Energy conservation issues in the numerical solution of the semilinear wave equation

L. Brugnano ${ }^{a}$ G. Frasca Caccia ${ }^{a}$ F. Iavernaro ${ }^{b}$
${ }^{a}$ Dipartimento di Matematica e Informatica "U. Dini", Università di Firenze, Italy
${ }^{b}$ Dipartimento di Matematica, Università di Bari, Italy

January 23, 2015

Abstract

In this paper we discuss energy conservation issues related to the numerical solution of the semilinear wave equation. As is well known, this problem can be cast as a Hamiltonian system that may be autonomous or not, depending on the prescribed boundary conditions. We relate the conservation properties of the original problem to those of its semi-discrete version obtained by the method of lines. Subsequently, we show that the very same properties can be transferred to the solutions of the fully discretized problem, obtained by using energy-conserving methods in the HBVMs (Hamiltonian Boundary Value Methods) class. Similar arguments hold true for different types of Hamiltonian Partial Differential Equations, e.g., the nonlinear Schrödinger equation.

Keywords: semilinear wave equation; Hamiltonian PDEs; energy-conserving methods; Hamiltonian Boundary Value Methods; HBVMs.

AMS: 65P10, 65L05, 65M20.

1 Introduction

In this paper we discuss energy-conservation issues for the semilinear wave equation, though the approach can be extended to different kinds of Hamiltonian Partial Differential Equations (like, e.g., the nonlinear Schrödinger equation). For simplicity, but without loss of generality, we shall consider the following 1D case,

$$
\begin{align*}
u_{t t}(x, t) & =u_{x x}(x, t)-f^{\prime}(u(x, t)), \quad(x, t) \in(0,1) \times(0, \infty), \\
u(x, 0) & =\psi_{0}(x), \tag{1}\\
u_{t}(x, 0) & =\psi_{1}(x), \quad x \in(0,1),
\end{align*}
$$

coupled with suitable boundary conditions. As usual, subscripts denote partial derivatives. In (1), the functions f, ψ_{0} and ψ_{1} are supposed to be suitably regular, so that they define a regular solution $u(x, t)\left(f^{\prime}\right.$ denotes the derivative of $\left.f\right)$. The problem is
completed by assigning suitable boundary conditions which we shall, at first, assume to be periodic,

$$
\begin{equation*}
u(0, t)=u(1, t), \quad t>0 . \tag{2}
\end{equation*}
$$

In such a case, we will assume that ψ_{0}, ψ_{1}, and f are such that the resulting solution also satisfies

$$
\begin{equation*}
u_{x}(0, t)=u_{x}(1, t), \quad t>0 . \tag{3}
\end{equation*}
$$

Later on, we shall also consider the case of Dirichlet boundary conditions,

$$
\begin{equation*}
u(0, t)=\varphi_{0}(t), \quad u(1, t)=\varphi_{1}(t), \quad t>0, \tag{4}
\end{equation*}
$$

and Neumann boundary conditions,

$$
\begin{equation*}
u_{x}(0, t)=\phi_{0}(t), \quad u_{x}(1, t)=\phi_{1}(t), \quad t>0, \tag{5}
\end{equation*}
$$

with $\varphi_{0}(t), \varphi_{1}(t), \phi_{0}(t)$, and $\phi_{1}(t)$ suitably regular. We set

$$
\begin{equation*}
v=u_{t} \tag{6}
\end{equation*}
$$

and define the functional

$$
\begin{equation*}
\mathcal{H}[u, v](t)=\int_{0}^{1}\left[\frac{1}{2} v^{2}(x, t)+\frac{1}{2} u_{x}^{2}(x, t)+f(u(x, t))\right] \mathrm{d} x \equiv \int_{0}^{1} E(x, t) \mathrm{d} x . \tag{7}
\end{equation*}
$$

As is well known, we can rewrite (1) as the infinite-dimensional Hamiltonian system (for brevity, we neglect the arguments of the functions u and v)

$$
\begin{equation*}
\mathbf{z}_{t}=J \frac{\delta \mathcal{H}}{\delta \mathbf{z}} \tag{8}
\end{equation*}
$$

where

$$
J=\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-1 & 0
\end{array}\right), \quad \mathbf{z}=\binom{u}{v}
$$

and

$$
\begin{equation*}
\frac{\delta \mathcal{H}}{\delta \mathbf{z}}=\left(\frac{\delta \mathcal{H}}{\delta u}, \frac{\delta \mathcal{H}}{\delta v}\right)^{\top} \tag{10}
\end{equation*}
$$

is the functional derivative of \mathcal{H}. This latter is defined as follows: given a generic functional in the form

$$
\mathcal{L}[q]=\int_{a}^{b} L\left(x, q(x), q^{\prime}(x)\right) \mathrm{d} x
$$

its functional derivative $\frac{\delta \mathcal{L}}{\delta q}$ is defined by requiring that, for every function $\xi(x)$,

$$
\int_{a}^{b} \frac{\delta \mathcal{L}}{\delta q} \cdot \xi \mathrm{~d} x \equiv \lim _{\varepsilon \rightarrow 0} \frac{\mathcal{L}[q+\varepsilon \xi]-\mathcal{L}[q]}{\varepsilon}=\left.\frac{d}{d \varepsilon} \mathcal{L}[q+\varepsilon \xi]\right|_{\varepsilon=0}
$$

In particular, by considering a function ξ vanishing at a and b, one obtains:

$$
\begin{aligned}
\int_{a}^{b} \frac{\delta \mathcal{L}}{\delta q} \cdot \xi \mathrm{~d} x & =\left[\frac{d}{d \varepsilon} \int_{a}^{b} L\left(x, q+\varepsilon \xi, q^{\prime}+\varepsilon \xi^{\prime}\right) \mathrm{d} x\right]_{\varepsilon=0}=\int_{a}^{b}\left(\frac{\partial L}{\partial q} \xi+\frac{\partial L}{\partial q^{\prime}} \xi^{\prime}\right) \mathrm{d} x \\
& =\int_{a}^{b}\left[\frac{\partial L}{\partial q} \xi+\frac{d}{d x}\left(\frac{\partial L}{\partial q^{\prime}} \xi\right)-\left(\frac{d}{d x} \frac{\partial L}{\partial q^{\prime}}\right) \xi\right] \mathrm{d} x \\
& =\int_{a}^{b}\left[\frac{\partial L}{\partial q} \xi-\left(\frac{d}{d x} \frac{\partial L}{\partial q^{\prime}}\right) \xi\right] \mathrm{d} x=\int_{a}^{b}\left(\frac{\partial L}{\partial q}-\left(\frac{d}{d x} \frac{\partial L}{\partial q^{\prime}}\right)\right) \xi \mathrm{d} x
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\frac{\delta \mathcal{L}}{\delta q}=\frac{\partial L}{\partial q}-\left(\frac{d}{d x} \frac{\partial L}{\partial q^{\prime}}\right) . \tag{11}
\end{equation*}
$$

Exploiting (11), one easily verifies that (8)-(10) are equivalent to (1):

$$
\mathbf{z}_{t}=\binom{u_{t}}{v_{t}}=J \frac{\delta \mathcal{H}}{\delta \mathbf{z}}=\binom{\frac{\delta \mathcal{H}}{\delta v}}{-\frac{\delta \mathcal{H}}{\delta u}}=\binom{v}{u_{x x}-f^{\prime}(u)},
$$

or

$$
\begin{align*}
u_{t}(x, t) & =v(x, t), \quad(x, t) \in(0,1) \times(0, \infty), \\
v_{t}(x, t) & =u_{x x}(x, t)-f^{\prime}(u(x, t)), \tag{12}
\end{align*}
$$

that is, the first-order formulation of the first equation in (1).
The numerical treatment of Hamiltonian PDEs such as (1) has been the subject of an intense research activity during the past decade (see, e.g., 10 for a survey). The extension of ideas and tools related to geometric integration of ordinary differential equations (ODEs) has led to the definition and analysis of various structure preserving algorithms suitable for specific or general classes of PDEs. Two main lines of investigations are based on a multisymplectic reformulation of the equations or their semi-discretization by means of the method of lines.

Multisymplectic structures generalize the classical Hamiltonian structure of a Hamiltonian ODE by assigning a distinct symplectic operator for each unbounded space direction and time [7]. A clear advantage of this approach is that it allows for an easy generalization from symplectic to multisymplectic integration. Multisymplectic integrators are numerical methods which precisely conserve a discrete space-time symplectic structure of Hamiltonian PDEs [65, 8, 55, 41, 40, 50] (a backward error analysis of such schemes may be found in [68, 56, 57]).

In the method of lines approach, the spatial derivatives are usually approximated by finite differences or by discrete Fourier transform and the resulting system is then integrated in time by a suitable ODE integrator. Spectral methods have revealed very good potentialities especially in the case of periodic boundary conditions [39, [75, 11 For weakly nonlinear term f^{\prime} in (1], the modulated Fourier expansion technique [47, Chapter XIII] has been adapted to both the semi-discretized and the full-discretized systems to state long-time near conservation of energy, momentum, and actions [48, 33]. In general, quoting [72, p. 187], if the PDEs are of Hamiltonian type, (...) the space discretization should be carried out in such a way that the resulting system of ODEs is Hamiltonian (for a suitable Poisson bracket) and the time integration should also be carried out by a symplectic or Poisson integrator. This approach (which we shall consider here), has been the subject of many researches (e.g., [27, 42, 49, 46, 62, 64, 69, 70]). Whichever is the considered discretization, the main aim is that of keeping conserved discrete counterparts of continuous invariants, as done, e.g., in [43, 44, 51, 66, 67], with the so called discrete variational derivative method. Additional references are [38, 63, 73].

In this paper, we focus our attention on numerical techniques able to provide a full discretization of the original system with the discrete energy behaving consistently with the energy function associated with (1). More precisely, to approximate the second

[^0]order spatial derivative, we use either a central finite difference or a spectral expansion, and then we derive a semi-discrete analogue of the conservation law associated with the energy density. As is well known, whatever the boundary conditions, the rate of change of the energy density integrated over an interval depends only on the flux through its endpoints. We show that the use of an energy-conserving method to discretize the time assures a precise reproduction of the above mentioned conservation law of the semi-discrete model. In particular, if there is no net flux into or out of the interval, then the integrated energy density is precisely conserved, meaning that it remains constant over time. Some of the presented results, in the case of periodic boundary conditions, are already known (see, e.g., [70, 69, 27]). Nevertheless, these authors mainly focus on the conservation properties of the semi-discrete model, and consider accurate symplectic integrators for their solution. Instead, we are here more interested in a precise conservation of the semi-discrete energy and, because of this reason, we consider energy-conserving methods. Moreover, the algebraic form in which we cast the semidiscrete problem is quite concise, and allows for a simple extension to the case where the boundary conditions are not periodic.

To the best of our knowledge, only the case of periodic boundary conditions has been studied thoroughly. In such a case, the integral of E (see (7) is indeed a conserved quantity and one obtains energy conservation (see, e.g., 61). Therefore, it makes sense to look for a corresponding conservation property, when numerically solving the problem (as done, e.g., in [70, 69, 27]). Nevertheless, also in the other cases, which are of interest in applications, the qualitative properties of the solution can be suitably reproduced in the discrete approximation by slightly generalizing the arguments. In fact, in all cases, one may derive a semi-discrete problem which turns out to be Hamiltonian, and whose Hamiltonian mimics a semi-discrete energy which is exactly conserved. Consequently, it makes sense to use energy-conserving methods for their numerical solution.

Energy conserving methods, in turn, have been the subject of many investigations, in the ODE setting, during the past years: we quote, as an example, discrete gradient methods [60, 59], time finite elements [4, 5], the average vector field method [71, 30, 31] and its generalizations [45]. This latter method has also been considered in the PDE setting (e.g., [29]). In particular, we shall here consider the energy-conserving methods in the class of Hamiltonian Boundary Value Methods (HBVMs) [16, 17, 18, 19, 20, 21, 13, which are methods based on the concept of discrete line integral, as defined in [52, 53, 54]. Such methods have been also generalized to the case of different conservative problems [12, 15, 22, 23, 26] and, more recently, they have been used for numerically solving Hamiltonian boundary value problems [2].

With this premise, the paper is organized as follows:

- we study, at first, the discrete problems derived by a finite-difference spatial discretization. In particular, in Section 2 we study the case in which problem (1) is completed by the periodic boundary conditions (2); the case of Dirichlet boundary conditions (4) will be the subject of Section 3; at last, the case of Neumann boundary conditions (5) will be examined in Section 4 .
- we then study, in Section 5, the case where a Fourier-Galerkin space discretization is considered. For sake of brevity, we shall here be concerned only with the case where periodic boundary conditions are prescribed. Also, higher order finitedifference approximations are sketched;
- in Section 6 we sketch the efficient implementation of the proposed energy-conserv-
ing methods. In Section 7 we report a few numerical tests, whereas Section 8 contains a few concluding remarks;
- finally, in the Appendix we sketch the way how the whole approach can be extended to different kinds of Hamiltonian PDEs. In particular, we consider the nonlinear Schrödinger equation.

2 The case of periodic boundary conditions

By considering that the time derivative of the integrand function $E(x, t)$ defined at (7) satisfies (see 12)

$$
\begin{aligned}
E_{t}(x, t) & =v(x, t) v_{t}(x, t)+u_{x}(x, t) u_{x t}(x, t)+f^{\prime}(u(x, t)) u_{t}(x, t) \\
& =v(x, t)\left(u_{x x}(x, t)-f^{\prime}(u(x, t))\right)+u_{x}(x, t) v_{x}(x, t)+f^{\prime}(u(x, t)) v(x, t) \\
& =v(x, t) u_{x x}(x, t)+u_{x}(x, t) v_{x}(x, t)=\left(u_{x}(x, t) v(x, t)\right)_{x} \equiv-F_{x}(x, t),
\end{aligned}
$$

one derives the conservation law:

$$
\begin{equation*}
E_{t}(x, t)+F_{x}(x, t)=0, \quad \text { with } \quad F(x, t)=-u_{x}(x, t) v(x, t) \tag{13}
\end{equation*}
$$

Consequently, because of the periodic boundary conditions (2) (and (3)), one obtains

$$
\dot{\mathcal{H}}[\mathbf{z}](t)=\int_{0}^{1} E_{t}(x, t) \mathrm{d} x=\left[u_{x}(x, t) v(x, t)\right]_{x=0}^{1}=0
$$

where, as usual, the dot denotes the time derivative. Therefore (7) is a conserved quantity, so that at $t=h$ one has:

$$
\mathcal{H}[\mathbf{z}](h)=\mathcal{H}[\mathbf{z}](0) .
$$

We also recast the Hamiltonian function in a more convenient form to be used in the sequel. In case of the periodic boundary conditions (2), from (7) one has

$$
\begin{align*}
\mathcal{H}[\mathbf{z}](t) & \equiv \int_{0}^{1} E(x, t) \mathrm{d} x=\int_{0}^{1}\left[\frac{1}{2} v^{2}(x, t)+\frac{1}{2} u_{x}^{2}(x, t)+f(u(x, t))\right] \mathrm{d} x \\
& =\int_{0}^{1}\left[\frac{1}{2} v^{2}(x, t)+\frac{1}{2}\left[\left(u(x, t) u_{x}(x, t)\right)_{x}-u(x, t) u_{x x}(x, t)\right]+f(u(x, t))\right] \mathrm{d} x \\
& =\int_{0}^{1}\left[\frac{1}{2} v^{2}(x, t)-\frac{1}{2} u(x, t) u_{x x}(x, t)+f(u(x, t))\right] \mathrm{d} x+\frac{1}{2} \underbrace{\left[u(x, t) u_{x}(x, t)\right]_{x=0}^{1}}_{=0} \\
& =\int_{0}^{1}\left[\frac{1}{2} v^{2}(x, t)-\frac{1}{2} u(x, t) u_{x x}(x, t)+f(u(x, t))\right] \mathrm{d} x \tag{14}
\end{align*}
$$

where $\left[u u_{x}\right]_{x=0}^{1}=0$ because of the periodic boundary conditions (2) (and (3)).

2.1 Semi-discretization

For numerically solving problem (1)-(2), let us introduce the following discretization of the space variable,

$$
\begin{equation*}
x_{i}=i \Delta x, \quad i=0, \ldots, N, \quad \Delta x=1 / N \tag{15}
\end{equation*}
$$

and the vectors:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{0} \\
\vdots \\
x_{N-1}
\end{array}\right), \quad \mathbf{q}(t)=\left(\begin{array}{c}
u_{0}(t) \\
\vdots \\
u_{N-1}(t)
\end{array}\right), \quad \mathbf{p}(t)=\left(\begin{array}{c}
v_{0}(t) \\
\vdots \\
v_{N-1}(t)
\end{array}\right) \in \mathbb{R}^{N}
$$

with

$$
\begin{equation*}
u_{i}(t) \approx u\left(x_{i}, t\right), \quad v_{i}(t) \approx v\left(x_{i}, t\right) \equiv u_{t}\left(x_{i}, t\right) \tag{16}
\end{equation*}
$$

Because of the periodic boundary conditions (2), we also set:

$$
u_{N}(t) \equiv u_{0}(t), \quad u_{-1}(t) \equiv u_{N-1}(t), \quad t \geq 0 .
$$

Approximating the second derivative in (12) as

$$
\begin{equation*}
u_{x x}\left(x_{i}, t\right) \approx \frac{u_{i+1}(t)-2 u_{i}(t)+u_{i-1}(t)}{\Delta x^{2}}, \quad i=0, \ldots, N-1, \tag{17}
\end{equation*}
$$

yields the following semi-discrete problem

$$
\begin{align*}
\dot{\mathbf{q}} & =\mathbf{p} \tag{18}\\
\dot{\mathbf{p}} & =-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}-f^{\prime}(\mathbf{q}), \quad t>0
\end{align*}
$$

with the initial condition

$$
\begin{equation*}
\mathbf{q}(0)=\psi_{0}(\mathbf{x}), \quad \mathbf{p}(0)=\psi_{1}(\mathbf{x}) \tag{19}
\end{equation*}
$$

(with an obvious meaning for $f^{\prime}(\mathbf{q}), \psi_{0}(\mathbf{x})$, and $\psi_{1}(\mathbf{x})$) and the following approximation of the Hamiltonian (14),

$$
\begin{equation*}
H \equiv H(\mathbf{q}, \mathbf{p})=\Delta x\left[\frac{\mathbf{p}^{\top} \mathbf{p}}{2}+\frac{\mathbf{q}^{\top} T_{N} \mathbf{q}}{2 \Delta x^{2}}+\mathbf{e}^{\top} f(\mathbf{q})\right] \tag{20}
\end{equation*}
$$

where T_{N} is a circulant matrix. ${ }^{2}$

$$
T_{N}=\left[\begin{array}{ccccc}
2 & -1 & & & -1 \tag{21}\\
-1 & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
-1 & & & -1 & 2
\end{array}\right] \in \mathbb{R}^{N \times N},
$$

and

$$
\mathbf{e}=\left(\begin{array}{lll}
1 & \ldots & 1 \tag{22}
\end{array}\right)^{\top} \in \mathbb{R}^{N} .
$$

Problem (18) is clearly Hamiltonian. In fact, one has

$$
\dot{\mathbf{q}}=\frac{1}{\Delta x} \nabla_{\mathbf{p}} H, \quad \dot{\mathbf{p}}=-\frac{1}{\Delta x} \nabla_{\mathbf{q}} H
$$

[^1]or, by introducing the vector
$$
\mathbf{y}=\binom{\mathbf{q}}{\mathbf{p}}
$$
one obtains the more compact form
\[

\dot{\mathbf{y}}=J_{N} \nabla H(\mathbf{y}), \quad with \quad J_{N}=\frac{1}{\Delta x}\left($$
\begin{array}{cc}
& I_{N} \tag{23}\\
-I_{N}
\end{array}
$$\right),
\]

where here and in the sequel we use, when appropriate, the notation $H(\mathbf{y})=H(\mathbf{q}, \mathbf{p})$. Consequently,

$$
\dot{H}(\mathbf{y})=\nabla H(\mathbf{y})^{\top} \dot{\mathbf{y}}=\nabla H(\mathbf{y})^{\top} J_{N} \nabla H(\mathbf{y})=0
$$

because J_{N} is skew-symmetric. One then concludes that the discrete approximation (20) to (14) is a conserved quantity for the semi-discrete problem (23). Writing (20) in componentwise form,

$$
\begin{equation*}
H(\mathbf{q}, \mathbf{p})=\Delta x \sum_{i=0}^{N-1}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right), \tag{24}
\end{equation*}
$$

one notices that (20) is nothing but the approximation of (14) via the composite trapezoidal rule (provided that the second derivative $u_{x x}$ has been previously approximated as indicated at (17), and taking into account the periodic boundary conditions (27). Consequently, one sees that (24) is a $O\left(\Delta x^{2}\right)$ approximation to 144 .

2.2 Full discretization

Problem (23) can be discretized by using a $\operatorname{HBVM}(k, s)$ method which allows for an (at least practical) conservation of (20), by using a suitably large value $k \geq s$ [21], as is shown in the sequel. Let us study the approximation to the solution over the time interval $[0, h]$, representing the very first step of the numerical approximation, to be repeated subsequently. For this purpose, we shall consider the orthonormal polynomial basis over the interval $[0,1],\left\{P_{j}\right\}$, given by the shifted and scaled Legendre polynomials:

$$
\operatorname{deg} P_{i}=i, \quad \int_{0}^{1} P_{i}(x) P_{j}(x) \mathrm{d} x=\delta_{i j}, \quad \forall i, j \geq 0
$$

$\delta_{i j}$ being the Kronecker symbol. Let us then expand the right-hand side of (23) along this basis, thus obtaining

$$
\begin{equation*}
\dot{\mathbf{y}}(c h)=\sum_{j \geq 0} \gamma_{j}(\mathbf{y}) P_{j}(c), \quad c \in[0,1], \tag{25}
\end{equation*}
$$

with

$$
\begin{equation*}
\gamma_{j}(\mathbf{y})=\int_{0}^{1} J_{N} \nabla H(\mathbf{y}(\tau h)) P_{j}(\tau) \mathrm{d} \tau, \quad j \geq 0 \tag{26}
\end{equation*}
$$

It is possible to prove the following result [21].
Lemma 1 Assume $\nabla H(\mathbf{y}(\cdot))$ can be expanded in Taylor series at 0 . Then:

$$
\gamma_{j}(\mathbf{y})=O\left(h^{j}\right) \in \mathbb{R}^{2 N}, \quad j=0,1, \ldots
$$

Setting the initial condition (see (11)

$$
\begin{equation*}
\mathbf{y}_{0}=\binom{\psi_{0}(\mathbf{x})}{\psi_{1}(\mathbf{x})}, \tag{27}
\end{equation*}
$$

with $\psi_{j}(\mathbf{x}), j=0,1$, the vector whose entries are given by $\psi_{j}\left(x_{i}\right)$, the solution of (25)-27) is then formally given by:

$$
\begin{equation*}
\mathbf{y}(c h)=\mathbf{y}_{0}+h \sum_{j \geq 0} \gamma_{j}(\mathbf{y}) \int_{0}^{c} P_{j}(x) \mathrm{d} x, \quad c \in[0,1] \tag{28}
\end{equation*}
$$

In order to obtain a polynomial approximation $\sigma \in \Pi_{s}$ to (28), we consider the following truncated initial value problem 21],

$$
\begin{equation*}
\dot{\boldsymbol{\sigma}}(c h)=\sum_{j=0}^{s-1} \gamma_{j}(\boldsymbol{\sigma}) P_{j}(c), \quad c \in[0,1], \quad \boldsymbol{\sigma}(0)=\mathbf{y}_{0} \tag{29}
\end{equation*}
$$

where $\gamma_{j}(\boldsymbol{\sigma})$ is still given by 26 by replacing \mathbf{y} with $\boldsymbol{\sigma}$. The polynomial approximation to (28) is then formally given by:

$$
\boldsymbol{\sigma}(c h)=\mathbf{y}_{0}+h \sum_{j=0}^{s-1} \gamma_{j}(\boldsymbol{\sigma}) \int_{0}^{c} P_{j}(x) \mathrm{d} x, \quad c \in[0,1]
$$

The use of a quadrature formula of order $2 k$ to approximate the integral defining $\gamma_{j}(\boldsymbol{\sigma})$ (see (26)) would give [21]

$$
\begin{align*}
\gamma_{j}(\boldsymbol{\sigma}) & =\underbrace{\int_{0}^{1} J_{N} \nabla H(\boldsymbol{\sigma}(\tau h)) P_{j}(\tau) \mathrm{d} \tau}_{=\hat{\gamma}_{j}(\boldsymbol{\sigma})} \\
& =\underbrace{\sum_{\ell}^{k} b_{\ell} P_{j}\left(c_{\ell}\right) J_{N} \nabla H\left(\boldsymbol{\sigma}\left(c_{\ell} h\right)\right)}_{\ell=1}+\Delta_{j}(h) \equiv \hat{\gamma}_{j}(\boldsymbol{\sigma})+\Delta_{j}(h) \tag{30}
\end{align*}
$$

with

$$
\begin{equation*}
\Delta_{j}(h)=O\left(h^{2 k-j}\right) \in \mathbb{R}^{2 N}, \quad j=0, \ldots, s-1 \tag{31}
\end{equation*}
$$

In such a case, however, we have a different polynomial $\mathbf{u} \in \Pi_{s}$, in place of $\boldsymbol{\sigma}$, solution of the problem

$$
\begin{align*}
& \dot{\mathbf{u}}(c h)=\sum_{j=0}^{s-1} \hat{\gamma}_{j}(\mathbf{u}) P_{j}(c), \quad c \in[0,1], \quad \mathbf{u}(0)=\mathbf{y}_{0} \tag{32}\\
& \hat{\gamma}_{j}(\mathbf{u})=\sum_{i=1}^{k} b_{i} P_{j}\left(c_{i}\right) J_{N} \nabla H\left(\mathbf{u}\left(c_{i} h\right)\right), \quad j=0, \ldots, s-1
\end{align*}
$$

instead of 29 : this latter problem defines a $\operatorname{HBVM}(k, s)$ method.
If $H(\mathbf{q}, \mathbf{p})$ in 20 is a polynomial of degree $\nu \geq 2$ (which means that $\left.f \in \Pi_{\nu}\right)^{3}$, and k is an integer such that

$$
\begin{equation*}
k \geq \frac{1}{2} \nu s \quad \Leftrightarrow \quad \nu \leq \frac{2 k}{s} \tag{33}
\end{equation*}
$$

[^2]we can exactly compute the integrals $\gamma_{j}(\boldsymbol{\sigma})$ by means of a Gauss-quadrature formula of order $2 k$, so that $\mathbf{u} \equiv \boldsymbol{\sigma}$ and, then:
\[

$$
\begin{align*}
& H(\boldsymbol{\sigma}(h))-H(\boldsymbol{\sigma}(0))=h \int_{0}^{1} \nabla H(\boldsymbol{\sigma}(\tau h))^{\top} \dot{\boldsymbol{\sigma}}(\tau h) \mathrm{d} \tau \tag{34}\\
& \quad=h \int_{0}^{1} \nabla H(\boldsymbol{\sigma}(\tau h))^{\top} \sum_{j=0}^{s-1} P_{j}(\tau) \gamma_{j}(\boldsymbol{\sigma}) \mathrm{d} \tau=h \Delta x^{2} \sum_{j=0}^{s-1} \gamma_{j}(\boldsymbol{\sigma})^{\top} J_{N} \gamma_{j}(\boldsymbol{\sigma})=0,
\end{align*}
$$
\]

due to the fact that J_{N} is skew-symmetric. If f, and then H, is not a polynomial, by taking into account (23) and $(30)-(32)$, the error on the Hamiltonian H, at $t=h$, is:

$$
\begin{align*}
H & (\mathbf{u}(h))-H(\mathbf{u}(0))=h \int_{0}^{1} \nabla H(\mathbf{u}(\tau h))^{\top} \dot{\mathbf{u}}(\tau h) \mathrm{d} \tau \\
& =h \int_{0}^{1} \nabla H(\mathbf{u}(\tau h))^{\top} \sum_{j=0}^{s-1} P_{j}(\tau)\left(\gamma_{j}(\mathbf{u})-\Delta_{j}(h)\right) \mathrm{d} \tau \\
& =h \Delta x^{2} \sum_{j=0}^{s-1}[\overbrace{\gamma_{j}(\mathbf{u})^{\top} J_{N} \gamma_{j}(\mathbf{u})}^{=0}-\gamma_{j}(\mathbf{u})^{\top} J_{N} \Delta_{j}(h)] \\
& =h \underbrace{\Delta x \cdot N}_{=1} \cdot O\left(h^{2 k}\right) \equiv O\left(h^{2 k+1}\right), \tag{35}
\end{align*}
$$

where the last equality follows from Lemma 1 and (31). Consequently, choosing k large enough allows us to approximate the Hamiltonian H within full machine accuracy. Summing up all the previous arguments and taking into account the results in [21], the following results can be proved.

Theorem 1 The $\operatorname{HBVM}(k, s)$ method (32) is the k-stage Runge-Kutta method with tableau

$$
\begin{align*}
& \mathbf{c} \mathcal{I P}^{\top} \Omega \quad \text { with }\left\{\begin{array}{llll}
\mathbf{b} & =\left(\begin{array}{lll}
b_{1} & \ldots & b_{k}
\end{array}\right)^{\top} \\
\mathbf{c} & =\left(\begin{array}{lll}
c_{1} & \ldots & c_{k}
\end{array}\right)^{\top}, \quad \Omega=\left(\begin{array}{lll}
b_{1} & & \\
& \ddots & \\
& & b_{k}
\end{array}\right), ~(3)
\end{array}\right. \tag{36}\\
& \text { and } \quad \mathcal{P}=\left(P_{j-1}\left(c_{i}\right)\right), \mathcal{I}=\left(\int_{0}^{c_{i}} P_{j-1}(x) \mathrm{d} x\right) \in \mathbb{R}^{k \times s} \text {. }
\end{align*}
$$

Theorem 2 Assume $k \geq s$, and define $\mathbf{y}_{1}=\mathbf{u}(h)$ as the new approximation to $\mathbf{y}(h)$ provided by a $\operatorname{HBVM}(k, s)$ method used with stepsize h. One then obtains:

$$
\mathbf{y}_{1}-\mathbf{y}(h)=O\left(h^{2 s+1}\right)
$$

that is the method has order $2 s$. Moreover, with reference to (33), and assuming that f is suitably regular:

$$
H\left(\mathbf{y}_{1}\right)-H\left(\mathbf{y}_{0}\right)=\left\{\begin{array}{cl}
0, & \text { if } f \in \Pi_{\nu} \text { and } \nu \leq 2 k / s \\
O\left(h^{2 k+1}\right), & \text { otherwise }
\end{array}\right.
$$

Remark 1 From this result, it follows that one can always obtain the conservation of the discrete Hamiltonian (20) when f is a polynomial, by choosing k large enough. Moreover, as (35) suggests, also in the non-polynomial case, a practical conservation of (20) can be gained by choosing k large enough, so that the approximation is within round-off errors. As we shall see in Section 6, this is not a severe drawback, since the discrete problem generated by a $\operatorname{HBVM}(k, s)$ method has dimension s, independently of k (see also [19, [21, 13]).

3 The case of Dirichlet boundary conditions

Let us now consider the case when the considered problem is given by (1) with the boundary conditions (4). By repeating similar steps as done in (14), one obtains:

$$
\begin{align*}
\mathcal{H}[\mathbf{z}](t)= & \int_{0}^{1} E(x, t) \mathrm{d} x \equiv \int_{0}^{1}\left[\frac{1}{2} v(x, t)^{2}+\frac{1}{2} u_{x}(x, t)^{2}+f(u(x, t))\right] \mathrm{d} x \\
= & \int_{0}^{1}\left[\frac{1}{2} v(x, t)^{2}+\frac{1}{2}\left[\left(u(x, t) u_{x}(x, t)\right)_{x}-u(x, t) u_{x x}(x, t)\right]+f(u(x, t))\right] \mathrm{d} x \\
= & \int_{0}^{1}\left[\frac{1}{2} v(x, t)^{2}-\frac{1}{2} u(x, t) u_{x x}(x, t)+f(u(x, t))\right] \mathrm{d} x+\frac{1}{2}\left[u(x, t) u_{x}(x, t)\right]_{x=0}^{1} \\
= & \int_{0}^{1}\left[\frac{1}{2} v(x, t)^{2}-\frac{1}{2} u(x, t) u_{x x}(x, t)+f(u(x, t))\right] \mathrm{d} x+ \\
& \frac{1}{2}\left[u(1, t) u_{x}(1, t)-u(0, t) u_{x}(0, t)\right] . \tag{37}
\end{align*}
$$

Moreover, $\mathcal{H}[\mathbf{z}]$ is no more conserved because formally (13) still holds true and, then, one obtains (see also (7), and taking into account the boundary conditions (4)):

$$
\begin{equation*}
\dot{\mathcal{H}}[\mathbf{z}](t)=\int_{0}^{1} E_{t}(x, t) \mathrm{d} x=\left[u_{x}(x, t) v(x, t)\right]_{x=0}^{1}=u_{x}(1, t) \varphi_{1}^{\prime}(t)-u_{x}(0, t) \varphi_{0}^{\prime}(t) \tag{38}
\end{equation*}
$$

Equation (38) may be interpreted as the instant variation of the energy which is released or gained by the system at time t. Thus, the continuous Hamiltonian (7), though no more conserved, has a prescribed variation in time. From (38), at $t=h$ one easily obtains:

$$
\begin{equation*}
\mathcal{H}[\mathbf{z}](h)-\mathcal{H}[\mathbf{z}](0)=\int_{0}^{h} \dot{\mathcal{H}}[\mathbf{z}](t) \mathrm{d} t=\int_{0}^{h}\left[u_{x}(1, t) \varphi_{1}^{\prime}(t)-u_{x}(0, t) \varphi_{0}^{\prime}(t)\right] \mathrm{d} t . \tag{39}
\end{equation*}
$$

3.1 Semi-discretization

In order for numerically solving problem (1)-(4), let us introduce the following discretization of the space variable,

$$
\begin{equation*}
x_{i}=i \Delta x, \quad i=0, \ldots, N+1 \quad \Delta x=1 /(N+1) \tag{40}
\end{equation*}
$$

and the vectors:

$$
\mathbf{x}=\left(\begin{array}{c}
x_{1} \tag{41}\\
\vdots \\
x_{N}
\end{array}\right), \quad \mathbf{q}(t)=\left(\begin{array}{c}
u_{1}(t) \\
\vdots \\
u_{N}(t)
\end{array}\right), \quad \mathbf{p}(t)=\left(\begin{array}{c}
v_{1}(t) \\
\vdots \\
v_{N}(t)
\end{array}\right) \in \mathbb{R}^{N}
$$

with $u_{i}(t)$ and $v_{i}(t)$ formally defined as in (16). Approximating the second derivatives in (12) as follows,

$$
\begin{equation*}
u_{x x}\left(x_{i}, t\right) \approx \frac{u_{i+1}(t)-2 u_{i}(t)+u_{i-1}(t)}{\Delta x^{2}}, \quad i=1, \ldots, N \tag{42}
\end{equation*}
$$

and, moreover,

$$
\begin{equation*}
u_{x}(1, t) \approx \frac{u_{N+1}(t)-u_{N}(t)}{\Delta x}, \quad u_{x}(0, t) \approx \frac{u_{1}(t)-u_{0}(t)}{\Delta x} \tag{43}
\end{equation*}
$$

we then arrive at the following semi-discrete version of (37):

$$
\begin{align*}
H= & \Delta x \sum_{i=1}^{N}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right) \\
& +\frac{1}{2}\left[u_{N+1} \frac{u_{N+1}-u_{N}}{\Delta x}-u_{0} \frac{u_{1}-u_{0}}{\Delta x}\right] \tag{44}
\end{align*}
$$

Moreover, because of the boundary conditions (4), one has:

$$
\begin{equation*}
u_{0}(t)=\varphi_{0}(t), \quad u_{N+1}(t)=\varphi_{1}(t) \tag{45}
\end{equation*}
$$

so that we obtain the following semi-discrete approximation to the Hamiltonian (37):

$$
H=\Delta x \sum_{i=1}^{N}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right)+\varphi_{1} \frac{\varphi_{1}-u_{N}}{2 \Delta x}+\varphi_{0} \frac{\varphi_{0}-u_{1}}{2 \Delta x} .
$$

H can be rewritten in vector form as

$$
\begin{equation*}
H \equiv H(\mathbf{q}, \mathbf{p}, t)=\Delta x\left[\frac{\mathbf{p}^{\top} \mathbf{p}}{2}+\frac{\mathbf{q}^{\top} T_{N} \mathbf{q}}{2 \Delta x^{2}}+\mathbf{e}^{\top} f(\mathbf{q})\right]+\frac{\boldsymbol{\varphi}(t)^{\top} \boldsymbol{\varphi}(t)}{2 \Delta x}-\frac{\mathbf{q}^{\top} \boldsymbol{\varphi}(t)}{\Delta x} \tag{46}
\end{equation*}
$$

where e has been defined in 22 and, moreover:

$$
T_{N}=\left(\begin{array}{ccccc}
2 & -1 & & & \tag{47}\\
-1 & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbb{R}^{N \times N}, \quad \varphi(t)=\left(\begin{array}{c}
\varphi_{0}(t) \\
0 \\
\vdots \\
0 \\
\varphi_{1}(t)
\end{array}\right) \in \mathbb{R}^{N}
$$

With reference to $(46)-(47)$, the corresponding semi-discrete problem is then given by:

$$
\begin{align*}
\dot{\mathbf{q}} & =\mathbf{p} \equiv \frac{1}{\Delta x} \nabla_{\mathbf{p}} H, \quad t>0 \tag{48}\\
\dot{\mathbf{p}} & =-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}+\frac{1}{\Delta x^{2}} \varphi-f^{\prime}(\mathbf{q}) \equiv-\frac{1}{\Delta x} \nabla_{\mathbf{q}} H
\end{align*}
$$

which is clearly Hamiltonian, though the Hamiltonian (46) is now non-autonomous, because of the boundary conditions (4). In order to conveniently handle this problem, we at first transform (48) into an enlarged autonomous Hamiltonian system, by introducing the following auxiliary conjugate scalar variables,

$$
\begin{equation*}
\tilde{q} \equiv t, \quad \tilde{p} \tag{49}
\end{equation*}
$$

and the augmented Hamiltonian (compare with 46) ,

$$
\begin{align*}
\tilde{H}(\mathbf{q}, \mathbf{p}, \tilde{q}, \tilde{p}) & =\Delta x\left[\frac{\mathbf{p}^{\top} \mathbf{p}}{2}+\frac{\mathbf{q}^{\top} T_{N} \mathbf{q}}{2 \Delta x^{2}}+\mathbf{e}^{\top} f(\mathbf{q})\right]+\frac{\boldsymbol{\varphi}(\tilde{q})^{\top} \boldsymbol{\varphi}(\tilde{q})}{2 \Delta x}-\frac{\mathbf{q}^{\top} \boldsymbol{\varphi}(\tilde{q})}{\Delta x}+\tilde{p} \\
& \equiv H(\mathbf{q}, \mathbf{p}, \tilde{q})+\tilde{p} \tag{50}
\end{align*}
$$

The dynamical system corresponding to this new Hamiltonian function is, for $t>0$:

$$
\begin{align*}
\dot{\mathbf{q}} & =\mathbf{p} \equiv \frac{1}{\Delta x} \nabla_{\mathbf{p}} \tilde{H}, \\
\dot{\mathbf{p}} & =-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}+\frac{1}{\Delta x^{2}} \boldsymbol{\varphi}-f^{\prime}(\mathbf{q}) \equiv-\frac{1}{\Delta x} \nabla_{\mathbf{q}} \tilde{H}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{q} & =1 \equiv \frac{\partial}{\partial \tilde{p}} \tilde{H}, \tag{51}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{p} & =-\frac{\varphi_{0}(\tilde{q})-u_{1}}{\Delta x} \varphi_{0}^{\prime}(\tilde{q})-\frac{\varphi_{1}(\tilde{q})-u_{N}}{\Delta x} \varphi_{1}^{\prime}(\tilde{q}) \equiv-\frac{\partial}{\partial \tilde{q}} \tilde{H},
\end{align*}
$$

with initial conditions given by (see (41))

$$
\begin{equation*}
\mathbf{q}(0)=\psi_{0}(\mathbf{x}), \quad \mathbf{p}(0)=\psi_{1}(\mathbf{x}), \quad \tilde{q}(0)=\tilde{p}(0)=0 \tag{52}
\end{equation*}
$$

The first 3 equations in (51) exactly coincides with (48) (considering that $\tilde{q} \equiv t$), whereas the last one allows for the conservation of \tilde{H} :

$$
\tilde{H}(\mathbf{q}(t), \mathbf{p}(t), \tilde{q}(t), \tilde{p}(t))=\tilde{H}(\mathbf{q}(0), \mathbf{p}(0), 0,0) \equiv H(\mathbf{q}(0), \mathbf{p}(0), 0), \quad t \geq 0
$$

Indeed, one readily sees that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{H}(\mathbf{q}, \mathbf{p}, \tilde{q}, \tilde{p})=\overbrace{\nabla_{\mathbf{q}} \tilde{H}^{\top} \dot{\mathbf{q}}+\nabla_{\mathbf{p}} \tilde{H}^{\top} \dot{\mathbf{p}}}^{=0}+\underbrace{\frac{\partial}{\partial \tilde{q}} \tilde{H} \frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{q}+\frac{\partial}{\partial \tilde{p}} \tilde{H} \frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{p}}_{=0}=0, \tag{53}
\end{equation*}
$$

by virtue of (51). Consequently, by recalling that $\tilde{q} \equiv t$, from (46) and (53) one obtains:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} H(\mathbf{q}, \mathbf{p}, t)=\frac{\partial}{\partial t} H(\mathbf{q}, \mathbf{p}, t)=\left[\frac{\varphi_{0}(t)-u_{1}}{\Delta x} \varphi_{0}^{\prime}(t)+\frac{\varphi_{1}(t)-u_{N}}{\Delta x} \varphi_{1}^{\prime}(t)\right],
$$

which is the discrete counterpart of (38), via the approximation 43) and taking into account the boundary conditions (45). Consequently, one obtains the following semidiscrete analogue of (39):

$$
\begin{align*}
& H(\mathbf{q}(h), \mathbf{p}(h), h)-H(\mathbf{q}(0), \mathbf{p}(0), 0)= \\
& \quad=\int_{0}^{h}\left[\frac{u_{N+1}(t)-u_{N}(t)}{\Delta x} \varphi_{1}^{\prime}(t)-\frac{u_{1}(t)-u_{0}(t)}{\Delta x} \varphi_{0}^{\prime}(t)\right] \mathrm{d} t . \tag{54}
\end{align*}
$$

Remark 2 It is clear that (54) is equivalent to keep constant $\tilde{H}(\mathbf{q}(t), \mathbf{p}(t), t, \tilde{p}(t))$ along the solution of (51). Consequently, by conserving the augmented Hamiltonian \tilde{H}, one obtains that H satisfies a prescribed variation in time which, in turn, is consistent with the corresponding continuous one.

In order to simplify the notation, let us set

$$
\mathbf{y}=\left(\begin{array}{c}
\mathbf{q} \tag{55}\\
\mathbf{p} \\
\tilde{q} \\
\tilde{p},
\end{array}\right), \quad \tilde{J}_{N}=\left(\right)
$$

so that (51)-(52) can be rewritten as

$$
\begin{equation*}
\dot{\mathbf{y}}=\tilde{J}_{N} \nabla \tilde{H}(\mathbf{y}), \quad t>0, \quad \mathbf{y}(0)=\left(\psi_{0}(\mathbf{x})^{\top}, \psi_{1}(\mathbf{x})^{\top}, 0,0\right)^{\top} . \tag{56}
\end{equation*}
$$

3.2 Full discretization

The full discretization of (55)-56) follows similar steps as those seen in Section 2.2 for (23). Let us then expand the right-hand side in (56) as done in (25)-26), and consider the polynomial approximation of degree s given by (29), by formally replacing H with \tilde{H}. In such a case, one obtains energy conservation, since (compare with 34)

$$
\begin{align*}
& \tilde{H}(\boldsymbol{\sigma}(h))-\tilde{H}(\boldsymbol{\sigma}(0))=h \int_{0}^{1} \nabla \tilde{H}(\boldsymbol{\sigma}(\tau h))^{\top} \dot{\boldsymbol{\sigma}}(\tau h) \mathrm{d} \tau \\
& \quad=h \int_{0}^{1} \nabla \tilde{H}(\boldsymbol{\sigma}(\tau h))^{\top} \sum_{j=0}^{s-1} P_{j}(\tau) \gamma_{j}(\boldsymbol{\sigma}) \mathrm{d} \tau=h \sum_{j=0}^{s-1} \gamma_{j}(\boldsymbol{\sigma})^{\top} \tilde{J}_{N}^{-\top} \gamma_{j}(\boldsymbol{\sigma})=0, \tag{57}
\end{align*}
$$

since

$$
\begin{equation*}
\tilde{J}_{N}^{-\top}=\left(\right) \tag{58}
\end{equation*}
$$

is skew-symmetric. Consequently, if one is able to exactly compute the integrals, by means of a quadrature rule based at $k \geq s$ Gaussian points, with k large enough, energy conservation is gained. This is the case, provided that \tilde{H} is a polynomial, that is, $f \in \Pi_{\nu}$ and $\varphi_{0}, \varphi_{1} \in \Pi_{\rho}$, and, moreover, k satisfies:

$$
\begin{equation*}
k \geq \frac{1}{2} \max \{\nu s, 2 \rho+s-1, \rho+2 s-1\} \tag{59}
\end{equation*}
$$

(we observe that, in case $\rho=0$, such a bound reduces to the bound (33), obtained in the case of periodic boundary conditions). Differently, by approximating the integrals by means of a Gaussian quadrature of order $2 k$, one obtains, with arguments similar to those used in (30)-(31),

$$
\begin{align*}
& \gamma_{j}(\boldsymbol{\sigma})=\int_{0}^{1} \tilde{J}_{N} \nabla \tilde{H}(\boldsymbol{\sigma}(\tau h)) P_{j}(\tau) \mathrm{d} \tau \\
& =\underbrace{\sum_{\ell=1}^{k} b_{\ell} P_{j}\left(c_{\ell}\right) \tilde{J}_{N} \nabla \tilde{H}\left(\boldsymbol{\sigma}\left(c_{\ell} h\right)\right)}_{=\hat{\gamma}_{j}(\boldsymbol{\sigma})}+\Delta_{j}(h) \equiv \hat{\gamma}_{j}(\boldsymbol{\sigma})+\Delta_{j}(h), \tag{60}
\end{align*}
$$

with

$$
\begin{equation*}
\Delta_{j}(h)=O\left(h^{2 k-j}\right) \in \mathbb{R}^{2 N+2}, \quad j=0, \ldots, s-1 . \tag{61}
\end{equation*}
$$

In such a case, we have again a different polynomial $\mathbf{u} \in \Pi_{s}$, in place of $\boldsymbol{\sigma}$, solution of a problem formally still given by with H replaced by \tilde{H}. As a consequence, by taking into account (61), the error in the Hamiltonian \tilde{H}, at $t=h$, is given by (see (55)):

$$
\begin{aligned}
& \tilde{H}(\mathbf{u}(h))-\tilde{H}(\mathbf{u}(0)) \\
& =h \int_{0}^{1} \nabla \tilde{H}(\mathbf{u}(\tau h))^{\top} \dot{\mathbf{u}}(\tau h) \mathrm{d} \tau=h \int_{0}^{1} \nabla \tilde{H}(\mathbf{u}(\tau h))^{\top} \sum_{j=0}^{s-1} P_{j}(\tau)\left(\gamma_{j}(\mathbf{u})-\Delta_{j}(h)\right) \mathrm{d} \tau \\
& =h \sum_{j=0}^{s-1}[\overbrace{\gamma_{j}(\mathbf{u})^{\top} \tilde{J}_{N}^{-\top} \gamma_{j}(\mathbf{u})}^{=0}-\gamma_{j}(\mathbf{u})^{\top} \tilde{J}_{N}^{-\top} \Delta_{j}(h)]=h \underbrace{\Delta x \cdot N}_{<1} \cdot O\left(h^{2 k}\right) \equiv O\left(h^{2 k+1}\right),
\end{aligned}
$$

where the last equality follows from (40), (58), and Lemma 1. Consequently, choosing k large enough allows us to approximate the Hamiltonian \tilde{H} within full machine accuracy.

All the above arguments can be summarized by the following theorem, which generalizes Theorem 2 to the present case.

Theorem 3 Assume $k \geq s$, and define $\mathbf{y}_{1}=\mathbf{u}(h)$ as the new approximation to $\mathbf{y}(h)$, solution of (55)-(56), provided by a $\operatorname{HBVM}(k, s)$ method used with stepsize h. One then obtains:

$$
\mathbf{y}_{1}-\mathbf{y}(h)=O\left(h^{2 s+1}\right),
$$

that is the method has order $2 s$. Moreover, assuming that f, φ_{0}, and φ_{1} in (1)-(4) are suitably regular:

$$
\tilde{H}\left(\mathbf{y}_{1}\right)-\tilde{H}\left(\mathbf{y}_{0}\right)=\left\{\begin{array}{cl}
0, & \text { if } f \in \Pi_{\nu}, \varphi_{0}, \varphi_{1} \in \Pi_{\rho}, \text { and 59) holds true } \\
O\left(h^{2 k+1}\right), & \text { otherwise. }
\end{array}\right.
$$

Clearly, considerations similar to those stated in Remark 1 can be repeated also in the present situation.

4 The case of Neumann boundary conditions

As done in the case of Dirichlet boundary conditions, also when Neumann boundary conditions are prescribed, one starts from the formulation (37) of the continuous Hamiltonian function, and then considers its semi-discretization (44). In so doing, one arrives at the very same formulation (46), with T_{N} defined as in (47), whereas, by considering the Neumann boundary conditions (5), and the approximations (43) used to derive (44), $\varphi(t)$ is now formally defined as follows:

$$
\varphi(t)=\left(\begin{array}{lllll}
u_{1}-\phi_{0}(t) \Delta x, & 0, & \ldots, & 0, & u_{N}+\phi_{1}(t) \Delta x
\end{array}\right)^{\top} .
$$

In fact, this is equivalent to use the following definitions for $u_{0}(t)$ and $u_{N+1}(t)$,

$$
\begin{equation*}
u_{0}(t)=u_{1}-\phi_{0}(t) \Delta x, \quad u_{N+1}(t)=u_{N}+\phi_{1}(t) \Delta x, \tag{62}
\end{equation*}
$$

which we shall use in the sequel. We prefer, however, to derive the semi-discrete Hamiltonian by following a slightly different route, as described below. In more details, starting
from (44), one obtains:

$$
\begin{align*}
H= & \Delta x \sum_{i=1}^{N}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right)+\frac{1}{2}\left[u_{N+1} \frac{u_{N+1}-u_{N}}{\Delta x}-u_{0} \frac{u_{1}-u_{0}}{\Delta x}\right] \\
= & \Delta x \sum_{i=2}^{N-1}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right)+\frac{1}{2}\left[u_{N+1} \frac{u_{N+1}-u_{N}}{\Delta x}-u_{0} \frac{u_{1}-u_{0}}{\Delta x}\right] \\
& +\Delta x\left(\frac{1}{2} v_{1}^{2}-u_{1} \frac{u_{0}-2 u_{1}+u_{2}}{2 \Delta x^{2}}+f\left(u_{1}\right)+\frac{1}{2} v_{N}^{2}-u_{N} \frac{u_{N-1}-2 u_{N}+u_{N+1}}{2 \Delta x^{2}}+f\left(u_{N}\right)\right) \\
= & \Delta x \sum_{i=2}^{N-1}\left(\frac{1}{2} v_{i}^{2}-u_{i} \frac{u_{i-1}-2 u_{i}+u_{i+1}}{2 \Delta x^{2}}+f\left(u_{i}\right)\right)+\frac{1}{2}\left[\frac{\left(u_{N+1}-u_{N}\right)^{2}}{\Delta x}+\frac{\left(u_{1}-u_{0}\right)^{2}}{\Delta x}\right] \\
& +\Delta x\left(\frac{1}{2} v_{1}^{2}-u_{1} \frac{-u_{1}+u_{2}}{2 \Delta x^{2}}+f\left(u_{1}\right)+\frac{1}{2} v_{N}^{2}-u_{N} \frac{u_{N-1}-u_{N}}{2 \Delta x^{2}}+f\left(u_{N}\right)\right),
\end{align*}
$$

which can be cast in vector form as

$$
\begin{equation*}
H \equiv H(\mathbf{q}, \mathbf{p}, t)=\Delta x\left[\frac{\mathbf{p}^{\top} \mathbf{p}}{2}+\frac{\mathbf{q}^{\top} T_{N} \mathbf{q}}{2 \Delta x^{2}}+\mathbf{e}^{\top} f(\mathbf{q})\right]+\frac{\mathbf{w}(\mathbf{q}, t)^{\top} \mathbf{w}(\mathbf{q}, t)}{2 \Delta x} \tag{64}
\end{equation*}
$$

where \mathbf{e} has been defined in $22, \mathbf{q}$ and \mathbf{p} are defined at 41 , whereas:

$$
T_{N}=\left(\begin{array}{ccccc}
1 & -1 & & & \tag{65}\\
-1 & 2 & \ddots & & \\
& \ddots & \ddots & \ddots & \\
& & \ddots & 2 & -1 \\
& & & -1 & 1
\end{array}\right) \in \mathbb{R}^{N \times N}, \quad \mathbf{w}(\mathbf{q}, t)=\left(\begin{array}{c}
u_{1}-u_{0}(t) \\
0 \\
\vdots \\
0 \\
u_{N+1}(t)-u_{N}
\end{array}\right) \in \mathbb{R}^{N}
$$

We emphasize that $u_{0}(t)$ and $u_{N+1}(t)$ have to be regarded as known functions. Thus, with reference to (64)-(65), the corresponding semi-discrete Hamiltonian problem is given by:

$$
\begin{align*}
\dot{\mathbf{q}} & =\mathbf{p} \equiv \frac{1}{\Delta x} \nabla_{\mathbf{p}} H, \quad t>0, \tag{66}\\
\dot{\mathbf{p}} & =-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}+\frac{\Sigma}{\Delta x^{2}} \mathbf{w}(\mathbf{q}, t)-f^{\prime}(\mathbf{q}) \equiv-\frac{1}{\Delta x} \nabla_{\mathbf{q}} H,
\end{align*}
$$

where

$$
\Sigma=\left(\begin{array}{ccccc}
-1 & & & & \\
& 0 & & & \\
& & \ddots & & \\
& & & 0 & \\
& & & & 1
\end{array}\right) \in \mathbb{R}^{N \times N}
$$

By considering (62), one has then

$$
\frac{\Sigma}{\Delta x^{2}} \mathbf{w}(\mathbf{q}, t)=\frac{1}{\Delta x^{2}}\left(\begin{array}{c}
u_{0}-u_{1} \\
0 \\
\vdots \\
0 \\
u_{N+1}-u_{N}
\end{array}\right)=\frac{1}{\Delta x}\left(\begin{array}{c}
-\phi_{0}(t) \\
0 \\
\vdots \\
0 \\
\phi_{1}(t)
\end{array}\right) \equiv \frac{1}{\Delta x} \boldsymbol{\phi}(t)
$$

thus obtaining the final shape of (66):

$$
\begin{align*}
& \dot{\mathbf{q}}=\mathbf{p}, \quad t>0, \tag{67}\\
& \dot{\mathbf{p}}=-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}+\frac{1}{\Delta x} \phi(t)-f^{\prime}(\mathbf{q}) .
\end{align*}
$$

As in the case of Dirichlet boundary conditions, problem (67) is Hamiltonian with the non-autonomous Hamiltonian (64): again, we can transform this latter into an autonomous one, by introducing the couple of auxiliary conjugate variables (49) and the augmented Hamiltonian (compare with 500)

$$
\begin{equation*}
\tilde{H}(\mathbf{q}, \mathbf{p}, \tilde{q}, \tilde{p})=H(\mathbf{q}, \mathbf{p}, \tilde{q})+\tilde{p}, \tag{68}
\end{equation*}
$$

with H now given by (64). The dynamical system corresponding to this new Hamiltonian function is, for $t>0$:

$$
\begin{align*}
\dot{\mathbf{q}} & =\mathbf{p} \equiv \frac{1}{\Delta x} \nabla_{\mathbf{p}} \tilde{H}, \\
\dot{\mathbf{p}} & =-\frac{1}{\Delta x^{2}} T_{N} \mathbf{q}+\frac{1}{\Delta x} \phi-f^{\prime}(\mathbf{q}) \equiv-\frac{1}{\Delta x} \nabla_{\mathbf{q}} \tilde{H}, \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{q} & =1 \equiv \frac{\partial}{\partial \tilde{p}} \tilde{H}, \tag{69}\\
\frac{\mathrm{~d}}{\mathrm{~d} t} \tilde{p} & =-\frac{\partial}{\partial \tilde{q}} \tilde{H},
\end{align*}
$$

with initial conditions as in (52). Concerning the last equation in (69), from (68), (64)(65), and (62), one has, by considering that $q_{i}(t) \equiv u_{i}(t), q_{i}^{\prime}(t)=p_{i}(t) \equiv v_{i}(t)$ (see (41)), and $\tilde{q} \equiv t$,

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t} \tilde{p} & =-\frac{\partial}{\partial \tilde{q}} \tilde{H}=-\frac{1}{\Delta x}\left(\left(u_{0}(\tilde{q})-u_{1}\right) v_{0}(\tilde{q})+\left(u_{N+1}(\tilde{q})-u_{N}\right) v_{N+1}(\tilde{q})\right) \\
& =\phi_{0}(\tilde{q})\left[v_{1}-\Delta x \phi_{0}^{\prime}(\tilde{q})\right]-\phi_{1}(\tilde{q})\left[v_{N}+\Delta x \phi_{1}^{\prime}(\tilde{q})\right] . \tag{70}
\end{align*}
$$

Now, problem (69)-(70) is Hamiltonian with an autonomous Hamiltonian function, so that its energy (68) is conserved (clearly, considerations similar to those reported in Remark 2 for the Dirichlet case can be now repeated).

Also now, the discrete problem can be cast in vector form, formally as done in (55)(56). Moreover, concerning the discretization issue, arguments similar to those seen in Section 3.2 apply to the present case. In particular, the following result holds true, the proof being similar to that of Theorems 2 and 3 .

Theorem 4 Let $\mathbf{y}_{1}=\mathbf{u}(h)$ be the approximation to $\mathbf{y}(h)$, solution of (55)-(56), with \tilde{H} as in (68)-(70), provided by a $\operatorname{HBVM}(k, s)$ method used with stepsize h. One then obtains:

$$
\mathbf{y}_{1}-\mathbf{y}(h)=O\left(h^{2 s+1}\right)
$$

that is the method has order $2 s$. Moreover, assuming that f, ϕ_{0}, and ϕ_{1} in (1)-(5) are suitably regular:

$$
\tilde{H}\left(\mathbf{y}_{1}\right)-\tilde{H}\left(\mathbf{y}_{0}\right)=\left\{\begin{array}{cl}
0, & \text { if } f \in \Pi_{\nu}, \phi_{0}, \phi_{1} \in \Pi_{\rho}, \text { with } \\
& 2 k \geq \max \{\nu s, 2 \rho+s-1,2 s+\rho\} \\
O\left(h^{2 k+1}\right), & \text { otherwise }
\end{array}\right.
$$

Evidently, considerations similar to those stated in Remark 1 can be repeated also in the present situation.

5 Periodic boundary conditions revisited

The case of periodic boundary conditions, i.e. (1)-(2), deserves to be further investigated. In fact, the finite-difference discretizations considered above, turn out to provide a second-order spatial accuracy, in the used stepsize Δx. When either Dirichlet or Neumann boundary conditions are specified, it is not possible to easily derive higher-order semi-discrete Hamiltonian formulations of the problem. Conversely, in the case of periodic boundary conditions, this can be easily accomplished. As matter of fact, by suitably replacing the circulant matrix T_{N} defined in (21), one obtains that the Hamiltonian (20) remains formally the same, as well as the semi-discrete Hamiltonian problem (18). For this purpose, any symmetric high-order approximation to the second spatial derivative could be used (see e.g., [3]), to derive a new circulant and symmetric band-matrix. As an example, the following matrix provides a fourth-order spatial approximation [70],

$$
T_{N}=-\left(\begin{array}{rrrrrrr}
-\frac{5}{2} & \frac{4}{3} & -\frac{1}{12} & & & -\frac{1}{12} & \frac{4}{3} \tag{71}\\
\frac{4}{3} & \ddots & \ddots & \ddots & & & -\frac{1}{12} \\
-\frac{1}{12} & \ddots & \ddots & \ddots & \ddots & & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \\
& & \ddots & \ddots & \ddots & \ddots & -\frac{1}{12} \\
-\frac{1}{12} & & & \ddots & \ddots & \ddots & \frac{4}{3} \\
\frac{4}{3} & -\frac{1}{12} & & & -\frac{1}{12} & \frac{4}{3} & -\frac{5}{2}
\end{array}\right) \in \mathbb{R}^{N \times N}
$$

whereas, the following one provides a sixth-order spatial approximation (see [3] for additional examples):

$$
T_{N}=-\left(\begin{array}{rrrrrrrr}
-\frac{49}{18} & \frac{3}{2} & -\frac{3}{20} & \frac{1}{90} & & \frac{1}{90} & -\frac{3}{20} & \frac{3}{2} \tag{72}\\
\frac{3}{2} & \ddots & \ddots & \ddots & \ddots & & \frac{1}{90} & -\frac{3}{20} \\
-\frac{3}{20} & \ddots & \ddots & \ddots & \ddots & \ddots & & \frac{1}{90} \\
\frac{1}{90} & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \\
& \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \frac{1}{90} \\
\frac{1}{90} & & \ddots & \ddots & \ddots & \ddots & \ddots & -\frac{3}{20} \\
-\frac{3}{20} & \frac{1}{90} & & \ddots & \ddots & \ddots & \ddots & \frac{3}{2} \\
\frac{3}{2} & -\frac{3}{20} & \frac{1}{90} & & \frac{1}{90} & -\frac{3}{20} & \frac{3}{2} & -\frac{49}{18}
\end{array}\right) \in \mathbb{R}^{N \times N},
$$

5.1 Fourier space discretization

An alternative approach, which we shall investigate in the sequel, is that of using a Fourier approximation in space (see, e.g., [37]). For this purpose, let us consider the following complete set of orthonormal functions in $[0,1]$:

$$
\begin{equation*}
c_{0}(x) \equiv 1, \quad c_{k}(x)=\sqrt{2} \cos (2 k \pi x), \quad s_{k}(x)=\sqrt{2} \sin (2 k \pi x), \quad k=1,2, \ldots, \tag{73}
\end{equation*}
$$

so that

$$
\begin{equation*}
\int_{0}^{1} c_{i}(x) c_{j}(x) \mathrm{d} x=\int_{0}^{1} s_{i}(x) s_{j}(x) \mathrm{d} x=\delta_{i j}, \quad \int_{0}^{1} c_{i}(x) s_{j}(x) \mathrm{d} x=0, \quad \forall i, j . \tag{74}
\end{equation*}
$$

The following expansion of the solution of (11)-(2) is a slightly different way of writing the usual Fourier expansion in space:

$$
\begin{align*}
u(x, t) & =c_{0}(x) \gamma_{0}(t)+\sum_{n \geq 1}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right] \\
& \equiv \gamma_{0}(t)+\sum_{n \geq 1}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right], \quad x \in[0,1], \quad t \geq 0 \tag{75}
\end{align*}
$$

with

$$
\gamma_{n}(t)=\int_{0}^{1} c_{n}(x) u(x, t) \mathrm{d} x, \quad \eta_{n}(t)=\int_{0}^{1} s_{n}(x) u(x, t) \mathrm{d} x,
$$

which is allowed because of the periodic boundary conditions (2). Consequently, by taking into account (74), the first equation in (11) can be rewritten as:

$$
\begin{align*}
\ddot{\gamma}_{n}(t)= & -(2 \pi n)^{2} \gamma_{n}(t) \\
& -\int_{0}^{1} c_{n}(x) f^{\prime}\left(\gamma_{0}(t)+\sum_{n \geq 1}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right]\right) \mathrm{d} x, \quad n \geq 0, \tag{76}\\
\ddot{\eta}_{n}(t)= & -(2 \pi n)^{2} \eta_{n}(t) \\
& -\int_{0}^{1} s_{n}(x) f^{\prime}\left(\gamma_{0}(t)+\sum_{n \geq 1}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right]\right) \mathrm{d} x, \quad n \geq 1,
\end{align*}
$$

where the double dot denotes, as usual, the second time derivative. The initial conditions are clearly given by (see (1)):

$$
\begin{array}{ll}
\gamma_{n}(0)=\int_{0}^{1} c_{n}(x) \psi_{0}(x) \mathrm{d} x, & \eta_{n}(0)=\int_{0}^{1} s_{n}(x) \psi_{0}(x) \mathrm{d} x \\
\dot{\gamma}_{n}(0)=\int_{0}^{1} c_{n}(x) \psi_{1}(x) \mathrm{d} x, & \dot{\eta}_{n}(0)=\int_{0}^{1} s_{n}(x) \psi_{1}(x) \mathrm{d} x \tag{77}
\end{array}
$$

By introducing the infinite vectors

$$
\begin{align*}
& \boldsymbol{\omega}(x)=\left(\begin{array}{lllll}
c_{0}(x) & c_{1}(x) & s_{1}(x) & c_{2}(x) & s_{2}(x)
\end{array} \ldots\right)^{\top}, \\
& \mathbf{q}(t)=\left(\begin{array}{lllll}
\gamma_{0}(t) & \gamma_{1}(t) & \eta_{1}(t) & \gamma_{2}(t) & \eta_{2}(t)
\end{array} \ldots\right)^{\top}, \tag{78}
\end{align*}
$$

the infinite matrix

$$
D=\left(\begin{array}{cccccc}
0 & & & & & \tag{79}\\
& (2 \pi)^{2} & & & & \\
& & (2 \pi)^{2} & & & \\
& & & (4 \pi)^{2} & & \\
& & & & (4 \pi)^{2} & \\
& & & & & \ddots
\end{array}\right)
$$

and considering that (see 75)

$$
\begin{equation*}
u(x, t)=\boldsymbol{\omega}(x)^{\top} \mathbf{q}(t) \tag{80}
\end{equation*}
$$

problem 76 can be cast in vector form as:

$$
\begin{align*}
& \dot{\mathbf{q}}(t)=\mathbf{p}(t), \quad t>0 \tag{81}\\
& \dot{\mathbf{p}}(t)=-D \mathbf{q}(t)-\int_{0}^{1} \boldsymbol{\omega}(x) f^{\prime}\left(\boldsymbol{\omega}(x)^{\top} \mathbf{q}(t)\right) \mathrm{d} x
\end{align*}
$$

with the initial conditions 77 written, more compactly, as

$$
\begin{equation*}
\mathbf{q}(0)=\int_{0}^{1} \boldsymbol{\omega}(x) \psi_{0}(x) \mathrm{d} x, \quad \mathbf{p}(0)=\int_{0}^{1} \boldsymbol{\omega}(x) \psi_{1}(x) \mathrm{d} x \tag{82}
\end{equation*}
$$

The following result then holds true.

Theorem 5 Problem (81) is Hamiltonian, with Hamiltonian

$$
\begin{equation*}
H(\mathbf{q}, \mathbf{p})=\frac{1}{2} \mathbf{p}^{\top} \mathbf{p}+\frac{1}{2} \mathbf{q}^{\top} D \mathbf{q}+\int_{0}^{1} f\left(\boldsymbol{\omega}(x)^{\top} \mathbf{q}\right) \mathrm{d} x \tag{83}
\end{equation*}
$$

This latter is equivalent to the Hamiltonian (7), via the expansion (75)-80).

Proof The first statement is straightforward, by considering that

$$
\left.\nabla_{\mathbf{q}} f\left(\boldsymbol{\omega}(x)^{\top} \mathbf{q}\right)\right)=f^{\prime}\left(\boldsymbol{\omega}(x)^{\top} \mathbf{q}\right) \boldsymbol{\omega}(x)
$$

The second statement then easily follows, by taking into account 80, from the fact that, see (6), (74), (75), and (78):

$$
\begin{aligned}
\int_{0}^{1} v(x, t)^{2} \mathrm{~d} x & =\int_{0}^{1} u_{t}(x, t)^{2} \mathrm{~d} x=\int_{0}^{1}\left(\dot{\gamma}_{0}(t)+\sum_{n \geq 1}\left[\dot{\gamma}_{n}(t) c_{n}(x)+\dot{\eta}_{n}(t) s_{n}(x)\right]\right)^{2} \mathrm{~d} x \\
& =\dot{\gamma}_{0}(t)^{2}+\sum_{n \geq 1}\left[\dot{\gamma}_{n}(t)^{2}+\dot{\eta}_{n}(t)^{2}\right] \equiv \mathbf{p}(t)^{\top} \mathbf{p}(t)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} u_{x}(x, t)^{2} \mathrm{~d} x & =\int_{0}^{1}\left(\sum_{n \geq 1} 2 \pi n\left[\eta_{n}(t) c_{n}(x)-\gamma_{n}(t) s_{n}(x)\right]\right)^{2} \mathrm{~d} x \\
& =\sum_{n \geq 1}(2 \pi n)^{2}\left[\eta_{n}(t)^{2}+\gamma_{n}(t)^{2}\right]=\mathbf{q}(t)^{\top} D \mathbf{q}(t)
\end{aligned}
$$

5.2 Truncated Fourier-Galerkin approximation

In order to obtain a practical computational procedure, we truncate the infinite expansion 75 to a finite sum:

$$
\begin{equation*}
u(x, t) \approx \gamma_{0}(t)+\sum_{n=1}^{N}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right] \equiv u_{N}(x, t) \tag{84}
\end{equation*}
$$

which converges more than exponentially with N to u, if this latter is an analytical function $\sqrt{4}^{4}$ In other words, we look for an approximation to $u(x, t)$ belonging to the functional subspace (see 73)

$$
\begin{equation*}
\mathcal{V}_{N}=\operatorname{span}\left\{c_{0}(x), c_{1}(x), \ldots, c_{N}(x), s_{1}(x), \ldots, s_{N}(x)\right\} \tag{85}
\end{equation*}
$$

Clearly, such a truncated expansion will not satisfy problem (1)-(2). Nevertheless, in the spirit of Fourier-Galerkin methods [6], by requiring that the residual

$$
R\left(u_{N}\right):=\left(u_{N}\right)_{t t}-\left(u_{N}\right)_{x x}+f^{\prime}\left(u_{N}\right)
$$

be orthogonal to \mathcal{V}_{N}, one obtains the weak formulation of problem (1)-(2), consisting in the following set of $2 N+1$ differential equations,

$$
\begin{align*}
& \ddot{\gamma}_{n}(t)=-(2 \pi n)^{2} \gamma_{n}(t) \\
& \quad-\int_{0}^{1} c_{n}(x) f^{\prime}\left(\gamma_{0}(t)+\sum_{n=1}^{N}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right]\right) \mathrm{d} x, \quad n=0, \ldots, N \\
& \ddot{\eta}_{n}(t)=-(2 \pi n)^{2} \eta_{n}(t) \tag{86}\\
& \quad-\int_{0}^{1} s_{n}(x) f^{\prime}\left(\gamma_{0}(t)+\sum_{n=1}^{N}\left[c_{n}(x) \gamma_{n}(t)+s_{n}(x) \eta_{n}(t)\right]\right) \mathrm{d} x, \quad n=1, \ldots, N
\end{align*}
$$

[^3]approximating the leading ones in 76). By defining the finite vectors in $\mathbb{R}^{2 N+1}$ (compare with (78),
\[

$$
\begin{align*}
& \boldsymbol{\omega}_{N}(x)=\left(\begin{array}{lllllll}
c_{0}(x) & c_{1}(x) & s_{1}(x) & c_{2}(x) & s_{2}(x) & \ldots & c_{N}(x)
\end{array} s_{N}(x)\right)^{\top}, \\
& \mathbf{q}_{N}(t)=\left(\begin{array}{llllllll}
\gamma_{0}(t) & \gamma_{1}(t) & \eta_{1}(t) & \gamma_{2}(t) & \eta_{2}(t) & \ldots & \gamma_{N}(t) & \eta_{N}(t)
\end{array}\right)^{\top}, \tag{87}
\end{align*}
$$
\]

the matrix (compare with 79)

$$
D_{N}=\left(\begin{array}{lllllll}
0 & & & & & & \tag{88}\\
& (2 \pi)^{2} & & & & & \\
& & (2 \pi)^{2} & & & & \\
& & & (4 \pi)^{2} & & & \\
& & & & (4 \pi)^{2} & & \\
& & & & & \ddots & \\
& & & & & & (2 N \pi)^{2} \\
& & & & & & \\
& & & & \\
& & & & \\
& & &
\end{array}\right) \in \mathbb{R}^{(2 N+1) \times(2 N+1)}
$$

and considering that (compare with (84))

$$
\begin{equation*}
u_{N}(x, t)=\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{q}_{N}(t), \tag{89}
\end{equation*}
$$

the equations (86), which have to be satisfied by (89), can be cast in vector form as:

$$
\begin{align*}
\dot{\mathbf{q}}_{N}(t) & =\mathbf{p}_{N}(t), \quad t>0 \tag{90}\\
\dot{\mathbf{p}}_{N}(t) & =-D_{N} \mathbf{q}_{N}(t)-\int_{0}^{1} \boldsymbol{\omega}_{N}(x) f^{\prime}\left(\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{q}_{N}(t)\right) \mathrm{d} x
\end{align*}
$$

for a total of $4 N+2$ differential equations. Clearly, from (77) one obtains that the initial conditions for 90 are given by:

$$
\begin{equation*}
\mathbf{q}_{N}(0)=\int_{0}^{1} \boldsymbol{\omega}_{N}(x) \psi_{0}(x) \mathrm{d} x, \quad \mathbf{p}_{N}(0)=\int_{0}^{1} \boldsymbol{\omega}_{N}(x) \psi_{1}(x) \mathrm{d} x \tag{91}
\end{equation*}
$$

The following result then easily follows by means of arguments similar to those used to prove Theorem 5 .

Theorem 6 Problem (90) is Hamiltonian, with Hamiltonian

$$
\begin{equation*}
H_{N}\left(\mathbf{q}_{N}, \mathbf{p}_{N}\right)=\frac{1}{2} \mathbf{p}_{N}^{\top} \mathbf{p}_{N}+\frac{1}{2} \mathbf{q}_{N}^{\top} D_{N} \mathbf{q}_{N}+\int_{0}^{1} f\left(\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{q}_{N}\right) \mathrm{d} x . \tag{92}
\end{equation*}
$$

We observe that (92) is equivalent to a truncated Fourier expansion of the Hamiltonian (7) (see also (83)). Moreover, it is worth mentioning that using the initial conditions (91), in place of (82), results in an error e_{N}, in the initial data, given by

$$
\begin{align*}
e_{N}^{2}= & \int_{0}^{1}\left(\psi_{0}(x)-\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{q}_{N}(0)\right)^{2} \mathrm{~d} x+\int_{0}^{1}\left(\psi_{1}(x)-\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{p}_{N}(0)\right)^{2} \mathrm{~d} x \\
= & \sum_{n>N}\left[\int_{0}^{1} c_{n}(x) \psi_{0}(x) \mathrm{d} x\right]^{2}+\left[\int_{0}^{1} s_{n}(x) \psi_{0}(x) \mathrm{d} x\right]^{2}+ \\
& \sum_{n>N}\left[\int_{0}^{1} c_{n}(x) \psi_{1}(x) \mathrm{d} x\right]^{2}+\left[\int_{0}^{1} s_{n}(x) \psi_{1}(x) \mathrm{d} x\right]^{2} \tag{93}
\end{align*}
$$

However, it must be stressed that, unlike the finite-difference case, both e_{N} and the approximation 92 to the continuous Hamiltonian, converge more than exponentially in $N\left(e_{N}\right.$ to 0 , and H_{N} to $\left.H\right)$, provided that the involved functions are analytical.

5.3 Full discretization

Since problem (90) is Hamiltonian, with an autonomous Hamiltonian, this latter is conserved along the solution. Consequently, energy conserving methods can be conveniently used for its solution. In particular, Theorem 2 continues formally to hold for $\operatorname{HBVM}(k, s)$ methods. However, the integral appearing in 90 need to be, in turn, approximated by means of a suitable quadrature rule. For this purpose, it could be convenient to do this by means of a composite trapezoidal rule, due to the fact that the argument is a periodic function. Consequently, having set

$$
\begin{equation*}
\mathbf{g}_{N}(x, t)=\boldsymbol{\omega}_{N}(x) f^{\prime}\left(\boldsymbol{\omega}_{N}(x)^{\top} \mathbf{q}_{N}(t)\right) \tag{94}
\end{equation*}
$$

the uniform mesh on $[0,1]$

$$
\begin{equation*}
x_{i}=i \Delta x, \quad i=0, \ldots, m, \quad \Delta x=\frac{1}{m} \tag{95}
\end{equation*}
$$

and considering that $\mathbf{g}_{N}(0, t)=\mathbf{g}_{N}(1, t)$, one obtains:

$$
\begin{align*}
\int_{0}^{1} \mathbf{g}_{N}(x, t) \mathrm{d} x & =\Delta x \sum_{i=1}^{m} \frac{\mathbf{g}_{N}\left(x_{i-1}, t\right)+\mathbf{g}_{N}\left(x_{i}, t\right)}{2}+R(m) \\
& =\frac{1}{m} \sum_{i=0}^{m-1} \mathbf{g}_{N}\left(x_{i}, t\right)+R(m) \tag{96}
\end{align*}
$$

Let us study the error $R(m)$. For this purpose, we need some preliminary result.
Lemma 2 Let us consider the trigonometric polynomial

$$
\begin{equation*}
p(x)=\sum_{k=0}^{K}\left[a_{k} \cos (2 k \pi x)+b_{k} \sin (2 k \pi x)\right] \tag{97}
\end{equation*}
$$

and the uniform mesh (95). Then, for all $m \geq K+1$, one obtains:

$$
\int_{0}^{1} p(x) \mathrm{d} x=\frac{1}{m} \sum_{i=0}^{m-1} p\left(x_{i}\right)
$$

Proof See, e.g., [34, Th. 5.1.4].

Lemma 3 Let us consider the trigonometric polynomial (97) and the uniform mesh (95). Then, for all $m \geq N+K+1$, one obtains:

$$
\begin{align*}
\int_{0}^{1} \cos (2 j \pi x) p(x) \mathrm{d} x & =\frac{1}{m} \sum_{i=0}^{m-1} \cos \left(2 j \pi x_{i}\right) p\left(x_{i}\right) \tag{98}\\
\int_{0}^{1} \sin (2 j \pi x) p(x) \mathrm{d} x & =\frac{1}{m} \sum_{i=0}^{m-1} \sin \left(2 j \pi x_{i}\right) p\left(x_{i}\right), \quad j=0, \ldots, N \tag{99}
\end{align*}
$$

Proof By virtue of the prosthaphaeresis formulae, one has, for all $j=0, \ldots, N$ and $k=0, \ldots, K$:

$$
\begin{aligned}
\cos (2 j \pi x) \cos (2 k \pi x) & =\frac{1}{2}[\cos (2(k+j) \pi x)+\cos (2(k-j) \pi x)], \\
\cos (2 j \pi x) \sin (2 k \pi x) & =\frac{1}{2}[\sin (2(k+j) \pi x)+\sin (2(k-j) \pi x)], \\
\sin (2 j \pi x) \cos (2 k \pi x) & =\frac{1}{2}[\sin (2(k+j) \pi x)-\sin (2(k-j) \pi x)], \\
\sin (2 j \pi x) \sin (2 k \pi x) & =\frac{1}{2}[\cos (2(k-j) \pi x)-\cos (2(k+j) \pi x)]
\end{aligned}
$$

Consequently, the integrals at the left-hand side in (98)-99) are trigonometric polynomials of degree at most $N+K$. By virtue of Lemma 2, it then follows that they are exactly computed by means of the composite trapezoidal rule at the corresponding right-hand sides, provided that $m \geq N+K+1$.

By virtue of Lemma 3, the following result follows at once.
Theorem 7 Let the function f appearing in 94) (see also 89)) be a polynomial of degree ν, and let us consider the uniform mesh (95). Then, with reference to (96), for all $m \geq \nu N+1$ one obtains:

$$
R(m)=0 \quad \text { i.e., } \quad \int_{0}^{1} \mathbf{g}_{N}(x, t) \mathrm{d} x=\frac{1}{m} \sum_{i=0}^{m-1} \mathbf{g}_{N}\left(x_{i}, t\right)
$$

For a general function f, the following result holds true.
Theorem 8 Let the function $\mathbf{g}_{N}(x, t)$ defined at (94), with t a fixed parameter, belong to $W_{\text {per }}^{r, p}$, the Banach space of periodic functions on \mathbb{R} whose distribution derivatives up to order r belong to $L_{p e r}^{p}(\mathbb{R})$. Then, with reference to 95)-96), one has:

$$
R(m)=O\left(m^{-r}\right)
$$

Proof See [58, Th. 1.1].
We end this section by mentioning that different approaches could be also used for approximating the integral appearing in (90): we refer, e.g., to [36], for a comprehensive review on this topic.

6 Implementation of the methods

The efficient implementation of HBVMs has been studied in [19, 13, 14]. We here sketch the application of a $\operatorname{HBVM}(k, s)$ method for solving (18), since the application to (51), (69), and (90) is similar. We consider the very first application of the method, so that the index of the time step can be skipped. As remarked in [19], the discrete problem generated by a $\operatorname{HBVM}(k, s)$ method is more conveniently recast in terms of the s coefficients of the polynomial (32), instead of the k stages of the Runge-Kutta formulation (36). Moreover, since in the case of the semi-discrete formulation of the wave equation the Hamiltonian is separable, additional savings are possible, since the
dimension of the problem can be halved, as we are going to sketch ${ }^{5}$ Let us then split the stage vector Y of the Runge-Kutta formulation, into Q and P, corresponding to the stages for \mathbf{q} and \mathbf{p}, respectively. Consequently, from (36) and (18)-(19), one obtains, by setting $\mathbf{q}_{0}=\mathbf{q}(0), \mathbf{p}_{0}=\mathbf{p}(0)$, and h the time step:

$$
\begin{equation*}
Q=\mathbf{e} \otimes \mathbf{q}_{0}+h \mathcal{I} \mathcal{P}^{\top} \Omega \otimes I_{N} P, \quad P=\mathbf{e} \otimes \mathbf{p}_{0}-h \mathcal{I} \mathcal{P}^{\top} \Omega \otimes I_{N} F(Q) \tag{100}
\end{equation*}
$$

where (see 18) and 21p)

$$
\begin{equation*}
F(Q)=\frac{1}{\Delta x^{2}} I_{k} \otimes T_{N} Q+f^{\prime}(Q) \tag{101}
\end{equation*}
$$

with an obvious meaning of $f^{\prime}(Q)$. By considering the following properties of the matrices \mathcal{P} and \mathcal{I}, due to corresponding properties of Legendre polynomials [19,

- $\mathcal{I P}^{\top} \Omega \mathbf{e}=\mathbf{c}$,
- $\mathcal{P}^{\top} \Omega \mathcal{I}=X_{s} \equiv\left(\begin{array}{cccc}\frac{1}{2} & -\xi_{1} & & \\ \xi_{1} & 0 & \ddots & \\ & \ddots & \ddots & -\xi_{s-1} \\ & & \xi_{s-1} & 0\end{array}\right)$,
with

$$
\begin{equation*}
\xi_{i}=\left(2 \sqrt{4 i^{2}-1}\right)^{-1}, \quad i=1, \ldots, s-1 \tag{102}
\end{equation*}
$$

substitution of the latter equation in 100 in the former one gives:

$$
Q=\mathbf{e} \otimes \mathbf{q}_{0}+h \mathbf{c} \otimes \mathbf{p}_{0}-h^{2} \mathcal{I} X_{s} \mathcal{P}^{\top} \Omega \otimes I_{N} F(Q)
$$

By setting ${ }^{6}$

$$
\gamma=\mathcal{P}^{\top} \Omega \otimes I_{N} F(Q) \equiv\left(\begin{array}{c}
\gamma_{0} \\
\vdots \\
\gamma_{s-1}
\end{array}\right)
$$

one then obtains the following discrete problem (of block dimension s):

$$
\begin{equation*}
G(\gamma) \equiv \gamma-\mathcal{P}^{\top} \Omega \otimes I_{N} F\left(\mathbf{e} \otimes \mathbf{q}_{0}+h \mathbf{c} \otimes \mathbf{p}_{0}-h^{2} \mathcal{I} X_{s} \otimes I_{N} \gamma\right)=\mathbf{0} \tag{103}
\end{equation*}
$$

Once (103) is solved, the new approximations are then given by (see 102) [19]:

$$
\mathbf{p}_{1}=\mathbf{p}_{0}+h \gamma_{0}, \quad \mathbf{q}_{1}=\mathbf{q}_{0}+h \mathbf{p}_{0}+h^{2}\left(\frac{1}{2} \gamma_{0}-\xi_{1} \gamma_{1}\right) .
$$

Consequently, the solution of the discrete problem (103) is the bulk of the computational cost of the step. For its solution, one could use the following simplified Newton iteration,

$$
\begin{equation*}
\left(I_{s} \otimes I_{N}+\frac{h^{2}}{\Delta x^{2}} X_{s}^{2} \otimes T_{N}\right) \Delta \boldsymbol{\gamma}^{\ell}=-G\left(\boldsymbol{\gamma}^{\ell}\right) \equiv \boldsymbol{\eta}^{\ell}, \quad \ell=0,1, \ldots, \tag{104}
\end{equation*}
$$

[^4]which only considers the (main) linear part of the function F (see (101)). However, even though the coefficient matrix of such iteration is constant, nevertheless, it has dimension $s N$. To reduce the computational cost, it is then better to use a blended iteration [19] (see also [11, 24, 25]), formally defined as:
\[

$$
\begin{align*}
\boldsymbol{\eta}_{1}^{\ell} & =\rho_{s}^{2} X_{s}^{-2} \otimes I_{N} \boldsymbol{\eta}^{\ell} \tag{105}\\
\Delta \boldsymbol{\gamma}^{\ell} & =I_{s} \otimes M_{N}^{-1}\left[\boldsymbol{\eta}_{1}^{\ell}+I_{s} \otimes M_{N}^{-1}\left(\boldsymbol{\eta}^{\ell}-\boldsymbol{\eta}_{1}^{\ell}\right)\right], \quad \ell=0,1, \ldots, \tag{106}
\end{align*}
$$
\]

where

$$
\rho_{s}=\min _{\lambda \in \sigma\left(X_{s}\right)}|\lambda|, \quad M_{N}=I_{N}+\left(\frac{h \rho_{s}}{\Delta x}\right)^{2} T_{N}
$$

with $\sigma\left(X_{s}\right)$ denoting the spectrum of matrix X_{s}. Consequently, the computational cost of each iteration is given by:

- the evaluation of $\boldsymbol{\eta}^{\ell}$ in (104). This requires k evaluations of the right-hand side of the second equation in (18) (see 101-104) plus $(4 k s+3 k+s) N$ flops $]^{7}$
- the evaluation of $\boldsymbol{\eta}_{1}^{\ell}$ in 105 . Concerning matrix $\rho_{s}^{-1} X_{s}$, one can either invert and square it in advance, so that the costs for computing $\boldsymbol{\eta}_{1}^{\ell}$ is $2 s^{2} N$ flops, or solve 2 tridiagonal linear systems, so that, once the factorization is computed 8 the cost per iteration amounts to $10 s N$ flops. Consequently, the corresponding computational cost is given by $2 \min \{s, 5\} s N$ flops;
- the evaluation of $\Delta \boldsymbol{\gamma}^{\ell}$ in 106). This requires solution of $2 s$ linear systems with the symmetric matrix M_{N} plus $2 s N$ flops. Concerning matrix M_{N}, an additional saving of computational effort is gained by retaining only its tridiagonal part (or by considering an approximate inverse) ${ }^{9}$ In such a case, after its factorization ${ }^{10}$ one has a cost of less than $10 s N$ flops. The total cost is then less than $12 s N$ flops.
In conclusion, the total cost per iteration amounts to k function evaluations plus ($13 s+$ $3 k+2 \min \{s, 5\} s+4 k s) N$ flops.

It is worth mentioning that the same complexity is obtained in the case of Dirichlet or Neumann boundary conditions, by considering the corresponding tridiagonal matrices (47) and (65), respectively. Instead, when using the Fourier-Galerkin spatial semidiscretization, one obtains that matrix M_{N} is given by

$$
M_{N}=I_{2 N+1}+\left(h \rho_{s}\right)^{2} D_{N} \in \mathbb{R}^{(2 N+1) \times(2 N+1)},
$$

where matrix D_{N} is diagonal (see (88). Consequently, also M_{N} is a diagonal matrix and, therefore, the complexity per iteration, besides the functions evaluations of the second equation in (90) (which are the same as before i.e., k), decreases. As matter of fact, the required flops per iteration are now given by the dimension of the problem, times a factor $(5 s+3 k+2 \min \{s, 5\} s+4 k s)$, in place of the factor $(13 s+3 k+2 \min \{s, 5\} s+4 k s)$ seen above.

As a result of the previous arguments, one then expects a complexity per step which is linear in the dimension of the problem and, therefore, comparable with that of an

[^5]explicit method. Moreover, in contrast to the A-stable $\operatorname{HBVM}(k, s)$ methods, explicit methods may suffer from stepsize restrictions due to stability reasons, as we shall see in the numerical tests.

$7 \quad$ Numerical tests

We here consider a few numerical tests, concerning the so called sine-Gordon equation, which is in the form (1):

$$
\begin{equation*}
u_{t t}(x, t)=u_{x x}(x, t)-\sin (u(x, t)), \quad x \in[-20,20], \quad t \geq 0 . \tag{107}
\end{equation*}
$$

In particular, we shall consider soliton-like solutions, as described in [76], defined by the initial conditions:

$$
\begin{equation*}
u(x, 0) \equiv 0, \quad u_{t}(x, 0)=\frac{4}{\gamma} \operatorname{sech}\left(\frac{x}{\gamma}\right), \quad \gamma>0 . \tag{108}
\end{equation*}
$$

Depending on the value of the positive parameter γ, the solution is known to be given by:

$$
\begin{equation*}
u(x, t)=4 \operatorname{atan}\left[\varphi(t ; \gamma) \operatorname{sech}\left(\frac{x}{\gamma}\right)\right] \tag{109}
\end{equation*}
$$

with

$$
\varphi(t ; \gamma)=\left\{\begin{array}{llc}
\left(\sqrt{\gamma^{2}-1}\right)^{-1} \sin \left(\gamma^{-1} \sqrt{\gamma^{2}-1} t\right), & \text { if } & \gamma>1 \tag{110}\\
t, & \text { if } & \gamma=1 \\
\left(\sqrt{1-\gamma^{2}}\right)^{-1} \sinh \left(\gamma^{-1} \sqrt{1-\gamma^{2}} t\right), & \text { if } & 0<\gamma<1
\end{array}\right.
$$

The three cases are shown in Figures 12 2 on the left of Figure 1 is the plot of the first soliton (obtained for $\gamma>1$), which is named breather; on the right plot of Figure 1 is the case $0<\gamma<1$, which is named kink-antikink; at last, the case $\gamma=1$, which is named double-pole, separates the two different types of dynamics and is shown in the left plot of Figure 2. Moreover, the space interval being fixed ${ }^{11}$ the Hamiltonian is a decreasing function of γ, as is shown in the right plot of Figure 2. This means that the value of the Hamiltonian characterizes the dynamics. Consequently, in a neighbourhood of $\gamma=1$, where the Hamiltonian assumes a value $\simeq 16$, nearby values of the Hamiltonian will provide different types of soliton solutions. As a result, energy conserving methods are expected to be useful, when numerically solving problem (107)-108) with $\gamma=1$.

Let us then solve such a problem, at first with periodic boundary conditions, by using:

- a finite-difference approximation with $N=400$ equispaced mesh points;
- a trigonometric polynomial approximation of degree $N=100$ and, moreover, $m=200$ equispaced mesh points ${ }^{12}$ In so doing, the error (93) in the initial condition is $e_{N} \simeq 1.6 \cdot 10^{-11}$, so that it is quite well matched.
For the time integration, let us consider the following second-order methods, used with stepsize $h=10^{-1}$ for 10^{3} integration steps:

[^6]- the (symplectic) implicit mid-point rule, i.e., $\operatorname{HBVM}(1,1)$, for which the Hamiltonian error is $\simeq 2 \cdot 10^{-2}$ (though without a drift);
- the (practically) energy-conserving $\operatorname{HBVM}(5,1)$ method, for which the Hamiltonian error is $\simeq 9 \cdot 10^{-14}$.

Concerning the finite-difference space approximation, the error in the numerical Hamiltonian is plotted on the left of Figure 3. The right plot of the same figure illustrates the numerical approximation to the solution computed by the $\operatorname{HBVM}(1,1)$ method: as is clear, the computed approximation is wrong, since the method has provided a breather-like solution. On the contrary, $\operatorname{HBVM}(5,1)$ provides a correct approximation, qualitatively similar to that in the left-plot of Figure 2; it is shown in the left plot in Figure 5.

Concerning the trigonometric polynomial approximation, the error in the numerical Hamiltonian is plotted on the left of Figure 4 . The right plot of the same figure illustrates the numerical approximation to the solution computed by the $\operatorname{HBVM}(1,1)$ method: it has again a breather-like shape and, thus, it is not qualitatively correct. On the contrary, $\operatorname{HBVM}(5,1)$ is able to reproduce the correct behaviour of the solution, as is shown in the right plot in Figure 5.

Completely similar results are obtained by using the same methods (and with the same stepsize h), when Dirichlet boundary conditions are prescribed for (107)-108):

- on the left of Figure 6, there is the plot of $H\left(\mathbf{q}_{n}, \mathbf{p}_{n}, t_{n}\right)-H\left(\mathbf{q}_{0}, \mathbf{p}_{0}, 0\right)$ (see 467) and $\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{n}, \tilde{p}_{n}\right)-\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{0}, \tilde{p}_{0}\right)$ (see 501$)$, when using the $\operatorname{HBVM}(1,1)$ method. Both differences are quite large and almost overlapping. As a result, the computed numerical solution, shown in the right plot of Figure 6 , is wrong;
- on the left of Figure 7, there is the plot of $H\left(\mathbf{q}_{n}, \mathbf{p}_{n}, t_{n}\right)-H\left(\mathbf{q}_{0}, \mathbf{p}_{0}, 0\right)$ (see (46)) and $\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{n}, \tilde{p}_{n}\right)-\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{0}, \tilde{p}_{0}\right)$ (see (50), when using the $\operatorname{HBVM}(5,1)$ method. The augmented Hamiltonian (50) is now conserved, whereas the original Hamiltonian (46) undergoes small oscillations around its initial value. The computed solution, shown in the right plot of Figure 7 , is now correct.
Analogous results are obtained when Neumann boundary conditions are prescribed for (107)-(108). In fact, by considering the same methods and stepsize h :
- on the left of Figure 8, there is the plot of $H\left(\mathbf{q}_{n}, \mathbf{p}_{n}, t_{n}\right)-H\left(\mathbf{q}_{0}, \mathbf{p}_{0}, 0\right)$ (see (64)) and $\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{n}, \tilde{p}_{n}\right)-\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{0}, \tilde{p}_{0}\right)$ (see (68)), when using the $\operatorname{HBVM}(1,1)$ method. Both of them are quite large and almost overlapping. As a result, the computed numerical solution, shown in the right plot of Figure 8 , is wrong;
- on the left of Figure 9, there is the plot of $H\left(\mathbf{q}_{n}, \mathbf{p}_{n}, t_{n}\right)-H\left(\mathbf{q}_{0}, \mathbf{p}_{0}, 0\right)$ (see (64)) and $\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{n}, \tilde{p}_{n}\right)-\tilde{H}\left(\mathbf{q}_{n}, \mathbf{p}_{n}, \tilde{q}_{0}, \tilde{p}_{0}\right)$ (see (68)), when using the $\operatorname{HBVM}(5,1)$ method. The augmented Hamiltonian (68) is now conserved, whereas the original Hamiltonian (64) undergoes small oscillations around its initial value. The computed solution, shown in the right plot of Figure 9, is now correct.
We now highlight the potentialities of the Fourier-Galerkin space approximation, with respect to the finite-difference one, when periodic boundary conditions are prescribed for the problem: in fact, the Fourier approximation (92) to the Hamiltonian converges more than exponentially in the number N of Fourier modes, whereas the finite-difference approximation (24) converges only quadratically in Δx. Since also

Table 1: Comparing finite-difference (FD) and Fourier-Galerkin (FG) errors.

ℓ	FD-error	rate	FG-error	rate
400	$1.4486 \mathrm{e}-01$	-	$1.7883 \mathrm{e}-03$	-
800	$3.6900 \mathrm{e}-02$	1.97	$4.4985 \mathrm{e}-04$	1.99
1600	$9.2702 \mathrm{e}-03$	1.99	$1.1262 \mathrm{e}-04$	2.00
3200	$2.3204 \mathrm{e}-03$	2.00	$2.8171 \mathrm{e}-05$	2.00

$\operatorname{HBVM}(5,1)$ is second order, we then compare the use of such a method, with stepsize $h=40 / \ell$ in time and for a total of ℓ time-steps, for solving problem (107)-(108), with $\gamma=1$ and periodic boundary conditions, by using:

- the second-order finite-difference spatial discretization with ℓ mesh points (with this choice, one has $\Delta x=h$);
- the Fourier-Galerkin approximation with $N=100$, and $m=200$ spatial gridpoints, which we maintain fixed independently of the choice of ℓ. This because the obtained spatial approximation yields a far more accurate approximation than the one corresponding to the time discretization.
Table 1 summarizes the obtained results: both methods are globally second-order accurate, even though the values of N and m are kept fixed in the second case (thus confirming the well known exponential convergence of the Fourier approximation). Moreover, by comparing the maximum error in the finite-difference case (FD-error) and in the Fourier-Galerkin approach (FG-error), one sees that the latter is much more favourable than the former.

This fact, allows us to perform a further numerical experiment, where we compare some (practically) energy-conserving HBVMs, with well known explicit methods of the same order, for solving problem (107)-(108), with $\gamma=1$ and periodic boundary conditions, on the time interval $[0,100]$. In more details, we compare the following methods:
order 2: the (practically) energy-conserving $\operatorname{HBVM}(5,1)$ method, and the symplectic Störmer-Verlet method (SV2);
order 4: the (practically) energy-conserving $\operatorname{HBVM}(6,2)$ method, and the composition method (SV4) based on the symplectic Störmer-Verlet method (each step requiring 3 steps of the basic method), according to [47, page 44];
order 6: the (practically) energy-conserving $\operatorname{HBVM}(9,3)$ method, and the composition method (SV6) based on the symplectic Störmer-Verlet method (each step requiring 9 steps of the basic method), according to [47, page 44].

To compare the methods, we construct a corresponding Work-Precision Diagram, by following the standard used in the Test Set for IVP Solvers [77]. In more details, we plot the accuracy, measured in terms of the maximum absolute error, w.r.t. the execution time. All tests have been done by using Matlab v. 2014b, running on a dual core i7 at 2.8 GHz computer with 8 GB of central memory. The curve of each method is obtained by using k (logarithmically) equispaced steps between $h_{\text {min }}$ and $h_{\text {max }}$, as specified in Table 22^{13} When the stepsize used does not exactly divide the final time $T=100$, the nearest mesh-point is considered.

[^7]Table 2: Parameters used for constructing Figures 10 and 11.

Method	$h_{\max }$	$h_{\min }$	k
HBVM(5,1)	0.5	0.003	10
HBVM(6,2)	0.5	0.1	4
HBVM(9,3)	1	0.25	4
SV2	0.1	0.0006	13
SV4	0.1	0.007	7
SV6	0.1	0.01	5

Figure 10 summarizes the obtained results, and one sees that the (practically) energyconserving HBVMs are competitive, even w.r.t. explicit solvers of the same order. For sake of completeness, in Figure 11, we plot the corresponding Hamiltonian error versus the execution time, thus confirming that HBVMs are practically energy conserving also for non polynomial Hamiltonians: in fact, taking aside the coarser time steps, all methods have a Hamiltonian error which is within roundoff errors. On the contrary, for the other methods the decrease of the Hamiltonian error matches their order.

8 Conclusions

In this paper, we have compared the conservation properties of the semilinear wave equation with the corresponding ones obtained after semi-discretization of the space variable, both when considering a finite-difference and a spectral space discretization. When a finite-difference space discretization is considered, we have also studied the case when non-periodic boundary conditions are prescribed for the problem.

The conservation properties of the semi-discrete problem can be conveniently inherited by the numerical solution provided by energy-conserving methods in the HBVMs class. Such methods turn out to be computationally appealing, since they result to be competitive even w.r.t. to explicit methods, and allow a safer approximation of the solution, when energy conservation is an issue, as is confirmed by a few numerical tests on the sine-Gordon equation with a soliton-like solution.

The arguments can be extended in a quite straightforward way to other Hamiltonian partial differential equations, e.g., the Schrödinger equation (as is sketched in the Appendix), which will be the subject of future investigations. Also a more comprehensive study of Fourier-Galerkin space semi-discretization, when non periodic boundary conditions are prescribed, will be considered in future investigations.

A further direction of investigation will concern the conservation of multiple invariants for the semi-discrete problem, by means of arguments similar to those used in [15, 26].

Appendix

We here sketch the basic facts that allow an extension of the analysis carried out for the semilinear wave equation (11), to different Hamiltonian PDEs. In particular, we here consider the nonlinear Schrödinger equation (in dimensionless form),

$$
\begin{equation*}
\mathrm{i} \psi_{t}+\psi_{x x}+2 \kappa|\psi|^{2} \psi=0, \quad(x, t) \in(0,1) \times(0, \infty), \quad \psi(x, 0) \quad \text { given } \tag{111}
\end{equation*}
$$

where i denotes, as usual, the imaginary unit. By setting

$$
\psi=u+\mathrm{i} v
$$

one then obtains the real form of 111 ,

$$
\begin{align*}
u_{t} & =-v_{x x}-2 \kappa\left(u^{2}+v^{2}\right) v, \quad(x, t) \in(0,1) \times(0, \infty) \tag{112}\\
v_{t} & =u_{x x}+2 \kappa\left(u^{2}+v^{2}\right) u
\end{align*}
$$

which is Hamiltonian with Hamiltonian (compare with (7))

$$
\begin{align*}
\mathcal{H}[u, v](t) & =\frac{1}{2} \int_{0}^{1}\left[u_{x}^{2}(x, t)+v_{x}^{2}(x, t)-\kappa\left(u^{2}(x, t)+v^{2}(x, t)\right)^{2}\right] \mathrm{d} x \\
& \equiv \int_{0}^{1} E(x, t) \mathrm{d} x \tag{113}
\end{align*}
$$

In fact, $\sqrt{112}$ can be formally recast as in (8)-(10), with the new Hamiltonian function (113). In order to be able to repeat for (112) the arguments seen for the Hamiltonian semi-discretization of (1), with either periodic, or Dirichlet, or Neumann boundary conditions, it is enough to derive the conservation laws corresponding to (13) and (37). Concerning the former conservation law, from 113 and 112 one obtains:

$$
\begin{aligned}
E_{t}(x, t)= & u_{x}(x, t) u_{x t}(x, t)+v_{x}(x, t) v_{x t}(x, t)-\overbrace{2 \kappa\left(u^{2}(x, t)+v^{2}(x, t)\right) u(x, t)}^{=v_{t}-u_{x x}} u_{t}(x, t) \\
& \underbrace{-2 \kappa\left(u^{2}(x, t)+v^{2}(x, t)\right) v(x, t)}_{=u_{t}+v_{x x}} v_{t}(x, t) \\
= & u_{x}(x, t) u_{x t}(x, t)+u_{t}(x, t) u_{x x}(x, t)+v_{x}(x, t) v_{x t}(x, t)+v_{t}(x, t) v_{x x}(x, t) \\
= & \left(u_{x}(x, t) u_{t}(x, t)\right)_{x}+\left(v_{x}(x, t) v_{t}(x, t)\right)_{x} \equiv-F_{x}(x, t)
\end{aligned}
$$

Consequently, in place of 13 one obtains:

$$
E_{t}(x, t)+F_{x}(x, t), \quad F(x, t)=-u_{x}(x, t) u_{t}(x, t)-v_{x}(x, t) v_{t}(x, t)
$$

Similarly, taking into account (113) and 112 , the analogous of 37 is given by:

$$
\begin{aligned}
\mathcal{H}[u, v](t)= & \frac{1}{2} \int_{0}^{1}\left[u_{x}^{2}(x, t)+v_{x}^{2}(x, t)-\kappa\left(u^{2}(x, t)+v^{2}(x, t)\right)^{2}\right] \mathrm{d} x \\
= & \frac{1}{2} \int_{0}^{1}\left[-u(x, t) u_{x x}(x, t)+\left(u(x, t) u_{x}(x, t)\right)_{x}\right. \\
& \left.-v(x, t) v_{x x}(x, t)+\left(v(x, t) v_{x}(x, t)\right)_{x}-\kappa\left(u^{2}(x, t)+v^{2}(x, t)\right)^{2}\right] \mathrm{d} x \\
= & -\frac{1}{2} \int_{0}^{1}\left[u(x, t) u_{x x}(x, t)+v(x, t) v_{x x}(x, t)+\kappa\left(u^{2}(x, t)+v^{2}(x, t)\right)^{2}\right] \mathrm{d} x \\
& +\frac{1}{2}\left[u(1, t) u_{x}(1, t)-u(0, t)(t) u_{x}(0, t)+v(1, t) v_{x}(1, t)-v(0, t)(t) v_{x}(0, t)\right]
\end{aligned}
$$

The arguments for the Hamiltonian semi-discretization of 112 can then be repeated, mutatis mutandis, almost verbatim as seen for (1), both when considering a finitedifference and a Fourier-Galerkin space approximation.

References

[1] L. Aceto, D. Trigiante. Symmetric schemes, time reversal symmetry and conservative methods for Hamiltonian systems. Journal of Computational and Applied Mathematics 107 (1999) 257-274.
[2] P. Amodio, L. Brugnano, F. Iavernaro. Energy-conserving methods for Hamiltonian boundary value problems and applications in astrodynamics. Adv. Comput. Math. DOI: 10.1007/s10444-014-9390-z
[3] P. Amodio, I. Sgura. High-order finite difference schemes for the solution of secondorder BVPs. Jour. Comput. Appl. Math. 176 (2005) 59-76.
[4] P. Betsch, P. Steinmann. Inherently energy conserving time finite elements for classical mechanics. J. Comput. Phys. 160, no. 1 (2000) 88-116.
[5] P. Betsch, P. Steinmann. Conservation properties of a time FE method. I. Timestepping schemes for N-body problems. Internat. J. Numer. Methods Engrg. 49, no. 5 (2000) 599-638.
[6] J.P. Boyd. Chebyshev and Fourier spectral methods. Second edition. Dover Publications, Inc., Mineola, NY, 2001.
[7] T.J. Bridges. Multisymplectic structures and wave propagation. Math. Proc. Cambridge Philos. Soc. 121 (1997) 147-190.
[8] T.J. Bridges, S. Reich. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity. Physics Letters A 284 (2001) 184-193.
[9] T.J. Bridges, S. Reich. Multi-symplectic spectral discretizations for the ZakharovKuznetsov and shallow water equations. Physica D 152 (2001) 491-504.
[10] T.J. Bridges, S. Reich. Numerical methods for Hamiltonian PDEs. J. Phys. A: Math. Gen. 39 (2006) 5287-5320.
[11] L. Brugnano. Blended Block BVMs (B3VMs): A Family of Economical Implicit Methods for ODEs. Journal of Computational and Applied Mathematics 116 (2000) 41-62.
[12] L. Brugnano, M. Calvo, J.I. Montijano, L. Ràndez. Energy preserving methods for Poisson systems. Journal of Computational and Applied Mathematics 236 (2012), 3890-3904.
[13] L. Brugnano, G. Frasca Caccia, F. Iavernaro. Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods. Numer. Algor. 65 (2014) 633650.
[14] L. Brugnano, G. Frasca Caccia, F. Iavernaro. Efficient implementation of geometric integrators for separable Hamiltonian problems. AIP Conference Proceedings 1558, 734 (2013).
[15] L. Brugnano, F. Iavernaro. Line Integral Methods which preserve all invariants of conservative problems. Journal of Computational and Applied Mathematics 236 (2012) 3905-3919.
[16] L. Brugnano, F. Iavernaro, D. Trigiante. Analisys of Hamiltonian Boundary Value Methods (HBVMs): a class of energy-preserving Runge-Kutta methods for the numerical solution of polynomial Hamiltonian systems. Communications in Nonlinear Science and Numerical Simulation 20 (2015) 650-667.
[17] L. Brugnano, F. Iavernaro, D. Trigiante. Hamiltonian BVMs (HBVMs): a family of "drift-free" methods for integrating polynomial Hamiltonian systems. AIP Conf. Proc. 1168 (2009) 715-718.
[18] L. Brugnano, F. Iavernaro, D. Trigiante. Hamiltonian Boundary Value Methods (Energy Preserving Discrete Line Methods). Journal of Numerical Analysis, Industrial and Applied Mathematics 5,1-2 (2010) 17-37.
[19] L. Brugnano, F. Iavernaro, D. Trigiante. A note on the efficient implementation of Hamiltonian BVMs. Journal of Computational and Applied Mathematics 236 (2011) 375-383.
[20] L. Brugnano, F. Iavernaro, D. Trigiante. The Lack of Continuity and the Role of Infinite and Infinitesimal in Numerical Methods for ODEs: the Case of Symplecticity. Applied Mathematics and Computation 218 (2012) 8053-8063.
[21] L. Brugnano, F. Iavernaro, D. Trigiante. A simple framework for the derivation and analysis of effective one-step methods for ODEs. Applied Mathematics and Computation 218 (2012) 8475-8485.
[22] L. Brugnano, F. Iavernaro, D. Trigiante. A two-step, fourth-order method with energy preserving properties. Computer Physics Communications 183 (2012) 18601868.
[23] L. Brugnano, F. Iavernaro, D. Trigiante. Energy and QUadratic Invariants Preserving integrators based upon Gauss collocation formulae. SIAM Journal on Numerical Analysis 50, No. 6 (2012) 2897-2916.
[24] L. Brugnano, C. Magherini. Blended Implementation of Block Implicit Methods for ODEs. Appl. Numer. Math. 42 (2002) 29-45.
[25] L. Brugnano, C. Magherini. The BiM Code for the Numerical Solution of ODEs. Jour. Comput. Appl. Mathematics 164-165 (2004) 145-158.
[26] L. Brugnano, Y. Sun. Multiple invariants conserving Runge-Kutta type methods for Hamiltonian problems. Numer. Algor. 65 (2014) 611-632.
[27] B. Cano. Conserved quantities of some Hamiltonian wave equations after full discretization. Numer. Math. 103 (2006) 197-223.
[28] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang. Spectral Methods in Fluid Dynamics. Springer-Verlag, New York, 1988.
[29] E. Celledoni, V. Grimm, R.I. McLachlan, D.I. McLaren, D. O'Neale, B. Owren, G.R.W. Quispel. Preserving energy resp. dissipation in numerical PDEs using the "average vector field" method. J. Comput. Phys. 231, no. 20 (2012) 6770-6789.
[30] E. Celledoni, R.I. McLachlan, D.I. McLaren, B. Owren, G.R.W. Quispel, W.M. Wright. Energy-preserving Runge-Kutta methods. M2AN Math. Model. Numer. Anal. 43, no. 4 (2009) 645-649.
[31] E. Celledoni, B. Owren, Y. Sun. The minimal stage, energy preserving Runge-Kutta method for polynomial Hamiltonian systems is the averaged vector field method. Math. Comp. 83, no. 288 (2014) 1689-1700.
[32] J.B. Chen, M.Z. Qin. Multi-symplectic Fourier pseudospectral method for the nonlinear Schrödinger equation. Electron. Trans. Numer. Anal. 12 (2001) 193-204.
[33] D. Cohen, E. Hairer, C. Lubich. Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations. Numer. Math. 110 (2008) 113-143.
[34] G. Dahlquist, Å. Bijörk. Numerical Methods in Scientific Computing, Vol. 1. SIAM, Philadelphia, 2008.
[35] T. D'Aprile, D. Mugnai. Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations. Proceedings of the Royal Society of Edinburgh 134 A (2004) 893-906.
[36] G.A. Evans, J.R. Webster. A comparison of some methods for the evaluation of highly oscillatory integrals. Jour. Comput. Appl. Math. 112 (1999) 55-69.
[37] E. Faou. Geometric numerical integration and Schrödinger equations. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich, 2012.
[38] T. Flå. A numerical energy conserving method for the DNLS equation. J. Comput. Phys. 101 (1992) 71-79.
[39] B. Forneberg, G.B. Whitham. A Numerical and Theoretical Study of Certain Nonlinear Wave Phenomena. Proc. R. Soc. Lond. A 289 (1978) 373-403.
[40] J. Frank. Conservation of wave action under multisymplectic discretizations. J. Phys. A: Math. Gen. 39 (2006) 5479-5493.
[41] J. Frank, B.E. Moore, S. Reich. Linear PDEs and Numerical Methods that Preserve a Multisymplectic Conservation Law. SIAM J. Sci. Comput. 28 (2006) 260-277.
[42] J.de Frutos, T. Ortega, J.M. Sanz-Serna. A Hamiltonian, explicit algorithm with spectral accuracy for the "good" Boussinesq system. Comput. Methods Appl. Mech. Engrg. 80 (1990) 417-423.
[43] D. Furihata. Finite-difference schemes for nonlinear wave equation that inherit energy conservation property. J. Comput. Appl. Math. 134, no. 1-2 (2001) 37-57.
[44] D.Furihata, T. Matsuo. Discrete variational derivative method. A structurepreserving numerical method for partial differential equations. CRC Press, Boca Raton, FL, 2011.
[45] E. Hairer. Energy-preserving variant of collocation methods. JNAIAM. J. Numer. Anal. Ind. Appl. Math. 5, no. 1-2 (2010) 73-84.
[46] M. Huang. A Hamiltonian approximation to simulate solitary waves of the Kortwegde Vries equation. Math. Comp. 56, no. 194 (1991) 607-620.
[47] E. Hairer, C. Lubich, G. Wanner. Geometric numerical integration. Structurepreserving algorithms for ordinary differential equations (second ed.) SpringerVerlag, Berlin, 2006.
[48] E. Hairer, C. Lubich. Spectral semi-discretisations of weakly nonlinear wave equations over long times. Found. Comput. Math. 8 (2008) 319-334.
[49] B.M. Herbst, M.J. Ablowitz. Numerical chaos, symplectic integrators, and exponentially small splitting distances. J. Comput. Phys. 105, no. 1 (1993) 122-132.
[50] W. Hu, Z. Deng, S. Han, W. Zhang. Generalized multi-symplectic integrators for a class of Hamiltonian nonlinear wave PDEs. J. Comput. Phys. 235 (2013) 394-406.
[51] S. Koide, D. Furihata. Nonlinear and linear conservative finite difference schemes for regularized long wave equation. Japan J. Indust. Appl. Math. 26, no. 1 (2009) 15-40.
[52] F. Iavernaro, B. Pace. s-Stage Trapezoidal Methods for the Conservation of Hamiltonian Functions of Polynomial Type. AIP Conf. Proc. 936 (2007) 603-606.
[53] F. Iavernaro, B. Pace. Conservative Block-Boundary Value Methods for the Solution of Polynomial Hamiltonian Systems. AIP Conf. Proc. 1048 (2008) 888-891.
[54] F. Iavernaro, D. Trigiante. High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. Journal of Numerical Analysis, Industrial and Applied Mathematics 4,1-2 (2009) 87-101.
[55] A.L. Islas, C.M. Schober. On the preservation of phase space structure under multisymplectic discretization. Journal of Computational Physics bf 197 (no. 2) (2004) 585-609.
[56] A.L. Islas, C.M. Schober. Backward error analysis for multisymplectic discretizations of Hamiltonian PDEs. Mathematic and Computers in Simulation 69 (2005) 290-303.
[57] A.L. Islas, C.M. Schober. Conservation properties of multisymplectic integrators. Future Generation Computer Systems 22 (2006) 412-422.
[58] A. Kurganov, J. Rauch. The Order of Accuracy of Quadrature Formulae for Periodic Functions. Advances in Phase Space Analysis of Partial Differential Equations, A. Bove et al. (eds.), Birkhäuser, Boston, 2009.
[59] R.I. McLachlan, G.R.W. Quispel. Discrete gradient methods have an energy conservation law. Discrete Contin. Dyn. Syst. 34, no. 3 (2014) 1099-1104.
[60] R.I. McLachlan, G.R.W. Quispel, N. Robidoux. Geometric integration using discrete gradient. Philos Trans R Soc London A 357 (1999) 1021-45.
[61] B. Leimkulher, S. Reich. Simulating Hamiltonian Dynamics. Cambridge University Press, 2004.
[62] C.W.Li, M.Z. Qin. A symplectic difference scheme for the infinite-dimensional Hamilton system. J. Comput. Math. 6 (1988) 164-174.
[63] S. Li, L. Vu-Quoc. Finite difference calculus invariant structure of a class of algorithms for the nonlinear Klein-Gordon equation. SIAM J. Numer. Anal. 32 (1995) 1839-1875.
[64] X. Lu, R. Schmid. A symplectic algorithm for wave equations. Math. and Comput. in Simulat. 43 (1997) 29-38.
[65] J. E. Marsden, G.P. Patrick, S. Shkoller. Multi-symplectic geometry, variational integrators, and nonlinear PDEs. Communications in Mathematical Physics 199 (1999) 351-395.
[66] T. Matsuo. New conservative schemes with discrete variational derivatives for nonlinear wave equations. J. Comput. Appl. Math. 203 (2007) 32-56.
[67] T. Matsuo, M. Sugihara, D. Furihata, M. Mori. Spatially accurate dissipative or conservative finite difference schemes derived by the discrete variational method. Japan J. Indust. Appl. Math. 19, no. 3 (2002) 311-330.

Figure 1: Breather solution for $\gamma=1.01$ (left plot), and kink-antikink solution for $\gamma=0.99$ (right plot).
[68] B. Moore, S. Reich. Backward error analysis for multi-symplectic integration methods. Numer. Math. 95 (2003) 625-652.
[69] M. Oliver, M. West C. Wulff. Approximate momentum conservation for spatial semidiscretization of semilinear wave equations. Numer. Math. 97 (2004) 493-535.
[70] M.-Z. Qin, M.-Q. Zhang. Multi-stage symplectic schemes of two kinds of Hamiltonian systems for wave equations. Computer Math. Appl. 19, no. 10 (1990) 51-62.
[71] G.R.W. Quispel, D.I. McLaren. A new class of energy-preserving numerical integration methods. J. Phys. A 41 (2008) 045206 (7pp).
[72] J.M. Sanz-Serna, M.P. Calvo. Numerical Hamiltonian Problems. Chapman \& Hall, 1994.
[73] W. Strauss, L.Vázquez. Numerical solution of a nonlinear Klein-Gordon equation. J. Comput. Phys. 28 (1978) 271-278.
[74] J. Wang. A note on multisymplectic Fourier pseudospectral discretization for the nonlinear Schrödinger equation. Appl. Math. Comput. 191 (2007), 31-41.
[75] S.B. Wineberg, J.F. Mc Grath, E.F. Gabl, L.R. Scott, C.E. Southwell. Implicit spectral methods for wave propogation problems. J. Comp. Physics 97 (1991) 311-336.
[76] T.H. Wlodarczyk. Stability and preservation properties of multisymplectic integrators. PhD thesis, Department of Mathematics in the College of Sciences at the University of Central Florida, Orlando, Florida, 2007. (http://etd.fcla.edu/CF/ CFE0001817/Wlodarczyk_Tomasz_H_200708_PhD.pdf)
[77] Test Set for IVP Solvers. https://www.dm.uniba.it/~testset/testsetivpsolvers/

Figure 2: Double-pole solution for $\gamma=1$ (left plot), and Hamiltonian as a function of γ (right plot).

Figure 3: periodic boundary conditions and finite-difference approximation. Hamiltonian error (left plot) when using the $\operatorname{HBVM}(1,1)$ and $\operatorname{HBVM}(5,1)$ methods with stepsize $h=0.1$, and numerical solution provided by $\operatorname{HBVM}(1,1)$ (right plot) when solving problem (107)-108) with $\gamma=1$.

Figure 4: periodic boundary conditions and Fourier-Galerkin approximation. Hamiltonian error (left plot) when using the $\operatorname{HBVM}(1,1)$ and $\operatorname{HBVM}(5,1)$ methods with stepsize $h=0.1$, and numerical solution provided by $\operatorname{HBVM}(1,1)$ (right plot) when solving problem (107)-108) with $\gamma=1$.

Figure 5: periodic boundary conditions. Computed solution by $\operatorname{HBVM}(5,1)$ with stepsize $h=0.1$ by using a finite-difference spatial discretization (left plot) or a spectral space discretization (right plot).

Figure 6: Dirichlet boundary conditions. Difference with the initial value for the numerical Hamiltonian and augmented Hamiltonian (left plot) when solving problem (107)-(108) with $\gamma=1$, by using $\operatorname{HBVM}(1,1)$ with stepsize $h=0.1$, along with the computed solution (right plot).

Figure 7: Dirichlet boundary conditions. Difference with the initial value for the numerical Hamiltonian and augmented Hamiltonian (left plot) when solving problem (107)-(108) with $\gamma=1$, by using $\operatorname{HBVM}(5,1)$ with stepsize $h=0.1$, along with the computed solution (right plot).

Figure 8: Neumann boundary conditions. Difference with the initial value for the numerical Hamiltonian and augmented Hamiltonian (left plot) when solving problem (107)-(108) with $\gamma=1$, by using $\operatorname{HBVM}(1,1)$ with stepsize $h=0.1$, along with the computed solution (right plot).

Figure 9: Neumann boundary conditions. Difference with the initial value for the numerical Hamiltonian and augmented Hamiltonian (left plot) when solving problem (107)-(108) with $\gamma=1$, by using $\operatorname{HBVM}(5,1)$ with stepsize $h=0.1$, along with the computed solution (right plot).

Figure 10: Work-Precision Diagram for problem (107)-(108).

Figure 11: Hamiltonian error versus execution time for problem (107)- 108 .

[^0]: ${ }^{1}$ They have been also applied to multisymplectic PDEs [9, 32, 74.

[^1]: ${ }^{2}$ Because of the periodic boundary conditions 2 .

[^2]: ${ }^{3}$ Indeed, H contains at least a quadratic term.

[^3]: ${ }^{4}$ We refer, e.g., to [28], for a corresponding comprehensive error analysis.

[^4]: ${ }^{5}$ This is not the case when considering different Hamiltonian PDEs, such as, e.g., the nonlinear Schrödinger equation.
 ${ }^{6}$ Here, γ_{j} is given by the entries of the vector $\hat{\gamma}_{j}(\mathbf{u})$ in 32 corresponding to the \mathbf{q} components only. Consequently, it has a halved dimension, w.r.t. this latter vector.

[^5]: ${ }^{7}$ We count as 1 flop, one elementary floating-point operation.
 ${ }^{8}$ This costs less than $3 s$ flops.
 ${ }^{9}$ In general, the matrix becomes banded, when considering higher-order discretizations, see, e.g., 711)-72.
 ${ }^{10}$ This costs less than $3 N$ flops.

[^6]: ${ }^{11}$ I.e., $[-20,20]$, in our case (see 107).
 ${ }^{12}$ In fact, $m=200$ is an appropriate choice for $N=100$, in this case.

[^7]: ${ }^{13}$ Larger values of $h_{\max }$ for the explicit methods (see Table 2 are not allowed because of stability reasons.

