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Abstract

We consider a system of equations for the description of nonlinear

waves in a liquid with gas bubbles. Taking into account high order

terms with respect to a small parameter, we derive a new nonlinear

partial differential equation for the description of density perturba-

tions of mixture in the two-dimensional case. We investigate integra-

bility of this equation using the Painlevé approach. We show that

travelling wave reduction of the equation is integrable under some

conditions on parameters. Some exact solutions of the equation de-

rived are constructed. We also perform numerical investigation of the

nonlinear waves described by the derived equation.

Keywords: Nonlinear equation; Nonlinear wave; Liquid with gas bubbles;
Reductive perturbation method; Painlevé test; Exact solutions

1 Introduction

A liquid with gas bubbles is a complex dissipative and dispersive nonlinear
media. Nonlinear character of waves in such medium brings essential difficul-
ties for investigation, although there are some interesting properties of wave
processes in gas-liquid mixture and mathematical models for the description
of such systems occurs widely in different sciences: chemistry, biology, physic
and etc. (see [1–3]).
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For the first time nonlinear evolution equations like Burgers, Korteweg–
de Vries and Burgers–Korteweg–de Vries were obtained for the description
of long weakly nonlinear waves in a gas–liquid mixture in works [4–6] for the
one-dimensional case. The three–dimensional case was considered in work [7],
but only first–order terms in an asymptotic series have been taken into ac-
count. On the other hand, considering high–order corrections in asymptotic
expansions, we are able to obtain more complicated nonlinear equations. It
allows us to describe wave processes more accurate then in [7]. Besides, we
can discover some new physical effects. In work [8] models for non–linear
waves in a gas–liquid mixture were generalized, taking into account higher
order terms with respect to small parameters. Models of work [8] take into
consideration an interphase heat transfer, surface tension and weak liquid
compressibility, although only one–dimensional case is considered. Thus, it
is interesting to study long weakly nonlinear waves in a liquid with a gas
bubbles in two–dimensional case, taking into consideration both high order
terms in the asymptotic expansions and physical properties mentioned above.

Here we derive a new nonlinear partial differential equation for the de-
scription of long weakly nonlinear two–dimensional waves in a bubbly gas–
liquid mixture. We consider waves propagating in a certain direction. We
assume that perturbations in perpendicular directions are less essential but
we take them into account. We take into account high order terms in the
asymptotic expansions, interphase heat transfer, surface tension and weak
liquid compressibility. We also investigate equation derived analytically and
numerically. To the best of our knowledge, this equation has not been ob-
tained and investigated before.

In order to investigate integrability of the nonlinear equation we apply the
Painlevé approach. It is shown that the equation does not have the Painlevé
property in general case. However solitary wave solutions are constructed by
means of the truncated expansion method. Using travelling wave variables it
is shown that the equation passes the Painlevé test under some conditions on
parameters. With the Hopf–Cole transformations the equation is linearised
and its solutions are obtained in different forms. Nonlinear waves described
by the equation are also investigated numerically using the spectral method.
It is shown, that this method have good accuracy and stability.

The rest of this work is organized as follows. In section 2 we derive a
nonlinear partial differential equation for the description of waves in gas–
liquid mixture, taking into consideration second order terms with respect
to the small parameters. In section 3 we apply the Painlev? approach to
investigate integrability of the equation. In section 4 the new nonlinear
equation is investigated using travelling wave variables. It is shown that the
equation is integrable under some conditions on parameters. In section 5 we
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present the results of the numerical simulation of waves, described by the
equation. In the last section we briefly discuss our results.

2 Extended equation for the description of

waves in a liquid with gas bubbles in two–

dimensional case.

In this section we obtain a two–dimensional nonlinear equation for the de-
scription of waves in a liquid with gas bubbles. We use the system of equa-
tions for the description of waves in bubbly liquid, presented in [7]. We
suppose that the gas–liquid mixture is a homogeneous medium with an aver-
age pressure and temperature. We assume that the liquid is incompressible
and gas bubbles are spherical. We do not consider destruction, formation,
interaction and coalescence of bubbles. We suppose that total amount of
gas in a bubble and the amount of gas bubbles in unit of mass of liquid are
constants. Gas in bubble is an ideal and a pressure in bubble is described
by the politropic law. Liquid viscosity is considered only on the interphase
boundary. Taking into account assumptions mentioned above, the following
system of equations for the description of waves in liquid with gas bubbles is
used (see [7] )

∂ρ̃

∂τ
+∇ũ+∇(ρ̃ũ) = 0,

(1 + ρ̃)

(
∂ũ

∂τ
+ ũ∇ũ

)
+

1

α
∇p̃ = 0,

p = αρ̃+ α1ρ̃
2 + α2ρ̃

3 + βρ̃ττ − (β1 + β2) ρ̃ρ̃ττ −
(
β1 +

3

2
β2

)
ρ̃2τ + κρ̃τ + κ1ρ̃ρ̃τ .

(1)

Here p, ρ̃, ũ are the non–dimensional pressure, density and velocity of the
mixture correspondingly, ξ, η are Cartesian coordinates and τ is the time;
α, α1, α2, β, β1, β2, κ, κ1 are non–dimensional parameters [7].

For the derivation of an equation for the description of nonlinear waves,
we use the reductive perturbation method (see e.g. [9–13]). Let us introduce
’slow’ variables

x = ǫ(ξ − τ), y = ǫ
3

2 δη, t = ǫ2τ. (2)

We suppose that perturbations in x direction are more essential then in y.
We chose power of ǫ in ’slow’ variables in order to obtain equations for the
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case of dissipation main influence. We search for a solution of system (1) in
the form of asymptotic series:

ũ(1) = ǫu
(1)
1 + ǫ2u

(1)
2 + · · · , ũ(2) = ǫu

(2)
1 + ǫ2u

(2)
2 + · · · ,

ρ̃ = ǫρ1 + ǫ2ρ2 + · · · , p̃ = ǫp1 + ǫ2p2 + · · · .
(3)

Substituting (2) and (3) into (1) and collecting coefficients at ǫ0 we obtain

u
(1)
1 = ρ1, p1 = αρ1. (4)

Collecting coefficients at the same powers of ǫ and using (4) we have the
following equations:

ρ1t − ρ2x + u
(1)
2x + (ρ1u

(1)
1 )x + ǫδu

(2)
1y = 0,

u
(1)
1t − u

(1)
2x + u

(1)
1 u

(1)
1x + ρ2x +

2α1

α
ρ1ρ1x −

κ

α
ρ1xx − ρ1u

(1)
1x+

+ǫ

(
ρ1u

(1)
1t + ρ1u

(1)
1 u

(1)
1x +

α2

α
(ρ31)x +

β

α
ρ1xxx +

κ

α
ρ1tx −

κ1

α
(ρ1ρ1x)x

)
= 0,

(5)

u
(2)
1x = δρ1y + ǫ

(
u
(2)
1t + u

(2)
1 u

(1)
1x

δα1

α
ρ21y −

δκ

α
ρ1xy − ρ1u

(2)
1x

)
. (6)

Differentiating (5) and (6) with respect to x and y correspondingly and using
obtained relations to avoid velocity, we get:

(
ρ1t +

(
1 +

α1

α

)
ρ1ρ1x −

κ

2α
ρ1xx

)
x
+

+ǫ
1

2

(
3α2 − α1

α
ρ21ρ1x +

(
β

α
+

κ2

2α2

)
ρ1xxx +

κ

2α
ρ1ρ1xx −

κ (2α+ α1)

α2
(ρ1ρ1x)x

)

x

+

+ǫ
δ2

2
ρ1yy = 0.

(7)

Now, using the near-identity transformations [14, 15]

ρ1 = ρ+ ǫ
(
λ1ρ

2 + λ2ρx∂
−1
x ρ

)
, (8)

we obtain equation

(
ρt + a1ρρx + a2ρxx + a3(ρρx)x + a4ρ

2ρx + a5ρxxx
)
x
+ bρyy = 0, (9)
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where

a1 =
(
1 +

α1

α

)
, a2 = − κ

2α
, a3 = ǫ

κ(1 − 2α− α1)− 4α(λ1 + 2λ2)

4α2
,

a4 = ǫ

(
3α2 − α1

2α
+
(
1 +

α1

α

)
(λ1 + λ2)

)
, a5 = ǫ

2βα + κ2

4α2
, b = ǫ

δ2

2
.

(10)

and

λ1 = −λ2 +
κ (1− 6α− 3α1)

(8κ + 4)α
. (11)

Let us use shift and scaling transformations in the form:

x′ = Ax+ Bt, t′ = Ct, ρ′ = Dρ+ E, y′ = Fy, (12)

where A is an arbitrary parameter, B, C, D, E, F are described by the
following relations:

B =
a21A

4a4
, C = a5A

3, D = −a5A
a3

, E = − a1

2a4
, F =

√
a5

b
A2, µ =

a4a5

a23
,

(13)

constant λ2 is found from the equation a1a3 = 2a2a4. Taking into account
transformations (12) we can rewrite equation (7) in the form

(
ρt + µρ2ρx + ρxxx − (ρρx)x

)
x
+ ρyy = 0. (14)

Below we study equation (14).

3 Painlevé test to equation (14)

To investigate integrability of (14) let us apply the Weiss–Tabor–Carnevale
(WTC) test [16, 17]. We look for a solution of (14) in the form of series

ρ(x, y, t) = Φp
∞∑

j=0

ujΦ
j , (15)

where Φ = Φ(x, y, t) is a new function and uj = uj(x, y, t) are coefficients in
expansion (15). The leading terms of equation (14) are µ (ρ2ρx)x , ρxxxx and
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− (ρρx)xx. Substituting ρ = u0Φ
p into leading terms and equating coefficients

at the lowest order of Φ(x, y, t) we obtain

p = −1, u0 =

(
−3 ±

√
9− 24µ

)
Φx

2µ
. (16)

Then, substituting into leading terms the expression

ρ(x, y, t) =
u0(x, y, t)

Φ(x, y, t)
+ u0jΦ(x, y, t)

j−1, (17)

and equating the coefficient at uj to zero, the following Fuchs indexes are
found for different branches of solution

j
(1,2)
1 = −1, j

(1,2)
2 = 3, j

(1,2)
3 = 4, j

(1,2)
4 =

±
√
9− 24µ+ 8µ− 3

2µ
. (18)

Here upper index is a number of a branch of the solution and lower index is
a number of an index for definite branch. Let us recall that an equation pass
the Painlevé test only if Fuchs indexes are integer. This holds only for the
limited number of values of µ. In case of µ = 3

8
we have the flowing Fuchs

indexes on each branch of the solution:

j
(1)
1 = −1, j

(1)
2 = 0, j

(1)
3 = 3, j

(1)
4 = 4,

j
(2)
1 = −1, j

(2)
2 = 0, j

(2)
3 = 3, j

(2)
4 = 4.

(19)

We see that equation (14) does not pass Painlevé test in case of µ = 3
8
,

because if the Fuchs index equal to zero, u0 must be an arbitrary function, but
it is determined, thus we can not take three arbitrary constants in expression
(15).

In case of µ = −3 we have two sets of Fuchs indexes:

j
(1)
1 = −1, j

(1)
2 = 3, j

(1)
3 = 3, j

(1)
4 = 4;

j
(2)
1 = −1, j

(2)
2 = 3, j

(2)
3 = 4, j

(2)
4 = 6.

(20)

Thus equation (14) does not pass Painlevé test when µ = −3 because j
(1)
4 =

j
(1)
2 = 3 and expression (15) has to have logarithmic terms.

Let us consider case µ = 1
3
. We have Fuchs indexes

j
(1)
1 = −1, j

(1)
2 = 1, j

(1)
3 = 3, j

(1)
4 = 4,

j
(2)
1 = −1, j

(2)
2 = −2, j

(2)
3 = 3, j

(2)
4 = 4.

(21)
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According to the idea of Painlevé test we recall that (14) have the Painlevé
property if functions Φ, u1, u3, u4 are arbitrary in (15) for one branch of
solution and for the other branch we need to use special modification of
Painlevé test. Substituting (15) into (14) and consistently equating terms at
various powers of Φ to zero, we find

u0 = −3Φx, u2 =
u21
3Φx

− u1x

Φx
− Φxxu1

Φ2
x

+
Φ2
y

Φ3
x

+
Φxxx
Φ2
x

+
Φt
Φ2
x

, (22)

and u1 is an arbitrary function. Coefficient at Φ−2 has to be zero as u3 has to
be an arbitrary function. However we obtain that u3 can be arbitrary only
if the following equation is satisfied:

3
(Φy)

2Φxx
Φx

+ 3ΦyyΦx − 6ΦyΦxy = 0. (23)

It is obvious from (23) that u3 can not be taken as an arbitrary function.
Thus equation (14) does not have Painlevé property and seems not to be
integrable. However one is able to find a solution for equation (14) applying
truncated expansion method [18, 19]. We search for a solution of equation
(14) in the form

ρ(x, y, t) =
A0(x, y, t)

Φ(x, y, t)
+ A1(x, y, t). (24)

Substitute expression (24) into equation (14) and equating coefficients at
different powers of Φ to zero we find coefficients A0, A1. As general case
leads to cumbersome formulas we fix parameter µ = 3

8
, µ = −3 or µ = 1

3
.

These cases correspond to integer values of Fuchs indexes. We also search
for the solution in the form of solitary wave so we set Φ = ekxx+kyy−ωt+φ0 .
After all operations in case of µ = 3

8
we get the dispersion relation

ω =
1

2k1

(
k4x + 2k2y

)
, (25)

and functions

A0 = −4kxe
kxx+kyy−ωt+φ0 , A1 = 2kx. (26)

Thus, the solution of (14) in the form of solitary wave have the form

ρ = −2kx

(
ekxx+kyy−ωt+φ0 − 1

)

1 + ekxx+kyy−ωt+φ0
. (27)
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y

Figure 1: one–soliton solution (27) at time moment t = 0, as kx = 1, ky =
1, φ0 = 40

On figure 1 the exact solution for the equation (14) in the form of solitary
wave (27) is illustrated.

Analogously to case of µ = 3
8
, setting µ = −3 dispersion relation and

parameters take the form

ω = − 1

4kx

(
k4x − 4k2y

)
, A0 = −kxekxx+kyy−ωt+φ0 , A1 =

kx

2
, (28)

Substituting (28) into (24) analytical solution of the equation (14) is found
in the form

ρ = −kx
2

(
ekxx+kyy−ωt+φ0 − 1

)

1 + ekxx+kyy−ωt+φ0
. (29)

And in case of µ = 1
3
one can obtain relations

ω =
k4x + k2y

kx
, A0 = −6kxe

kxx+kyy−ωt+φ0 , A1 = 3kx, (30)

and the solution of equation (14)

ρ = −3kx

(
ekxx+kyy−ωt+φ0 − 1

)

1 + ekxx+kyy−ωt+φ0
. (31)

It is obvious that solutions (29) and (31) has the same type as (27).
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4 Travelling wave solutions of equation (14).

Let us investigate equation (14) using the travelling wave variables. Assum-
ing that ρ = ρ(z), z = x+y−C0t and integrating equation (14) with respect
to z, we get

(1− C0)ρz + µρ2ρz + ρzzz − (ρρz)z + C1 = 0, (32)

where C1 is a constant of integrating. Substituting ρ(z) = a0z
p+ ajz

p+j into

the leading terms of equation (32), we find constants p = 1, a0 = −3±
√
9−24 µ
2µ

and three Fuchs indexes which are the same as (18) except index j = 4.
Therefore equation (32) may pass the Painlevé test only if µ = 1

3
. In this

case the Fuchs indexes are

j
(1)
1 = −1, j

(1)
2 = 1, j

(1)
3 = 3;

j
(2)
1 = −1, j

(2)
2 = −2, j

(2)
3 = 3.

(33)

Here upper index stands for the number of branch of solution of (32) and
lower index is the number of index on the certain branch. On the first branch,
according to Painlevé approach solution of equation (32) is being searched
in the form of expansion

ρ(z) = zp
∞∑

j=0

ajz
j . (34)

Substituting (34) into (32) and equating coefficients at various powers of z
to zero, we obtain that a1, a3 are arbitrary constants and

a2 =
a21
3

− C0 + 1. (35)

The other constants can be defined too. On the second branch of solution
there is the Fuchs index below zero. One can confirm that equation (14) pass
the Painlevé test in travelling wave variable using Conte–Fordy–Pickering
algorithm (see, [20, 21]).

Let us apply Hopf–Cole transformations ρ(z) = −3ψ
′(z)
ψ(z)

for linearization

of equation (32) in case of µ = 1
3
. Using this transformations we obtain linear

equation for ψ(z)

(1− C0)ψ
′ + ψ′′′ = 0. (36)

Taking into account the general solution of equation (36) we obtain general
solution of equation (32)

ρ(z) =
c1
√
C0 − 1e

√
c−1z + c2

√
C0 − 1e−

√
C0−1z

c0 + c1e
√
C0−1z + c2e−

√
C0−1z

. (37)

9



Under some conditions on parameters, for example c0 = 1, c1 = 1, c2 =
1, C0 = 1.25 we are able to obtain solution in the form of solitary wave. The
result is demonstrated on figure 2.

y

Figure 2: solution of equation (32) in case of c0 = 1, c1 = 1, c2 = 1, C0 = 1.25

When c − 1 is below zero, we are able to obtain the periodical solution.
In case of t = 0, C0 = −3, c0 = 1, c1 = 1, c2 = 1 solution have form

ρ(x, y, t) = − 6 cos(6t+ 2x+ 2y)

(2 + sin(6t+ 2x+ 2y))
, (38)

and is given on figure 3. It is important to obtain solution of equation (14)
in the form of periodical wave (38) because it can be used for the testing of
program for numerical solution of equation (14) with the spectral method
and periodical boundary value conditions.

Solution (37) is obtained under strong conditions on parameters. Let
us apply method of the logistic function [22, 23] to get solution of equation
(32) in case of arbitrary value of parameter µ. We search for the solution of
equation (32) in the following form:

ρ(z) = B0 +B1Θ (z) , Θ (z) =
1

1− e−kz
, (39)

where B0, B1 are constants and Θ (z) is the so–called logistic function. Fol-
lowing [22], we expend (39) into Laurent series, substitute obtained expansion
into equation (32) and equate coefficients at different powers of z to zero. We
find that there are two solutions of equation (32) in the form (39) whith the

10



Figure 3: solution of equation (32) in case of t = 0, C0 = −3, c0 = 1, c1 =
1, c2 = 1

following constants:

B
(1,2)
1 =

(−3 ±
√
9− 25µ)k

2µ
, B

(1,2)
0 =

(3∓
√
9− 25µ)k

4µ
,

C
(1,2)
0 =

∓
√
9− 24µk2 − 4k2µ+ 3k2 + 8µ

8µ
.

(40)

It is worth noting that since B
(1)
1 + B

(2)
1 6= 0, there are no elliptic solutions

of equation (32). We can also assume that kz → kz+ iπ and obtain solution
in the form (39) without poles on the real line.

5 Numerical periodical solutions of the equa-

tion (14).

In this section we study numerically nonlinear waves governed by equation
(14). To this end we consider boundary value problem with periodical bound-
ary conditions. Let us rewrite eq. (14) in the form

ρt = L(ρ) +N(ρ), (41)

where L(ρ) = −ρxxx − ∂−1
x ρyy and N(ρ) = (ρρx)x − µ (ρ2ρx) are linear and

nonlinear operator of the equation (14) correspondingly. Antiderivative ∂−1
x

is an integral with respect to x . To solve boundary value problem which
includes equation (41), start conditions and periodical boundary conditions,
we use the integrating factor with the fourth–order Runge–Kutta approx-
imation method (IFRK4), presented in works [24, 25]. Using the Fourier
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transformation, we discretize the spatial part of equation (14) and get the
system of ordinary differential equations

ρ̂t = L̂(ρ) + N̂(ρ), ρ(x, 0) = ρ0(x), (42)

where ρ̂, L̂ = ik3x −
ik2

y

kx
and N̂ [ρ] = − ikxµ

3
ρ̂3 − 1

2
k2xρ̂

2 are the Fourier forms
of ρ, L, N correspondingly, kx, ky are Fourier multipliers. The basic idea
of integrating factor (IF) method is to use transformations that allows us to
solve the linear part of our problem exactly and then to solve the nonlinear
part of our problem numerically. These transformations are the following:

ρ̂ = e−L̂tρ, (43)

where e−L̂t is the IF. As a result, we obtain ordinary differential equation in
the following form

ρ̂t = e−L̂tN̂
(
ρ̂e−L̂t

)
. (44)

Equation (44) with initial conditions can be solved by the fourth–ordered
Runge–Kutta approximation method. It is obvious that equation (44) has to
be regularized for kx = 0 in order to give numerical sense to 1

kx
. Following

[26], we add to kx in the denominator a small imaginary part of appropriate
sign iλ0. For λ0 we use the smallest floating point number that MATLAB can

represent 2.2×10−16. In this case the linear operator has form L̂ = ik3x−
ik2

y

kx+iλ
.

To check our numerical strategy we used the exact solution of the equation
(14) in the periodical form (38). On each tome layer we define error for
numerical simulation as

Err = max
i,j

∣∣ρi,jnum − ρ
i,j
exact

∣∣ , (45)

where i and j are discrate coordinates of points in x and y axis correspond-
ingly, ρi,jnum and ρi,jexact are values of a numerical and exact solutions in the grid
point with the coordinate (i, j) correspondingly. Evolution of the error with
the time t is given on the figure 4. Taking into account results of numerical
simulation of the exact solution we can regard the algorithm effective.

Let us use numerical simulation for the investigation of stability of equa-
tion (14) to perturbations of the parameter µ. In case fo µ = 1

3
, traveling

wave reduction of equation (14) is integrable and we use its exact solution
(38) as initial conditions for numerical simulation of equation (14) in case of
µ = 1

3
+ δ. The result is presented on figure 5 for µ = 0.43. We see that wave

hold its shape but acquire different speed.
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t0 2 4 6 8 10

Err
×10

-6

0
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Figure 4: evolution of the error Err with the time t

T=0
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T=5

-5

0
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T=10-5

0

5

1

1

1

1

2

2

2

x

Figure 5: numerical solution of equation (14) with periodical boundary con-
ditions at µ = 0.43 (curve 1) and µ = 1

3
(curve 2)

We also use solitary wave 5
cosh2(x)+cosh2(y)

as an initial condition for nu-

merical calculations. Result of calculations is presented on figure 6. Small
perturbations in y direction appears and amplitude of the solitary wave de-
creases during time evolution.

6 Conclusion

We have obtained new nonlinear equation (14) for the description of waves
in a liquid with gas bubbles in two–dimensional case. Using the Painlevé
approach, we have shown that this equation is not integrable. We have
constructed some analytic solutions of equation (14) with the help of the
truncated expansion method. We have shown that traveling wave reduction
of eq. (14) can pass the Painlevé test under some conditions on parameters.

13



Figure 6: solitary wave simulation at µ = 10

We have shown that in this case equation (14) can be linearized with the
Hopf–Cole transformation. It has been shown that the equation for the
description of waves in a gas–liquid mixture admits kink–type and periodical
solutions. We have numerically investigated the evolution and stability of
nonlinear waves discribed by equation (14).
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