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Abstract

This paper is focused on quasi-periodic wave solutions of (3+1) gener-
alized BKP equation. Because of some difficulties in calculations of N = 3
periodic solutions, hardly ever has there been a study on these solutions
by using Rieamann theta function. In this study, we obtain one and two
periodic wave solutions as well as three periodic wave solutions for (3+1)
generalized BKP equation. Moreover we analyse the asymptotic behavior
of the periodic wave solutions tend to the known soliton solutions under
a small amplitude limit.
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1 Introduction

In recent years, the problem of finding exact solutions of partial differential
equations (PDE) is very popular for both mathematicians and physcists. Be-
cause if we know the exact solutions of PDE’s, they can help us to understand
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complicated physical models. So, there are some successful methods to obtain
exact solutions such as Hirota’s direct method [I], Lie symmetry method [2],
Bécklund transformation method [3] and algebro geometric method [4].

In the late 1970’s Novikov, Dubrovin, Mckean, Lax, Its, and Matveev et al.
developed the algebro geometric method to obtain quasi-periodic or algebro-
geometric solutions for many soliton equations [B, [§]. However this method
involves complicated calculation. On the other hand, Hirota’s direct method is
rather useful and direct approach to construct multisoliton solutions.

In the 1980, Nakamura obtained the periodic wave solutions of the KdV and
the Boussinesq equations by means of Hirota’s bilinear method [9, [10]. Indeed
this method has some advantages over algebro-geometric methods. We can get
explicit periodic wave solutions directly.

Recently, Fan and his collaborators have extended this method to investigate
the discrete Toda lattice [I1] , Cheng Z.,Hao X. studied on periodic solution of
(241) AKNS equation [12], Tian and Zhang obtained periodic wave solutions
by Riemann theta functions of some nonlinear differential equations and super-
symmetric equations [I3] [I4], Lu and Zhang studied on quasi periodic solutions
of Jimbo-Miwa equation [15]

Soliton equations possess nice mathematical features, e.g., elastic interac-
tions of solutions. Such equations contain the KdV equation, the Boussinesq
equation, the KP equation and the BKP equation, and they all have multi-
soliton solutions. Let us consider (3+1) dimensional generalized BKP equation
[16].

Uty — Ugzzy — 3(UgUy)e + Uz, =0 (1.1)

Now, in this paper we briefly introduce a Hirota bilinear form and the Rie-
mann theta function.Then after we apply the Hirota’s bilinear method to con-
struct one, two and three periodic wave solutions to (3+1) generalized BKP
equation, respectively. We further use a limiting procedure to analyse the
asymptotic behavior of the periodic wave solutions in the last section. It is
rigorously shown that the periodic solutions tend to the well-known soliton so-
lutions under a certain limit.



2 The Bilinear Form and The Riemann Theta
Functions

In this section we introduce briefly bilinear form and some main points on
the Riemann theta functions. The Hirota bilinear method is powerful when
constructing exact solutions for nonlinear equations. Through the dependent
variable transformation u = 2(In f), , eq. (1.1) is written bilinear form

(DyDy — D2Dy +3D,D.)f.f =0. (2.1)
Here D is differential bilinear operator defined by

DDy Dy f(@,y,t).9(x,y,t) =

(2.2)
(9 — D)™ (B, — Dy )™ (D = D) £,y )9(0 sy ) Loyt
and the operator has property for exponential functions namely
D' Dy Dyetretz = (a1 — ag)™(py — p)" (w1 — wa)Fetr+ee (2.3)

where §; = a,;x + p;y + wit + d;, © = 1,2. More general we can write following
formula

G(Dy, Dy, Dy)eS1e®2 = G(ay — ag, py — pa, w1 — wa)es1 T2 (2.4)
where G(D,, Dy, D;) is a polinomial about D, D, and D;. According to the
Hirota bilinear theory, eq. (1.1) admits one-soliton solution

up = 20,(In(1 + €")) (2.5)

where phase variable n = pux + vy + kz + wt + v , dispersion relation w =
—3%—1-#3, i, v,k and 7 are constants.

Two-soliton solution

ug = 20, (In(1 4 ™ + €2 + e"1+"2+‘412)) (2.6)
with
pArz — _ (rimve)(m —we) = (i —pg)° (V2 —v2)+3(py —pig) (51 —Ka) (2.7)
(vitve)(witwa)— (g +pg)3 (Vi+v2)+3(uy +ag) (k1 +k2) ’
n; =1+ vy +Kriz+wit+y;, j=1,2
(2.8)
w1 = =355 4, wa = 35272 4 i
where pi;, v, ; and 7; are arbitrary constants.
Three-soliton solution
uz = 20, (In(f)) (2.9)



f is written as

f=14en+em fe 4 entntin

+en1+773+A13 + e2Fmns+Azs + eMm+matnz+Ai2+Aiz+A23 (210)
with
eAis — Wiy (@i —wy) = (=) (i =) 3 — 1) (ki — k) (2.11)
T (witvy)(mitwg) = ()3 (it v ) 3y ) (ki) ’
n; = px + vy + Kiz+wit+;, i, 7=1,2,3 ;i<
@ = =355 4, wy = —38272 + 1 (2.12)
ws = =355 + 13

In order to apply the Hirota’s bilinear method to constact multi-periodic
wave solutions we consider a slightly generalized form of bilinear equation (2.1).
We look for our solution in the form

u=ugy + 2(InV(&)), (2.13)

where ugy is a solution of (1.1) and phase variable ¢ = (£,....,65)T , & =
o+ py+kiz+wit +0,,1=1,2..N.
Substituting (2.13) into (1.1) and integration once respect to = , we obtain

H(Dy, Dy, D, D:,) = (DyD; + 3D, D, — D3D, — 3ugD? + ¢)9(£).9(£) =0
(2.14)
c(y,z,t) is integration constant. For finding multiperiodic wave
solutions of (2.14), we consider the following multidimensional Riemann theta
function

where ¢ =

19(577_) — Z eﬂ'i<7’n,n>+27ri<f,n> (215)

nezZN

where the integer value vector n = (nj..nx)? € Z and complex phase vari-
ables & = (&;...65)T € CV | for N dimensional two vectors their inner product
is defined by < u,v >= ujv; + ... + unyvy . Period matrix of theta function is
-iT = —i(7;;) which is positive definite and real-valued symmetric N x N matrix
and can be considered as free parametres of theta function. So the Fourier series
(2.15) converges to a real valued function and for make the theta function real
valued in this paper we take 7 imaginay matrix.

Proposition 1 The theta function 9(€,T) has the periodic properties
HE+147)=e TTEY(E,T)

we regard the vectors 1 and T as a periods of the theta function O(&,T) with
multipliers 1 and e~™7 =27 Here T is not a period of theta function 9(&,7),
but it is the period of the functions O (€, 7), O n[I(E+e,7)/9(E+h, T)] and
I(E+ e, 7)€ — e, 7)/9* (€ + h,T).



3 One-periodic waves and asymptotic proper-
ties

3.1 Construct one periodic waves

If we take N = 1, we obtain one-periodic solutions and our Riemann theta
function reduces following Fourier series

oo

I(E,m) =Y eminirH2ning (3.1.1)

— 00

where the phase variable £ = az + py + kz +wt + § and Im(7) > 0.
Theorem 1 Assuming that 9(£,7) is a Riemann theta function as N = 1

with € = azry + pra + ... +wt+ 9 and a,p,...,w,d satisfy the following system

S H(4nmio, Anip, ..., Anmiw)e?™ ™7 = (3.1.2)

n=—oo

S H(2mi(2n — Da, ..., 2mi(20 — 1)w) (3.1.3)

n=—oo

Xe(2n272n+1)7ri7' =0
and the following expression
u=1uoy +2(In¥§))s (3.1.4)

is the one periodic wave solution of eq. (1.1). For the proof [14].
According to the Theorem 1 a, p, k and w should provide the following system
with (2.15)

H(0) = Z (—1672n2pw — 48m2n?ak — 256m*nt pa’

n=—oo

+48ugm2n2a? + ¢)e2™in’T = ()

H(1)= > (—47%(2n — 1)*pw — 127 (2n — 1)%ak — 167*(2n — 1)*pa®

n=—oo

+127T21L0(27’L _ 1)2(12 + C)e(2n2_2n+l)ﬂ'i7’ -0 .
(3.1.5)
Our aim is solving this system about frequency w and integration constant c,

namely
ai1 a2 (w by
= . 3.1.6
(e ) () =) @19



By introducing the notations as
. oS on2
A=e™ ap;p = Y, —16m%nZpA*"

n=—oo

00 o2
aip = E /\n

n=—oo

az = Y. —4w?(2n — 1)2p)\2"272"+1

oy — i \2n2—2n+1 (3.1.7)
by = Y (4872n2ak + 256mintpa’ — 487T2n2042u0))\2"2

bp= > (1272(2n —1)%ak + 167*(2n — 1)*pa’

n=—oo

—1272(2n — 1)22ug) A2 2

we can easily solve this system and then we obtain a one-periodic wave solution
of Eq. (1.1)
u=uoy + 2(InY(&)), (3.1.8)

where the parameters w and ¢ are given by (3.1.7) but the other parameters
a, p, k, 8, T,ug are free.

3.2 Asymptotic property of one periodic waves

Theorem 2 If the vector (w,c)T is a solution of the system (3.1.6) and for
the one-periodic wave solution (3.1.8) we let
n v K ¥ — WT
:O = — = — k:— 6:7 3.2.1
1o @ 2mi’ P 2mi’ 2mi’ 27 ( )
where p,v and vy are given (2.5). Then we have following asymtotic properties

n — mT

c—0, &— ; I(E,7) = 1+e" when A —0 (3.2.2)

211

It implies that the one-periodic solution tends to the one-soliton solution eq.
(2.5) under a small amplitude limit
Proof
The one-periodic wave solution (3.1.8) has two fundamental periods 1 and
7 in the phase variable £ . It’s actually a kind of one-dimensional cnoidal waves
and speed parameter is given by
biazs — baaia

w= 22 2R (3.2.3)
aii1a22 — 12021



It has only one wave pattern for all time, and it can be viewed as a parallel
superposition of overlapping one-solitary waves, placed one period apart

For consider asymptotic properties we have to find solution of system (3.1.6)
. Using eq. (3.1.7) coefficent matrix and the right-side vector of system (3.1.6)
are power series about \ so its solution (w,c)” also should be a series about A

ay1 = —32m2pA? — 12872pA® + ..

aja =1+ 222 + 228 + ...

ag1 = —8m2p\ — T2m2p\° + ...
ag9 = 2A —|— 2)\5 —|—

by = (96m2ak + 5127403 p — 96ugn?a?)\?
+(384m2ak 4 81927%a’p — 384ugm2a®)A\® + ..

by = (247%ak + 32m*ap — 24ugm?a?) A
+(216m2ak + 259274’ p — 216ugm2a®)\° + ...

We can solve the system (3.1.6) via small parameter expansion method and
we obtain

w= (-3 — 420 + 3up ) + (9672%)A? + (28872 A" + o(A")

(3.2.4)
¢ = (38471 paP) A% + (23047% pa) At 4+ o(\?) .
From Theorem 2 and (3.2.4), we have
ak 9 3
c—0, w=-3——4r"a’ when A —0 (3.2.5)
p
and substituting the relation (3.2.1) into (3.2.5) we obtain
@ = 2miw = —3’;—” . (3.2.6)

The one-soliton solution of the (3+1) generalized BKP equation can be ob-
tained as a limit of the periodic solution (3.1.8). We can expand the periodic
function 9¥(¢) in the following form

I(E ) = Y erimiraming (3.2.7)

_ 1+eﬂi7+2ﬂi£+ewiT—2wi£+e47ri‘r+47ri£+



By using the transformation

§_> f*ﬂ'i"', )\:eﬂ'i‘r

2me

(3.2.8)
V(ET)=14ef + 2\ (e ¢ +e2) + ..

and when A — 0 we can write
IET)=1+¢€" . (3.2.9)

According to one soliton solution £ = 7 , therefore proof is completed.

4 Two-periodic waves and asymptotic proper-
ties

4.1 Construct two-periodic waves

We consider two-periodic wave solutions of Eq. (1.1) which are two dimen-
sional generalization of one-periodic wave solutions. Let’s consider N = 2, and
Riemann theta function takes the form

DET) = 0§, Lo, 7) = Y erisTnz RIS (4.1.1)

nez?

where n = (TLLTLQ)T €72 E=(£,6)eC? & =+ py+kiz+wit +0;
1=1,2 and —it is a positive definite and real-valued symmetric 2 X 2 matrix
which can take the form of

= <T11 T12) , Im(Tu) > 0, Im(TQQ) >0, 711722 — 7'%2 <0 (412)
Ti2 T22
Theorem 3 Assuming that ¥(§; §5 7) is one Riemann theta function as
N =2 with &, = ax + p;y + kiz +wit +9; and o, p;, ki, wi, 6; & = 1,2 satisfy
the following system

> H@mi<2n—0j,a>,..2m < 20— 0;,w >) (4.1.3)
nez?
XeTri[<T(n—0j),n—9j>+<Tn,n>] - 0

where 0; = (0;,67)7 , 61 = (0,0)7, 6 = (1,0)7, 63 = (0,1)7, 6, = (1,1)T,
j=1,2,3,4 and the following expression

u=upy + 2(In9(&§; &2, 7))



is the two-periodic wave solution of Eq. (1.1). For the proof [14]

According to the Theorem 3 «, p;, ki and w; should provide the following

system with (2.14)

M [-4r? <2n—0,p><2n—0;,w > —127% < 2n — 0;,a >< 2n— 0,k >

nez?
—167* < 2n —0;,a >3< 2n —0;,p > +121%ug < 2n — 0, a0 >2

+C] x eTil<T(n—0;),n—0;>+<tnn>] _

where j = 1,2,3,4. Our aim is solving this system namely

w1 b1
X w2 _ bg
Uo bg
& b4
where X = (a;;)ax4 matrix.
By introducing the notation as
e = )\?fﬂL(nl*G;)Q)\;1§+("2*9§)2Ag1n2+("1*9;)(n2*9?)
where
A =™ Ny =€ 22 \g =212 and j=1,2,3,4
and

aja= > €
nlyngeZ2

a;3 = 1272 Z < 2n—9j,a >2 €j
nez?

Qjo = —4x? Z < 2n-— Gj,p > (2n2 — 9?)€j
nez?

aj1 = —47? Z < 2n-— Gj,p > (2711 —9})€j
nez?

b= > 122 <2n—0j,a ><2n—10;k >
nez?

+167% < 2n —0;,a >3<2n —0;,p > ¢;

we can solve this system and we obtain two-periodic wave solution as

U = upy + 2(]1119(51,62,7'));3

(4.1.4)

(4.1.5)

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)



where 9(&, &5, 7) and parameters w1y, wa, ug, ¢ are given by (4.1.1) and (4.1.5).
The other a1, ag, py, po, k1, k2,711, T12 and Ta9 are arbitrary parameters .

We notice that the total number of unknown parameters ug integration con-
stant c , nonlinear frequency oy, p;, ki, w; and the term 7, = 755 , 1 < j,k <N
is

1
§N(N+1)+4N+2 .

4.2 Asymptotic property of two periodic waves

Teorem 4 If (w1,ws,uq,c)! is a solution of the system (4.1.5) and for the
two-periodic wave solution we take
: Vi K S — T 5 A
ﬁ pJ:2_7:’L, k_]:_] 76j:,7J 27i ]]7 T12 = 1? j:172
(4.2.1)
where p;,vj kj,05 and Aig are given in Eq. (2.7) and (2.8) . Then we have
the following asymtotic relations

;= -
7 2mi’

j—ﬂ'lTjj

up =0, c—=0, & — 1 j=1,2

2me ’ ’

(4.2.2)
V(1,6 T) = 14+ €M + ez + emtntdiz 55 A Ay — 0

That means the two-periodic solution tends to the two-solion solution under a
small amplitude limit.
Proof The Riemann theta function is

19(6175277-) _ Z eﬁi<7’n,n>+2ﬂ'i<§,n> (423)

n€ez?
Let’s expand this function

Z 62771'(51711+£2n2)+7ri[n1(Tllnl+712n2)+n2(712n1+722n2)] (424)

ny,ng€L2

_ 1+e27ri£1+7ri7'11 +e—27ri£1+7ri7'11 +

and if we take £; — ST iy B, (4.2.4) we have

2me
IE1 Eni7) = 1+ €61 4 8o 4 rteatPnine | \20-6 | N2 4 (42.5)
where A\; = ™11, Ay =¢e™722 and A, Ay — 0
IE1,EanT) = 1+ €61 4 b2 4 rFEat2miman (4.2.6)

According to the two soliton solution (2.6) we can write

T19 — — (427)



For solving system (4.1.5) we can expand each funcion into a series with A; and
A2
X = Xo+ X1h1 + Xodo + X107 + Xoo A

; 4.2.8
+ X1 A +0(AN) k41> 2 (428)
and
w1 Wy wi w? wy
ol I B I 3 VO - VO £ 3 Y (4.2.9)
uo | | ud ud ! ud 2 ud | 1 -
c o ct c? c
wi wi
wil o | Wl Kyl
+ 4 A2+ 5 A1A2"’0()\1)\2) 5 k+122
Ug Ug
ct o
Substituting these equations into the (4.1.5), we obtain
c = (3841 adp; ) AT + (384743 py) A5 + o(A1, Ao)
OL2 042 042
wy = (—3a;—f1 —dr®ad + 37 ug) + (37Lug)Ar + (371ug )z
4.2.10
+0()\1, /\2) ( )
oz2 Ot2 Ot2
wp = (=328 —4r2ad + 372uf) + (372ug) A + (352ug Ao
+O()\1, )\2)
If we choose uJ = 0 , and (A1, A2) — (0,0), we can find
uyg = 0()\1,/\2)—>0 , ¢—0 (4211)
k
wp = gl 4l
1
k
wy = g2 4o,
P2
According to the Theorem 4, we obtain
W1:_3#+1"<1+Mi> 9 ’WQ:—S'L;Q—;Q‘FM%,C%O
(4.2.12)
when ug = o(A1,A2) =0 .
and when solving the system we obtain
_ _ (i ve)(m—wa) = (g =) (V1 —v2) +3(py — ) (k1 —K2)
A3 = v e Fma)— (s iy P T 7) P8 T i) (e s ) (4.2.13)
That means just by solving system we can obtain e“'2 this is alternative proof
for 715 = %

From (4.2.12), we conclude that the two-periodic solution tends to the two
soliton solution as A1, Ao — 0.

11



5 Three-periodic waves and asymptotic proper-
ties

We consider three-periodic wave solutions of Eq. ??. Let’s consider N = 3, and
Riemann theta function takes the form

V(&) =0(& & 6am) = Y erisTmntmi<in> (5.1.1)

nezs

where n = (n1,n2,n3)?7 € 23, £ = (£1,£5,&3) € C | &, = quz+py+kiz+wit+6;
,i=1,2,3 and —i7 is a positive definite and real-valued symmetric 3 x 3 matrix
which can take the form of

Ti1 Ti12 T13
T=|T12 T2z T23], Im(r;,) >0, j=k=1,2,3 (5.1.2)
T13 T23 733

Theorem 5 Assuming that (&, §5 &3,7) is one Riemann theta function
as N =3 with £, = ax + p;y + kiz + wit + 6; and ay, p;, ki, wi, 0 i =1,2,3
satisfy the following system

ST HQ2mi<2n—0;,a>,..2m < 2n—0;,w>)

emil<T(n—0;),n—0;>+<rn,n>] _

where 0; = (0;,05,09)T, 61 = (0,0,0)7, 65 = (0,0,1)T, 63 = (0,1,0)7, 64 =
(07171)T7 95 = (17070)T7 96 = (17071)T7 67 = (17170)T7 98 = (17171)T7 j =
1,..,8 and the following expression

u = uoy + 2(In (1,82, 83, 7))a (5.1.4)

18 the three-periodic wave solution.

Proof. Substituting (5.1.1) into bilinear equation H(D,, D, D., D) and

12



using yhe property (2.4), we have following result
H(D:m Dy7 D27 Dt)/(g(gla6276377—)'19(6175275377—)

= > H@mi<n—m,a>.2m<n—mw>)

m,neZ3

e27ri<E,m+n>+7ri(<Tm,m>+<7'n,n>)

= > {> H2rmi<2n—m/,a>,..2m <2n—m',w >)
m/€Z3 neld (515)

eﬂ'i(<7’(n—m'),n—m/ >+<Ttn,n>) }€2Tri<£,m/>

/z:z% I:I(mll’ ml27 m/3)e2m<£7m/>
m'EeLs

E H( )271'z<§7n>7 m/:m_|_n
m'€Z3

Shifting index n as n’ =n — §;;, j = 1,2,3 we can compute that

H(m') = H(mf, mh, m})

= > HQ@mi<2n—m',a>,.27 < 2n—m/,w >)
nezd

e7'ri(<7'(nfm’),nf?n’>+<7'n,n>)

Z H(27T’L Z [2TL — ( ;= 2(5ij)]ai, ceey 211 23:[271; — (m; — 251']‘)](,01')

nezZ3 i=1

3
w3 [(ni+8i5) (ng+8ks)+(mj—ni—8i;) (m) —nj—6k;)|Tik

e i,k=1
g(mll 2 m2,m3)62ﬂ'i(m’l71)7'11+27Ti(m’27'12+mg7-13) . j 1
- H(m’l, _9 m3)€2ﬂ'i(m’271)7'22+27ri(m’17'12+m§,7'13) L j=

H(m’l, m2, m3 —2)e 2mi(mh—1)T33+2mi(m) T11+mhT12) ,j=3

(5.1.6)
which implies that if

H(m/y,mb,m}) =0 (5.1.7)
hold for all combinations of mj = 0,1, m§ = 0,1, m5 = 0,1 , then all

H(m!,,mly,m}y) = 0, m}, € Z* (i = 1,2,3) and J;; representing Kronecker’s
delta. If we require

H(m')= Y H(2mi < 2n—0;,0>,..270 < 2n—0;,w >)
nez3

(5.1.8)
efri(<7(n70j),n70j >+<Ttn,n>)

13



where 0; = (6},65,6%)T and 61 = (0,0,0)7, 62 = (0,0,1)7, 65 = (0,1,0)T, 04 =

(07171)T7 95 = (17070)T7 96 = (17071)T7 97 = (17170)T7 98 = (17171)T7 j =
1,..,8, we can obtain three-periodic wave solutions.

According to the Theorem 5 «, p;, k; and w; should provide the following
system with (2.14)

> [—4m? <2n—0;,p><2n—0;,w >

(n1,m2,n3)€L3

—1272 <2n—0j,a ><2n—0;,k > —167" <2n—0;,a >3<2n—0;,p >

+127T2U0 <o — 9]_,04 2 —|—C] « emi<T(n—0;)n—0;>+<rnn>] _

(5.1.9)
where 7 = 1,...,8. Our aim is solving this system namely
X(wl,wg,W3,]€1,kz,k3,U0,C)T =b (5110)
where X = (aij)gxg matrix and b = (bl, bz, b3, b4, b5, b6, b7, bg)
By introducing the notation as
gj = E efri[<f(n70j),n79j>+<Tn,n>]
(n1,n2,n3)€EZ3
_ /\??Jr("l*9})2)\721§+(n2*9?)2)\;l§+(n3*9?)2 (5.1.11)
ninz+(n —0})(71 —9?) ninz+(n —9})(71 —0?) nanz+(n —9?)(71 —0?)
/\121 2 1 2 /\1§ 3 1 3 )\232 3 2 3
where
)\1 — 67'(7;7'11, )\2 — 67'(7;7'22, )\3 — eﬂ'i‘l’g3
/\12 = 627”-712, /\13 = 6271-1'7-137 /\23 = 627”-723 (5112)
j=1,.,8
and

14



ajg = Yy, €

nezs

ajr= Y 120 <2n—0;,a >%¢;
nezd

wo = 3 12 <2n—0;,0> (203 - 03)e;
ne

ajs = %3 —127% < 2n —0;,a > (2ng — 9?)53‘
ne

aj = Y 1272 < 2n—0;,a > (20 — 0))e; (5.1.13)
P} 1.

4= T —4n? <2 —6;,p > (205 — 62)e;
ne

ajp = Y —4r? <20 —0;,p> (202 — 02)e;
nez3

aj1 = %3 —47‘(2 < 2n — Hj,p > (2711 _0})Ej
ne

b= > 167" <2n—0;,a>3<2n—0;,p> ¢,
nezZ3

we can solve this system and we obtain three-periodic wave solution as

U = Uy + 2(1n 19(517 527 537 T))w

where ¥(£,, &5, &3, 7) and parameters wy, wa, ws, k1, ka2, k3, ug, ¢ are given by (5.1.1)
and (5.1.10). The other ay,as,as,pq, s, P, T11,T22, T3, T12,T13 and Ta3 are
arbitrary parameters .

5.1 Asymptotic property of three periodic waves

Teorem 6 If (w1,ws,ws, k1, ko, k3, uo,c)? is a solution of the system (5.1.10)
and for the three-periodic wave solution we take

T Vi L. 55 _ TG
o =5k, pj=55 ki=55 0= "5
(5.2.1)
=i i=1,2,3i<j
Tij = 3500 bJ=1,4,9,1 J

15



where pi;,v; k5,05 and Agj are given in Eq. (2.11) and (2.12) . Then we have
the following asymtotic relations

j—TI'ZTjj

up =0, c—0, & — 2 , j=1,2,3

27

D(E1,€,€5,7) — 1+ €M 4 ell2 4 s o emtrat iz

(5.2.2)
JemtmtAis | enatnztAss L pomitnatns+Aiz+Ais+Ass

as )\1,)\2,)\3 — 0.

That means the three-periodic solution tends to the three-solion solution under
a small amplitude limit.
Proof The Riemann theta function is

0(E1,€0,€5,7) = Y emISTInSRRTISEN> (5.2.3)

nezd
Let’s expand this function

_ Z 62771'(51111+§2n2+§3n3)+7'ri[7'11n?+722n§+733n§+2n1n27'12+2n1n3713+2n2n3723)]

n1,n2,n3€%3

-1 4 e27ri£1+7ri‘r11 4 e—27ri£1+7ri‘r11 4 e27ri£2+7ri‘rgg 4 6—2771'524-771'7'22

_|_e27ri£3+7ri7'33 _|_e—27ri£3+7ri‘r33 +eTriTu+7ri‘r22+27'12+27ri£1+27ri£2 4o
(5.2.4)

and if we take £; — % in Eq. (5.2.4) we have
¥(€1,8,7) =1+ efi 4 efo t efs | fateat2miTia 4 Litbataming
tebotbytamitn | €46 rEminin i amint2nitn | \20-6 4 \Ze=6  (5.2.5)
FA2e6 4 A2\Ze G —Gat2minie |

where A\; = ™11, Ay = ™22 A3 = ™33 and A\j, Ay, A3 = 0

I(Er,Ep €5 7) = 1+ ¢t 4 o2 4 efo 4 ErHEat2minis | cfitEatming

(5.2.6)
_|_65N2+-’EN3+271'1'7'23 _|_ef:+§N2+£N3+27Ti7'12+27ri7-13+27ri7-23
According to the three-soliton solution (2.9) we can write
Aip Ais Ags
= —, = —, = — 5.2.7
2= o TB T o T8 T ong ( )
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For solving system (5.1.10) we can expand each funcion into a series with
)\1, )\2 and )\3

X = Xo+ X1h1 + Xodo + X3A3 + Xg\T + X5A3 + Xp\3
(5.2.8)
+X7A1 A2 + XgA1 A3 + XghoAs + ...

and we obtain

¢ = (384 alp)AT + (384w adpy) \] + (384m adpy) NS + o(AL, NG, AF) L i+ k>3

(0)
wi = (-3%5- —4r%q +3“1u<0))+(—3a1’“ +3“?u§>)/\1+( “1’“ +3“1u<2) )A2

+(—3a1’“ +3%u g +

(0)
wy = (-3%22- —4r2q +3“2 <0))+(—3a2’“ +3“3u§>)/\1+( “2’“ +3“2 (22,

azk 2
+(—3=2= + 3 )/\3 + ...
ask” o3 (0) askl' o3 (1) ask(z) a2 (2)
w3 = (-3 —4r’a +3 fug ) + (=372 —|—3 pug A+ (— 3= 4320y A

P3 P3

+(—3a*’“ +3% %G s + ..

(5.2.9)
where we expand the notations as follows
ki = k2 + BN+ P + kP As + kAT 4+ kPPN
(5.2.10)
PN BN + BN + P Ao + i =1,2,3
and parameters w;, ¢ and ug are similar to (5.2.10).
If we choose ud =0, and (A1, A2, A3) — (0,0,0), we can find
u —0 , ¢c—0
wy = —30‘;—1“ — 47203
(5.2.11)
wo = —30‘;—52 — 47203
w3 = —30‘;—53 — 47203
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According to the Theorem 6, we obtain

_ 3pik1 3 __ 3pok2 3
wl—_#‘i‘/h ) W2——%2+/,L2

w3 = _—3#:}33&3 + ‘ug, Cc — O (5212)

when ug = O(/\l,)\g,)\3) —0 .

From (5.2.12), we conclude that the three-periodic solution tends to the
three soliton solution as A1, Ao, A3 — 0

5.2 Conclusion

In this paper, we have obtained the one, two and three periodic wave solutions of
the (34+1) generalized BKP equation, by using Hirota’s bilinear method and the
Riemann theta functions. Moreover, we have shown that they can be reduced
to classical solitons, under a small amplitude limit.

The results can be extended to the case N > 4 but when solving the sys-
tem we need more unknown parameters so there is certain difficulties in the
calculation and it is still open problem for us .

5.3 Acknowledments

This study was supported by the Eskisehir Osmangazi University (ESOGU
BAP: 201419A206).

References

[1] Ryogo Hirota, Exact Solution of the Kortewegtde Vries Equation for Mul-
tiple Collisions of Solitons. ,Phys. Rev. Lett., 27, (1971), 1192-1194.

[2] Bluman, G.W., Kumei, S., Symmetries and differential equations, New
York, Springer Verlag, 1989.

[3] M.R. Miura, Bécklund Transformation, Springer Verlag, Berlin, 1978.

[4] Belokolos ED, Bobenko AI, Enol’skii VZ, Its AR, Matveev VB., Algebro-
geometric approach to non-linear integrable equations, Springer, (1994)

[5] Novikov SP., A periodic problem for the KortewegCde Vries equation,
Funct Anal Appl., 8, (1974),236—46.

[6] Dubrovin BA. Funct Anal Appl., 9, (1975), 265-73

[7] Tts A, Matveev VB., operators with a finite number of lacunae, Funct Anal
Appl, 9, (1975),65

18



8]

[13]
[14]

[15]

[16]

Lax PD., Periodic solutions of the KdV equation, Commun Pure Appl
Math. 28, (1975), 141-88.

A. Nakamura, A Direct Method of Calculating Periodic Wave Solutions to
Nonlinear Evolution Equations. I. Exact Two-Periodic Wave Solution, J.
Phys. Soc. Jpn. 47, (1979), 1701.

A. Nakamura, A Direct Method of Calculating Periodic Wave Solutions
to Nonlinear Evolution Equations. II. Exact One- and Two-PeriodicWave
Solution of the Coupled Bilinear Equations,J. Phys. Soc. Jpn. 48, (1980),
1365.

Hon YC, Fan EG., A Kind of Explicit Quasi-Periodic Solution and Its Limit
For The TODA Lattice Equation.,Mod Phys Lett B.,22, (2008) 547.

Cheng Z., Hao X.,The periodic wave solutions for a (2 + 1)-dimensional
AKNS equation, Applied Mathematics and Computation, 234 (2014) 118-
126.

Tian SF, Zhang HQ., Theor Math Phys., 170(3), (2012), 287-314.

Tian S., Zhang H., Riemann theta functions periodic wave solutions and
rational characteristics for the (1+1)-dimensional and (241)- dimensional
Ito equation, Chaos,Solitons and Fractals, 47, (2013), 27-41.

Lu B., Zhang H., Quasi-periodic Wave Solutions of (3+1)-dimensional
Jimbo-Miwa Equation, International Journal of Nonlinear Science, 10,
(2010), 452-461.

Ma W., Zhu Z.,Solving the (3 + 1)-dimensional generalized KP and BKP
equations by the multiple exp-function algorithm, Applied Mathematics
and Computation 218, (2012), 11871-11879.

19



	1 Introduction
	2 The Bilinear Form and The Riemann Theta Functions
	3 One-periodic waves and asymptotic properties
	3.1 Construct one periodic waves
	3.2 Asymptotic property of one periodic waves

	4 Two-periodic waves and asymptotic properties
	4.1 Construct two-periodic waves
	4.2 Asymptotic property of two periodic waves

	5 Three-periodic waves and asymptotic properties
	5.1 Asymptotic property of three periodic waves
	5.2 Conclusion
	5.3 Acknowledments


