Π
(k,l)
m . In particular, for Q = Bm

i , we
obtain

〈f,Bm
i 〉 = 〈S,Bm

i 〉 (k ≤ i ≤ m− l).

Hence, the formula (2.2) follows. �

Further properties of the polynomials D
(m,k,l)
i are studied in [6, 12] and in the recent paper

[7], where the following result is given.
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Lemma 2.3 ([7]). The constrained dual basis polynomials have the Bézier-Bernstein repre-
sentation

D
(m,k,l)
i =

m−l
∑

j=k

cij(m,k, l)Bm
j , (2.3)

where the coefficients cij ≡ cij(m,k, l) satisfy the recurrence relation

ci+1,j =
1

A(i)
{2(i− j)(i + j −m) cij +B(j) ci,j−1 +A(j) ci,j+1 −B(i) ci−1,j}

(k ≤ i ≤ m− l − 1, k ≤ j ≤ m− l) (2.4)

with
A(u) := (u−m)(u− k + 1)(u + k + 1)/(u + 1),

B(u) := u(u−m− l − 1)(u−m+ l − 1)/(u −m− 1).

We adopt the convention that cij := 0 if i < k, or i > m − l, or j < k, or j > m − l. The
starting values are

ckj = (−1)j−k(2k + 1)

(

m

k

)

−1(m+ k − l + 1

2k + 1

)(

m

j

)

−1(m− k − l

j − k

)(

m+ k + l + 1

k + j + 1

)

, (2.5)

where j = k, k + 1, . . . ,m− l.

In the next section, we will need the following restriction of the representation of the
polynomial Bm

j to a subinterval of the interval [0, 1].

Lemma 2.4. Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. In the
subinterval [ti−1, ti] (i = 1, 2, . . . , s), the Bernstein polynomial Bm

j can be expressed in the
form

Bm
j (t) =

m
∑

h=0

d
(i)
jhB

m
h

(

t− ti−1

∆ti−1

)

, (2.6)

where

d
(i)
jh

:=
h
∑

v=0

Bm−h
j−v (ti−1)B

h
v (ti). (2.7)

Proof. The result is obtained in two steps. First, subdivide the polynomial

Bm
j (t) =

m
∑

h=0

δjhB
m
h (t)

at the point ti to obtain two forms for the subintervals [0, ti] and [ti, 1]. Next, subdivide the

form corresponding to [0, ti] at ti−1/ti. We obtain the formula (2.6) with the coefficients d
(i)
jh

given by

d
(i)
jh :=

m−h
∑

w=0

Bm−h
w (ti−1/ti)B

w+h
j (ti)

4



(we ignore the fact that the initial terms of the sum vanish as Bw+h
j (ti) = 0 for 0 ≤ w < j−h).

Using the identity

Bn+q
j (x) =

q
∑

w=0

Bq
w(x)B

n
j−w(x),

which can be easily proved using some basic properties of the Bernstein polynomials (see,
e.g., [2, §6.10]), and

Bn
j (cx) =

n
∑

v=0

Bn
v (x)B

v
j (c)

(ibid.), it can be seen that

d
(i)
jh =

m−h
∑

w=0

Bm−h
w (ti−1/ti)

h
∑

v=0

Bh
v (ti)B

w
j−v(ti)

=

h
∑

v=0

Bh
v (ti)

m−h
∑

w=0

Bm−h
w (ti−1/ti)B

w
j−v(ti)

=
h
∑

v=0

Bh
v (ti)B

m−h
j−v (ti−1).

�

Equation (2.6) is obviously equivalent to

Bm
j (u∆ti−1 + ti−1) =

m
∑

h=0

d
(i)
jh
Bm

h (u) (0 ≤ u ≤ 1). (2.8)

Now, by the bi-orthogonality property of the bases {Bm
h } and {Dm

g }, we have

d
(i)
jh =

∫ 1

0
Bm

j (u∆ti−1 + ti−1)D
m
h (u) du. (2.9)

Lemma 2.5. For i = 1, 2, . . . s, the coefficients d
(i)
jh satisfy the following recurrence equation:

∆ti−1

[

(m− j + 1)d
(i)
j−1,h + (2j −m)d

(i)
jh

− (j + 1)d
(i)
j+1,h

]

= (m− h)d
(i)
j,h+1 + (2h −m)d

(i)
jh

− hd
(i)
j,h−1

(1 ≤ j ≤ m− 1; 0 ≤ h ≤ m).

Proof. Differentiate both sides of Equation (2.8) with respect to u, and make use of the
identity

d

du
Bm

j (u) = (m− j + 1)Bm
j−1(u) + (2j −m)Bm

j (u)− (j + 1)Bm
j+1(u).

Equating the Bézier coefficients gives the result. �
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3. Merging of the composite Bézier curve segments

Clearly, the Bézier curve being the solution of Problem 1.1 can be obtained in a compo-
nentwise way. Hence, it is sufficient to give the details of our method of solving this problem
in case where d = 1.

Theorem 3.1. Let 0 = t0 < t1 < . . . < ts = 1 be a partition of the interval [0, 1]. Let
be given the piecewise polynomial function P (t) (t ∈ [0, 1]), which in the interval [ti−1, ti]
(i = 1, 2, . . . , s) reduces to a polynomial P i(t) of degree ni, with the Bézier coefficients p

i
j

(i = 1, 2, . . . , s; j = 0, 1, . . . , ni) (cf. (1.1)). The coefficients r0, r1, . . . , rm of the polynomial
(1.2) minimising the error

‖R − P‖2L2
:= 〈R− P,R − P 〉

with constraints (1.3) are given by

rj =

(

n1

j

)(

m

j

)

−1

∆jp10 −

j−1
∑

h=0

(−1)j+h

(

j

h

)

rh (j = 0, 1, . . . , k − 1), (3.1)

rm−j = (−1)j
(

ns

j

)(

m

j

)

−1

∆jpsns−j −

j
∑

h=1

(−1)h
(

j

h

)

rm−j+h (j = 0, 1, . . . , l − 1), (3.2)

rj =
m−l
∑

h=k

r̂hchj(m,k, l) (j = k, k + 1, . . . ,m− l), (3.3)

where

r̂h :=

s
∑

i=1

∆ti−1

m
∑

v=0

p̂ivd
(i)
hv −

1

2m+ 1

(

m

h

)

(

k−1
∑

v=0

+

m
∑

v=m−l+1

)

(

2m

h+ v

)

−1(m

v

)

rv, (3.4)

p̂iv :=
1

m+ ni + 1

(

m

v

) ni
∑

q=0

(

m+ ni

q + v

)

−1(ni

q

)

piq, (3.5)

with chj(m,k, l) and d
(i)
jh being introduced in (2.3) and (2.7), respectively. Here we use the

standard notation ∆0ch := ch, ∆
jch := ∆j−1ch+1 −∆j−1ch (j = 1, 2, . . .).

Proof. Recall that for arbitrary polynomial of degree N ,

UN (t) =
N
∑

h=0

uhB
N
h (t),

the well-known formulas hold (see, e.g., [2, §5.3])

U
(j)
N (0) =

N !

(N − j)!
∆ju0 =

N !

(N − j)!

j
∑

h=0

(−1)j+h

(

j

h

)

uh,

U
(j)
N (1) =

N !

(N − j)!
∆juN−j =

N !

(N − j)!

j
∑

h=0

(−1)j+h

(

j

h

)

uN−j+h.

6



Using the above equations in (1.3), we obtain the forms (3.1) and (3.2) for the coefficients
r0, r1, . . . , rk−1 and rm−l+1, . . . , rm−1, rm, respectively.
The remaining coefficients rk, rk+1, . . . , rm−l are to be determined so that

‖P −R‖2L2
= ‖W − S‖2L2

has the least value, where

W := P −

(

k−1
∑

h=0

+

m
∑

h=m−l+1

)

rhB
m
h ,

S :=

m−l
∑

j=k

rjB
m
j .

To be strict, we first obtain the coefficients r̂j of the searched polynomial in the constrained

dual Bernstein basis {D
(m,k,l)
h

},

S =

m−l
∑

j=k

r̂jD
(m,k,l)
j ;

then the Bézier coefficients rj of S will be easily computed using Equation (3.3) (cf. Lemma 2.3).
Now, using Lemma 2.1, we represent each segment P i of the original piecewise polynomial

P in the dual Bernstein basis of degree m,

P i(t) =

m
∑

v=0

p̂ivD
m
v

(

t− ti−1

∆ti−1

)

with p̂iv being defined in (3.5).
Using Lemma 2.2 and Equation (2.9), we obtain

r̂j =
〈

W,Bm
j

〉

=

∫ 1

0
W (t)Bm

j (t) dt

=

s
∑

i=1

m
∑

h=0

p̂ih

∫ ti

ti−1

Dm
h

(

t− ti−1

∆ti−1

)

Bm
j (t) dt

−

(

k−1
∑

h=0

+

m
∑

h=m−l+1

)

rh

∫ 1

0
Bm

h (t)Bm
j (t) dt

=

s
∑

i=1

m
∑

h=0

p̂ih∆ti−1

∫ 1

0
Dm

h (u)Bm
j (∆ti−1u+ ti−1) du

−

(

k−1
∑

h=0

+
m
∑

h=m−l+1

)

rh
1

2m+ 1

(

m

h

)(

m

j

)(

2m

h+ j

)

−1

=

s
∑

i=1

∆ti−1

m
∑

h=0

p̂ihd
(i)
jh −

1

2m+ 1

(

m

j

)

(

k−1
∑

h=0

+

m
∑

h=m−l+1

)

rh

(

m

h

)(

2m

h+ j

)

−1

(j = k, k + 1, . . . ,m− l).

This completes the proof. �
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Now, let the composite curve P and the merged curve R be curves in Rd (d ≥ 1). Let pij =

(pij1, p
i
j2, . . . , p

i
jd) (i = 1, 2, . . . , s; j = 0, 1, . . . , ni), and rj = (rj1, rj2, . . . , rjd) (j = 0, 1, . . . ,m)

be the control points of P and R, respectively. For i = 1, 2, . . . , s and h = 1, 2, . . . , d, let us
define vectors

πi
h :=

[

pi0h, p
i
1h, . . . , p

i
ni,h

]

∈ R
ni+1,

̺ih :=
[

̺i0h, ̺
i
1h, . . . , ̺

i
mh

]

∈ R
m+1,

where

̺izh :=
m
∑

j=0

rjhd
(i)
jz (z = 0, 1, . . . ,m). (3.6)

It can be shown that the L2-distance between the curves P and R is given by the formula:

E2 :=‖P −R‖L2

=

(

s
∑

i=1

∆ti−1

d
∑

h=1

[

Ini,ni
(πi

h, π
i
h)− 2Ini,m(πi

h, ̺
i
h) + Imm(̺ih, ̺

i
h)
]

)

1

2

, (3.7)

where

INM (u, v) :=

N
∑

j=0

uj

M
∑

z=0

a
(N,M)
jz vz,

with u := [u0, u1, . . . , uN ] and v := [v0, v1, . . . , vM ], the notation used being that of (2.1).

4. Algorithms

4.1. Auxiliary computations

In this section, we discuss details of algorithmic implementation of the results given in
Theorem 3.1. First, we have to precompute efficiently the coefficients cij(m,k, l) introduced
in Lemma 2.3 (see Table 1).

0 0 . . . 0
0 ckk ck,k+1 . . . ck,m−l 0
0 ck+1,k ck+1,k+1 . . . ck+1,m−l 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 cm−l,k cm−l,k+1 . . . cm−l,m−l 0

0 0 . . . 0

Table 1: The c-table

Now, the table can be completed easily by using formulas (2.4), (2.5) (cf. [7, Algorithm
3.3]), with the complexity O(m2).

Another task is to evaluate all the coefficients d
(i)
jh
(i = 1, 2, . . . , s; j = 0, 1, . . . ,m; h =

0, 1, . . . ,m) (cf. (2.7)). Thanks to Lemma 2.5, we can do it using the following algorithm.

Algorithm 4.1. [Evaluation of the coefficients d
(i)
jh
]

Input: m, s, 0 = t0 < t1 < . . . < ts = 1

Output: table of the coefficients d
(i)
jh

(i = 1, 2, . . . , s; j = 0, 1, . . . ,m; h = 0, 1, . . . ,m)

8



Step 1. For i = 1, 2, . . . , s, compute

d
(i)
−10 := 0, d

(i)
00 := (1− ti−1)

m,

d
(i)
−1h := 0, d

(i)
0h :=

1− ti
1− ti−1

d
(i)
0,h−1 (h = 1, 2, . . . ,m).

Step 2. For i = 1, 2, . . . , s, j = 0, 1, . . . ,m− 1, and h = 0, 1, . . . ,m, compute

d
(i)
j+1,h :=(j + 1)−1

{

(∆ti−1)
−1
[

hd
(i)
j,h−1 − (2h−m)d

(i)
jh − (m− h)d

(i)
j,h+1

]

+(m− j + 1)d
(i)
j−1,h + (2j −m)d

(i)
jh

}

.

Observe that complexity of Algorithm 4.1 is O(sm2).

4.2. Main algorithm

Now, the presented method of merging of segments of a composite Bézier curve is sum-
marized in the following algorithm.

Algorithm 4.2. [Merging of segments of a composite Bézier curve]
Input: pij (j = 0, 1, . . . , ni), ni (i = 1, 2, . . . , s),

m, k, l, 0 = t0 < t1 < . . . < ts = 1
Output: solution r0, r1, . . . , rm of the Problem 1.1, and its error E2

Step 1. Compute r0, r1, . . . , rk−1 by (3.1).

Step 2. Compute rm−l+1, rm−l+2, . . . , rm by (3.2).

Step 3. Compute p̂ij (i = 1, 2, . . . , s; j = 0, 1, . . . ,m) by (3.5).

Step 4. Compute d
(i)
jh
for i = 1, 2, . . . , s; j = 0, 1, . . . ,m; h = 0, 1, . . . ,m, using Algo-

rithm 4.1.

Step 5. Compute r̂j (j = k, k + 1, . . . ,m− l) by (3.4).

Step 6. Compute cij(m,k, l) for i, j = k, k+1, . . . ,m− l, using (2.4), (2.5) (cf. [7, Algorithm
3.3]).

Step 7. Compute rj (j = k, k + 1, . . . ,m− l) by (3.3).

Step 8. Compute ̺izh (i = 1, 2, . . . , s; z = 0, 1, . . . ,m; h = 1, 2, . . . , d) by (3.6).

Step 9. Compute E2 by (3.7).

Notice that complexity of Algorithm 4.2 is O(sm2).

5. Examples

In this section, we give several examples of using Algorithm 4.2. In every case we give the
L2-error E2 as well as the maximum error

E∞ := max
t∈DN

‖P (t)−R(t)‖ ≈ max
t∈[0,1]

‖P (t)−R(t)‖,

9



where DN := {0, 1/N, 2/N, . . . , 1} with N = 500. Generalizing the approach of [8, (6.1)],
partition of the interval [t0, ts] = [0, 1] is determined according to the lengths of segments P i:

tj := Lj/Ls (j = 1, 2, . . . , s− 1), (5.1)

where

Lq :=

q
∑

i=1

∫ 1

0

∥

∥

∥

∥

∥

d

dt

ni
∑

h=0

pihB
ni

h
(t)

∥

∥

∥

∥

∥

dt.

Integrals are evaluated using the MapleTM13 function int with the option numeric.
Results of the experiments have been obtained on a computer with Intel Core i5-3337U

1.8GHz processor and 8GB of RAM, using 32-digit arithmetic. Notice that MapleTM13 work-
sheet containing programs and tests can be found on the webpage webpage http://www.ii.uni.wroc.pl/~pgo/papers.html.

Example 5.1. We use Algorithm 4.2 to merge the composite curve “Ampersand”, with three
fifth degree Bézier segments, defined by the control points {(1.09, 0.03), (1.02, 0.21), (0.6, 0.75),
(0.5, 1.11), (0.85, 1.12), (0.93, 1.03)}, {(0.93, 1.03), (1.01, 0.96), (1.02, 0.76), (0.8, 0.65), (0.62,
0.38), (0.61, 0.23)}, and {(0.61, 0.23), (0.59, 0.1), (0.67, 0.02), (0.91,−0.05), (1.12, 0.05), (1.08,
0.22)}, respectively. According to (5.1), we have t0 = 0, t1

.
= 0.45, t2

.
= 0.76, t3 = 1.

Obtained results are given in Table 2. Moreover, we give the comparison of running times
required to compute the resulting control points. Clearly, our method is faster than the one
presented in [9]. Figures 1a and 1b illustrate the results for two representative cases. This
example shows that merging may result in data compression.

Parameters Errors Running times [ms]

m k l E2 E∞ Algorithm 4.2 Lu [9]

8 2 1 8.57E−3 2.36E−2 10 85
2 2 1.99E−2 5.46E−2 11 87
3 2 3.89E−2 1.04E−1 10 77

10 2 1 3.49E−3 1.32E−2 16 121
2 2 9.43E−3 3.36E−2 15 108
3 2 1.98E−2 6.08E−2 15 104

12 2 1 2.70E−3 9.84E−3 22 167
2 2 5.71E−3 2.29E−2 22 160
3 2 1.06E−2 3.81E−2 19 158

Table 2: Least-squares and maximum errors for merging of three segments of the composite Bézier curve with constraints.
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(a) (b)

Figure 1: Merging of three segments of the composite Bézier curve. Original curve (blue solid line) and merged curve
(red dashed line) with parameters: (a) m = 10, k = 3, l = 2, and (b) m = 12, k = 3, l = 2.

Example 5.2. The curve “Penguin” is formed by two composite Bézier curves. The left
curve has four cubic segments, with the control points {(0.31, 0.23), (0.35, 0.19), (0.39, 0.23),
(0.37, 0.26)}, {(0.37, 0.26), (0.21, 0.54), (0.53, 0.77), (0.21, 0.76)}, {(0.21, 0.76), (0.1, 0.76), (0.5,
0.88), (0.42, 0.79)}, and {(0.42, 0.79), (0.26, 0.76), (0.23, 0.92), (0.34, 0.94)}, respectively. The
right curve is composed of three cubic segments having control points {(0.34, 0.94), (0.74, 0.99),
(0.67, 0.19), (0.56, 0.21)}, {(0.56, 0.21), (0.19, 0.32), (0.62, 1.05), (0.56, 0.61)}, and {(0.56, 0.61),
(0.5, 0.24), (0.41, 0.41), (0.5, 0.64)}, respectively. Formula (5.1) gives t0 = 0, t1

.
= 0.08, t2

.
=

0.55, t3
.
= 0.78, t4 = 1 for the left curve, and t0 = 0, t1

.
= 0.42, t2

.
= 0.78, t3 = 1 for the

right one. Results of separate merging of segments of both curves can be seen in Table 3. Two
selected cases are shown on Figures 2a and 2b.
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Left curve Right curve

m k l E2 E∞ m k l E2 E∞

12 1 1 7.45E−3 1.90E−2 10 1 1 1.28E−2 3.51E−2
1 2 1.05E−2 2.69E−2 2 1 1.28E−2 3.48E−2
2 1 7.85E−3 1.93E−2 1 2 1.29E−2 3.49E−2
2 2 1.10E−2 2.85E−2 2 2 1.30E−2 3.44E−2

13 1 1 6.68E−3 1.45E−2 12 1 1 9.01E−3 3.00E−2
1 2 7.80E−3 1.64E−2 2 1 1.02E−2 3.27E−2
2 1 7.28E−3 1.48E−2 1 2 1.14E−2 2.98E−2
2 2 8.53E−3 1.71E−2 2 2 1.23E−2 3.25E−2

14 1 1 4.39E−3 1.19E−2 13 1 1 8.65E−3 2.83E−2
1 2 4.51E−3 1.27E−2 2 1 9.16E−3 2.81E−2
2 1 4.86E−3 1.17E−2 1 2 1.11E−2 2.98E−2
2 2 5.08E−3 1.30E−2 2 2 1.16E−2 2.98E−2

Table 3: Least-squares and maximum errors for separate merging of segments of two composite Bézier curves with
constraints.

(a) (b)

Figure 2: Separate merging of segments of two composite Bézier curves with constraints. Original curves (blue solid
line) and merged curves (red dashed line). (a) Left curve: m = 12, k = 1, l = 2; right curve: m = 10, k = 2, l = 1. (b)
Left curve: m = 14, k = 2, l = 2; right curve: m = 13, k = 2, l = 2.
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6. Conclusions

We have proposed a novel approach to the problem of merging of multiple adjacent Bézier
curves, with the endpoints continuity constraints. We have shown that, contrary to some
earlier opinions [9], it is possible to generalize dual Bernstein polynomials approach to com-
pute the control points of the merged curve. Thanks to using fast schemes of evaluation of
certain connections involving Bernstein and dual Bernstein polynomials, the complexity of
our algorithm is O(sm2), which should be compared to the complexity O(sm3) of the existing
multiple merging methods [1, 9].
As for our future work, we plan to study the above merging problem with Gk,l continuity

constraints.
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Aided Design 33 (2001), 125–136.
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