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Abstract

This paper is focused on quasi-periodic wave solutions of (3+1) gener-
alized BKP equation. Because of some difficulties in calculations of N = 3
periodic solutions, hardly ever has there been a study on these solutions
by using Rieamann theta function. In this study, we obtain one and two
periodic wave solutions as well as three periodic wave solutions for (3+1)
generalized BKP equation. Moreover we analyse the asymptotic behavior
of the periodic wave solutions tend to the known soliton solutions under
a small amplitude limit.
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1 Introduction

In recent years, the problem of finding exact solutions of partial differential
equations (PDE) is very popular for both mathematicians and physcists. Be-
cause if we know the exact solutions of PDE’s, they can help us to understand
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complicated physical models. So, there are some successful methods to obtain
exact solutions such as Hirota’s direct method [1], Lie symmetry method [2],
Bäcklund transformation method [3] and algebro geometric method [4].

In the late 1970’s Novikov, Dubrovin, Mckean, Lax, Its, and Matveev et al.
developed the algebro geometric method to obtain quasi-periodic or algebro-
geometric solutions for many soliton equations [5, 8]. However this method
involves complicated calculation. On the other hand, Hirota’s direct method is
rather useful and direct approach to construct multisoliton solutions.

In the 1980, Nakamura obtained the periodic wave solutions of the KdV and
the Boussinesq equations by means of Hirota’s bilinear method [9, 10]. Indeed
this method has some advantages over algebro-geometric methods. We can get
explicit periodic wave solutions directly.

Recently, Fan and his collaborators have extended this method to investigate
the discrete Toda lattice [11] , Cheng Z.,Hao X. studied on periodic solution of
(2+1) AKNS equation [12], Tian and Zhang obtained periodic wave solutions
by Riemann theta functions of some nonlinear differential equations and super-
symmetric equations [13, 14], Lu and Zhang studied on quasi periodic solutions
of Jimbo-Miwa equation [15]

Soliton equations possess nice mathematical features, e.g., elastic interac-
tions of solutions. Such equations contain the KdV equation, the Boussinesq
equation, the KP equation and the BKP equation, and they all have multi-
soliton solutions. Let us consider (3+1) dimensional generalized BKP equation
[16].

uty − uxxxy − 3(uxuy)x + 3uxz = 0 (1.1)

Now, in this paper we briefly introduce a Hirota bilinear form and the Rie-
mann theta function.Then after we apply the Hirota’s bilinear method to con-
struct one, two and three periodic wave solutions to (3+1) generalized BKP
equation, respectively. We further use a limiting procedure to analyse the
asymptotic behavior of the periodic wave solutions in the last section. It is
rigorously shown that the periodic solutions tend to the well-known soliton so-
lutions under a certain limit.
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2 The Bilinear Form and The Riemann Theta

Functions

In this section we introduce briefly bilinear form and some main points on
the Riemann theta functions. The Hirota bilinear method is powerful when
constructing exact solutions for nonlinear equations. Through the dependent
variable transformation u = 2(ln f)x , eq. (1.1) is written bilinear form

(DyDt −D3
xDy + 3DxDz)f.f = 0 . (2.1)

Here D is differential bilinear operator defined by

Dm
x Dn

yD
k
t f(x, y, t).g(x, y, t) =

(∂x − ∂x′)m(∂y − ∂y′)n(∂t − ∂t′)
kf(x, y, t)g(x′, y′, t′) |x′=x,y′=y,t′=t

(2.2)

and the operator has property for exponential functions namely

Dm
x Dn

yD
k
t e

ξ1eξ2 = (α1 − α2)m(ρ1 − ρ2)n(ω1 − ω2)keξ1+ξ2 (2.3)

where ξi = αix + ρiy + ωit + δi, i = 1, 2. More general we can write following
formula

G(Dx, Dy, Dt)e
ξ1eξ2 = G(α1 − α2, ρ1 − ρ2, ω1 − ω2)eξ1+ξ2 (2.4)

where G(Dx, Dy, Dt) is a polinomial about Dx, Dy and Dt. According to the

Hirota bilinear theory, eq. (1.1) admits one-soliton solution

u1 = 2∂x(ln(1 + eη)) (2.5)

where phase variable η = µx + νy + κz + ̟t + γ , dispersion relation ̟ =
−3µκ

ρ
+µ3, µ, ν, κ and γ are constants.

Two-soliton solution

u2 = 2∂x(ln(1 + eη1 + eη2 + eη1+η2+A12)) (2.6)

with

eA12 = −
(ν1−ν2)(̟1−̟2)−(µ1−µ2)

3(ν1−ν2)+3(µ1−µ2)(κ1−κ2)
(ν1+ν2)(̟1+̟2)−(µ1+µ2)

3(ν1+ν2)+3(µ1+µ2)(κ1+κ2)
(2.7)

ηj = µjx + νjy + κjz + ̟jt + γj , j = 1, 2

̟1 = −3µ1κ1

ρ1
+ µ3

1, ̟2 = −3µ2κ2

ρ2
+ µ3

2

(2.8)

where µj , νj , κj and γj are arbitrary constants.
Three-soliton solution

u3 = 2∂x(ln(f)) (2.9)
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f is written as

f = 1 + eη1 + eη2 + eη3 + eη1+η2+A12

+eη1+η3+A13 + eη2+η3+A23 + eη1+η2+η3+A12+A13+A23
(2.10)

with

eAij = −
(νi−νj)(̟i−̟j)−(µi−µj)

3(νi−νj)+3(µi−µj)(κi−κj)

(νi+νj)(̟i+̟j)−(µi+µj)
3(νi+νj)+3(µi+µj)(κi+κj)

(2.11)

ηj = µjx + νjy + κjz + ̟jt + γj , i, j = 1, 2, 3 , i < j

̟1 = −3µ1κ1

ρ1
+ µ3

1, ̟2 = −3µ2κ2

ρ2
+ µ3

2

̟3 = −3µ3κ3

ρ3
+ µ3

3

(2.12)

In order to apply the Hirota’s bilinear method to constact multi-periodic
wave solutions we consider a slightly generalized form of bilinear equation (2.1).
We look for our solution in the form

u = u0y + 2(lnϑ(ξ))x (2.13)

where u0y is a solution of (1.1) and phase variable ξ = (ξ1, ..., ξN )T , ξi =
αix + ρiy + kiz + ωit + δi, i = 1, 2..N.

Substituting (2.13) into (1.1) and integration once respect to x , we obtain

H(Dx, Dy, Dz, Dt, ) = (DyDt + 3DxDz −D3
xDy − 3u0D

2
x + c)ϑ(ξ).ϑ(ξ) = 0

(2.14)
where c = c(y, z, t) is integration constant. For finding multiperiodic wave
solutions of (2.14), we consider the following multidimensional Riemann theta
function

ϑ(ξ, τ ) =
∑

n∈ZN

eπi<τn,n>+2πi<ξ,n> (2.15)

where the integer value vector n = (n1...nN )T ∈ ZN and complex phase vari-
ables ξ = (ξ1...ξN )T ∈ CN , for N dimensional two vectors their inner product
is defined by < u, v >= u1v1 + ... + uNvN . Period matrix of theta function is
-iτ = −i(τ ij) which is positive definite and real-valued symmetric N×N matrix
and can be considered as free parametres of theta function. So the Fourier series
(2.15) converges to a real valued function and for make the theta function real
valued in this paper we take τ imaginay matrix.

Proposition 1 The theta function ϑ(ξ, τ ) has the periodic properties

ϑ(ξ + 1 + τ ) = e−πiτ−2πiξϑ(ξ, τ)

we regard the vectors 1 and τ as a periods of the theta function ϑ(ξ, τ) with
multipliers 1 and e−πiτ−2πiξ. Here τ is not a period of theta function ϑ(ξ, τ ),
but it is the period of the functions ∂2

ξ lnϑ(ξ, τ), ∂ξ ln[ϑ(ξ+e, τ)/ϑ(ξ+h, τ )] and

ϑ(ξ + e, τ)ϑ(ξ − e, τ )/ϑ2(ξ + h, τ).
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3 One-periodic waves and asymptotic proper-

ties

3.1 Construct one periodic waves

If we take N = 1, we obtain one-periodic solutions and our Riemann theta
function reduces following Fourier series

ϑ(ξ, τ ) =
∞∑

−∞

eπin
2τ+2πinξ (3.1.1)

where the phase variable ξ = αx + ρy + kz + ωt + δ and Im(τ ) > 0.
Theorem 1 Assuming that ϑ(ξ, τ ) is a Riemann theta function as N = 1

with ξ = αx1 + ρx2 + ... + ωt + δ and α, ρ, ..., ω, δ satisfy the following system

∞∑
n=−∞

H(4nπiα, 4nπiρ, ..., 4nπiω)e2n
2πiτ = 0 (3.1.2)

∞∑
n=−∞

H(2πi(2n− 1)α, ..., 2πi(2n− 1)ω) (3.1.3)

×e(2n
2
−2n+1)πiτ = 0

and the following expression

u = u0y + 2(lnϑ(ξ))x (3.1.4)

is the one periodic wave solution of eq. (1.1). For the proof [14].
According to the Theorem 1 α, ρ, k and ω should provide the following system

with (2.15)

H̃(0) =

∞∑

n=−∞

(−16π2n2ρω − 48π2n2αk − 256π4n4ρα3

+48u0π
2n2α2 + c)e2πin

2τ = 0

H̃(1) =

∞∑

n=−∞

(−4π2(2n− 1)2ρω − 12π2(2n− 1)2αk − 16π4(2n− 1)4ρα3

+12π2u0(2n− 1)2α2 + c)e(2n
2
−2n+1)πiτ = 0 .

(3.1.5)
Our aim is solving this system about frequency ω and integration constant c,
namely (

a11 a12
a21 a22

)(
ω
c

)
=

(
b1
b2

)
. (3.1.6)
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By introducing the notations as

λ = eπiτ a11 =
∞∑

n=−∞

−16π2n2ρλ2n2

a12 =
∞∑

n=−∞

λ2n2

a21 =
∞∑

n=−∞

−4π2(2n− 1)2ρλ2n2
−2n+1

a22 =
∞∑

n=−∞

λ2n2
−2n+1

b1 =
∞∑

n=−∞

(48π2n2αk + 256π4n4ρα3 − 48π2n2α2u0)λ2n2

b2 =
∞∑

n=−∞

(12π2(2n− 1)2αk + 16π4(2n− 1)4ρα3

−12π2(2n− 1)2α2u0)λ
2n2

−2n+1

(3.1.7)

we can easily solve this system and then we obtain a one-periodic wave solution
of Eq. (1.1)

u = u0y + 2(lnϑ(ξ))x (3.1.8)

where the parameters ω and c are given by (3.1.7) but the other parameters
α, ρ, k, δ, τ , u0 are free.

3.2 Asymptotic property of one periodic waves

Theorem 2 If the vector (ω, c)T is a solution of the system (3.1.6) and for
the one-periodic wave solution (3.1.8) we let

u0 = 0, α =
µ

2πi
, ρ =

ν

2πi
, k =

κ

2πi
, δ =

γ − πiτ

2πi
(3.2.1)

where µ, ν and γ are given (2.5). Then we have following asymtotic properties

c → 0, ξ →
η − πiτ

2πi
, ϑ(ξ, τ ) → 1 + eη when λ → 0 (3.2.2)

It implies that the one-periodic solution tends to the one-soliton solution eq.
(2.5) under a small amplitude limit

Proof

The one-periodic wave solution (3.1.8) has two fundamental periods 1 and
τ in the phase variable ξ . It’s actually a kind of one-dimensional cnoidal waves
and speed parameter is given by

ω =
b1a22 − b2a12
a11a22 − a12a21

. (3.2.3)
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It has only one wave pattern for all time, and it can be viewed as a parallel
superposition of overlapping one-solitary waves, placed one period apart

For consider asymptotic properties we have to find solution of system (3.1.6)
. Using eq. (3.1.7) coefficent matrix and the right-side vector of system (3.1.6)
are power series about λ so its solution (ω, c)T also should be a series about λ

a11 = −32π2ρλ2 − 128π2ρλ8 + ...

a12 = 1 + 2λ2 + 2λ8 + ...

a21 = −8π2ρλ− 72π2ρλ5 + ...

a22 = 2λ + 2λ5 + ...

b1 = (96π2αk + 512π4α3ρ− 96u0π
2α2)λ2

+(384π2αk + 8192π4α3ρ− 384u0π
2α2)λ8 + ...

b2 = (24π2αk + 32π4α3ρ− 24u0π
2α2)λ

+(216π2αk + 2592π4α3ρ− 216u0π
2α2)λ5 + ...

We can solve the system (3.1.6) via small parameter expansion method and
we obtain

ω = (−3αk
ρ

− 4π2α3 + 3u0
α2

ρ
) + (96π2α3)λ2 + (288π2α3)λ4 + o(λ4)

c = (384π4ρα3)λ2 + (2304π4ρα3)λ4 + o(λ4) .

(3.2.4)

From Theorem 2 and (3.2.4), we have

c → 0, ω = −3
αk

ρ
− 4π2α3 when λ → 0 (3.2.5)

and substituting the relation (3.2.1) into (3.2.5) we obtain

̟ = 2πiω = −3
µκ

ν
+ µ3 . (3.2.6)

The one-soliton solution of the (3+1) generalized BKP equation can be ob-
tained as a limit of the periodic solution (3.1.8). We can expand the periodic
function ϑ(ξ) in the following form

ϑ(ξ, τ) =
∞∑

−∞

eπin
2τ+2πinξ (3.2.7)

= 1 + eπiτ+2πiξ + eπiτ−2πiξ + e4πiτ+4πiξ + ...

7



By using the transformation

ξ →
∽

ξ−πiτ
2πi , λ = eπiτ

ϑ(ξ, τ) = 1 + e
∽

ξ + λ2(e−
∽

ξ + e2ξ) + ...

(3.2.8)

and when λ → 0 we can write

ϑ(ξ, τ ) = 1 + e
∽

ξ . (3.2.9)

According to one soliton solution
∽

ξ = η , therefore proof is completed.

4 Two-periodic waves and asymptotic proper-

ties

4.1 Construct two-periodic waves

We consider two-periodic wave solutions of Eq. (1.1) which are two dimen-
sional generalization of one-periodic wave solutions. Let’s consider N = 2, and
Riemann theta function takes the form

ϑ(ξ, τ) = ϑ(ξ1,ξ2,τ ) =
∑

n∈Z2

eπi<τn,n>+2πi<ξ,n> (4.1.1)

where n = (n1,n2)T ∈ Z2, ξ = (ξ1, ξ2) ∈ C2 , ξi = αix + ρiy + kiz + ωit + δi ,
i = 1, 2 and −iτ is a positive definite and real-valued symmetric 2 × 2 matrix
which can take the form of

τ =

(
τ11 τ12
τ12 τ22

)
, Im(τ11) > 0, Im(τ22) > 0, τ11τ22 − τ212 < 0 (4.1.2)

Theorem 3 Assuming that ϑ(ξ1,ξ2,τ ) is one Riemann theta function as
N = 2 with ξi = αix + ρiy + kiz + ωit+ δi and αi, ρi, ki, ωi, δi ,i = 1, 2 satisfy
the following system

∑

n∈Z2

H(2πi < 2n− θj , α >, ...2πi < 2n− θj , ω >) (4.1.3)

×eπi[<τ(n−θj),n−θj>+<τn,n>] = 0

where θj = (θ1j , θ
2
j)T , θ1 = (0, 0)T , θ2 = (1, 0)T , θ3 = (0, 1)T , θ4 = (1, 1)T ,

j = 1, 2, 3, 4 and the following expression

u = u0y + 2(lnϑ(ξ1,ξ2, τ))x

8



is the two-periodic wave solution of Eq. (1.1). For the proof [14]
According to the Theorem 3 αi, ρi, ki and ωi should provide the following

system with (2.14)

∑
n∈Z2

[−4π2 < 2n− θj , ρ >< 2n− θj , ω > −12π2 < 2n− θj , α >< 2n− θj , k >

−16π4 < 2n− θj , α >3< 2n− θj , ρ > +12π2u0 < 2n− θj , α >2

+c] × eπi[<τ(n−θj),n−θj>+<τn,n>] = 0
(4.1.4)

where j = 1, 2, 3, 4. Our aim is solving this system namely

X




ω1

ω2

u0

c


 =




b1
b2
b3
b4


 (4.1.5)

where X = (aij)4×4 matrix.
By introducing the notation as

εj = λ
n2
1+(n1−θ1j)

2

1 λ
n2
2+(n2−θ2j )

2

2 λ
n1n2+(n1−θ1j )(n2−θ2j )

3 (4.1.6)

where

λ1 = eπiτ11 , λ2 = eπiτ22 , λ3 = e2πiτ12 and j = 1, 2, 3, 4 (4.1.7)

and

aj4 =
∑

n1,n2∈Z2

εj

aj3 = 12π2
∑

n∈Z2

< 2n− θj , α >2 εj

aj2 = −4π2
∑

n∈Z2

< 2n− θj , ρ > (2n2 − θ2j)εj

aj1 = −4π2
∑

n∈Z2

< 2n− θj , ρ > (2n1 − θ1j)εj

bj =
∑

n∈Z2

12π2 < 2n− θj , α >< 2n− θj , k >

+16π4 < 2n− θj , α >3< 2n− θj , ρ > εj

(4.1.8)

we can solve this system and we obtain two-periodic wave solution as

u = u0y + 2(lnϑ(ξ1, ξ2, τ ))x (4.1.9)
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where ϑ(ξ1, ξ2, τ ) and parameters ω1, ω2, u0, c are given by (4.1.1) and (4.1.5).
The other α1, α2, ρ1, ρ2, k1, k2, τ11, τ12 and τ22 are arbitrary parameters .

We notice that the total number of unknown parameters u0 integration con-
stant c , nonlinear frequency αi, ρi, ki, ωi and the term τ jk = τkj , 1 ≤ j, k ≤ N
is

1

2
N(N + 1) + 4N + 2 .

4.2 Asymptotic property of two periodic waves

Teorem 4 If (ω1, ω2, u0, c)
T is a solution of the system (4.1.5) and for the

two-periodic wave solution we take

αj =
µj

2πi
, ρj =

νj
2πi

, kj =
κj

2πi
,δj =

γj − πiτ jj

2πi
, τ12 =

A12

2πi
, j = 1, 2

(4.2.1)
where µj , νj,κj, δj and A12 are given in Eq. (2.7) and (2.8) . Then we have
the following asymtotic relations

u0 → 0, c → 0, ξj →
ηj−πiτ jj

2πi , j = 1, 2

ϑ(ξ1, ξ2, τ ) → 1 + eη1 + eη2 + eη1+η2+A12 as λ1, λ2 → 0

(4.2.2)

That means the two-periodic solution tends to the two-solion solution under a
small amplitude limit.

Proof The Riemann theta function is

ϑ(ξ1, ξ2, τ) =
∑

n∈Z2

eπi<τn,n>+2πi<ξ,n> (4.2.3)

Let’s expand this function

∑

n1,n2∈Z2

e2πi(ξ1n1+ξ2n2)+πi[n1(τ11n1+τ12n2)+n2(τ12n1+τ22n2)] (4.2.4)

= 1 + e2πiξ1+πiτ11 + e−2πiξ1+πiτ11 + ...

and if we take ξj →
∼

ξ j−πiτ jj

2πi in Eq. (4.2.4) we have

ϑ(ξ1, ξ2, τ ) = 1 + e
∼

ξ1 + e
∼

ξ2 + e
∼

ξ1+
∼

ξ2+2πiτ12 + λ2
1e

−

∼

ξ1 + λ2
2e

−

∼

ξ2 + ... (4.2.5)

where λ1 = eπiτ11 , λ2 = eπiτ22 and λ1, λ2 → 0

ϑ(ξ1, ξ2, τ ) = 1 + e
∼

ξ1 + e
∼

ξ2 + e
∼

ξ1+
∼

ξ2+2πiτ12 . (4.2.6)

According to the two soliton solution (2.6) we can write

τ12 =
A12

2πi
(4.2.7)
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For solving system (4.1.5) we can expand each funcion into a series with λ1 and
λ2

X = X0 + X1λ1 + X2λ2 + X11λ
2
1 + X22λ

2
2

+X12λ1λ2 + o(λk
1 , λ

j
2) , k + l ≥ 2.

(4.2.8)

and



ω1

ω2

u0

c


 =




ω0
1

ω0
2

u0
0

c0


 +




ω1
1

ω1
2

u1
0

c1


λ1 +




ω2
1

ω2
2

u2
0

c2


λ2 +




ω3
1

ω3
2

u3
0

c3


λ2

1

+




ω4
1

ω4
2

u4
0

c4


λ2

2 +




ω5
1

ω5
2

u5
0

c5


λ1λ2 + o(λk

1λ
l
2) , k + l ≥ 2

(4.2.9)

Substituting these equations into the (4.1.5), we obtain

c = (384π4α3
1ρ1)λ2

1 + (384π4α3
2ρ2)λ2

2 + o(λ1, λ2)

ω1 = (−3α1k1

ρ1
− 4π2α3

1 + 3
α2

1

ρ1
u0
0) + (3

α2
1

ρ1
u1
0)λ1 + (3

α2
1

ρ1
u2
0 )λ2

+o(λ1, λ2)

ω2 = (−3α2k2

ρ2
− 4π2α3

2 + 3
α2

2

ρ2
u0
0) + (3

α2
2

ρ2
u1
0)λ1 + (3

α2
2

ρ2
u2
0 )λ2

+o(λ1, λ2).

(4.2.10)

If we choose u0
0 = 0 , and (λ1, λ2) → (0, 0), we can find

u0 = o(λ1, λ2) → 0 , c → 0 (4.2.11)

ω1 = −3
α1k1
ρ1

− 4π2α3
1

ω2 = −3
α2k2
ρ2

− 4π2α3
2.

According to the Theorem 4, we obtain

̟1 = − 3µ1κ1

ν1
+ µ3

1 , ̟2 = − 3µ2κ2

ν2
+ µ3

2 , c → 0

when u0 = o(λ1, λ2) → 0 .

(4.2.12)

and when solving the system we obtain

λ3 = −
(ν1−ν2)(̟1−̟2)−(µ1−µ2)

3(ν1−ν2)+3(µ1−µ2)(κ1−κ2)
(ν1+ν2)(̟1+̟2)−(µ1+µ2)

3(ν1+ν2)+3(µ1+µ2)(κ1+κ2)
(4.2.13)

That means just by solving system we can obtain eA12 ,this is alternative proof
for τ12 = A12

2πi
From (4.2.12), we conclude that the two-periodic solution tends to the two

soliton solution as λ1, λ2 → 0.
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5 Three-periodic waves and asymptotic proper-

ties

We consider three-periodic wave solutions of Eq. ??. Let’s consider N = 3, and
Riemann theta function takes the form

ϑ(ξ, τ ) = ϑ(ξ1,ξ2,ξ3,τ ) =
∑

n∈Z3

eπi<τn,n>+2πi<ξ,n> (5.1.1)

where n = (n1,n2, n3)T ∈ Z3, ξ = (ξ1, ξ2, ξ3) ∈ C3 , ξi = αix+ρiy+kiz+ωit+δi
, i = 1, 2, 3 and −iτ is a positive definite and real-valued symmetric 3×3 matrix
which can take the form of

τ =




τ11 τ12 τ13
τ12 τ22 τ23
τ13 τ23 τ33



 , Im(τ jk) > 0, j = k = 1, 2, 3 (5.1.2)

Theorem 5 Assuming that ϑ(ξ1,ξ2,ξ3, τ ) is one Riemann theta function
as N = 3 with ξi = αix + ρiy + kiz + ωit + δi and αi, ρi, ki, ωi, δi ,i = 1, 2, 3
satisfy the following system

∑
n∈Z3

H(2πi < 2n− θj , α >, ...2πi < 2n− θj , ω >)

eπi[<τ(n−θj),n−θj>+<τn,n>] = 0
(5.1.3)

where θj = (θ1j , θ
2
j , θ

3
j )T , θ1 = (0, 0, 0)T , θ2 = (0, 0, 1)T , θ3 = (0, 1, 0)T , θ4 =

(0, 1, 1)T , θ5 = (1, 0, 0)T , θ6 = (1, 0, 1)T , θ7 = (1, 1, 0)T , θ8 = (1, 1, 1)T , j =
1, .., 8 and the following expression

u = u0y + 2(lnϑ(ξ1, ξ2, ξ3, τ))x (5.1.4)

is the three-periodic wave solution.

Proof. Substituting (5.1.1) into bilinear equation H(Dx, Dy, Dz, Dt) and

12



using yhe property (2.4), we have following result

H(Dx, Dy, Dz, Dt)ϑ(ξ1, ξ2, ξ3, τ ).ϑ(ξ1, ξ2, ξ3, τ)

=
∑

m,n∈Z3

H(2πi < n−m,α >, ...2πi < n−m,ω >)

e2πi<ξ,m+n>+πi(<τm,m>+<τn,n>)

=
∑

m′∈Z3

{
∑

n∈Z3

H(2πi < 2n−m′, α >, ...2πi < 2n−m′, ω >)

eπi(<τ(n−m′),n−m′>+<τn,n>)}e2πi<ξ,m′>

=
∑

m′∈Z3

Ĥ(m′

1,m
′

2,m
′

3)e2πi<ξ,m′>

=
∑

m′∈Z3

Ĥ(m′)e2πi<ξ,m′>, m′ = m + n

(5.1.5)

Shifting index n as n′ = n− δij , j = 1, 2, 3 we can compute that

Ĥ(m′) = Ĥ(m′

1,m
′

2,m
′

3)

=
∑

n∈Z3

H(2πi < 2n−m′, α >, ...2πi < 2n−m′, ω >)

eπi(<τ(n−m′),n−m′>+<τn,n>)

=
∑

n∈Z3

H(2πi
3∑

i=1

[2n′

i − (m′

i − 2δij)]αi, ..., 2πi
3∑

i=1

[2n′

i − (m′

i − 2δij)]ωi)

e
πi

3∑

i,k=1

[(n′

i+δij)(n
′

k+δkj)+(m′

i−n′

i−δij)(m
′

k−n′

k−δkj)]τik

=






Ĥ(m′

1 − 2,m′

2,m
′

3)e2πi(m
′

1−1)τ11+2πi(m′

2τ12+m′

3τ13) , j = 1

Ĥ(m′

1,m
′

2 − 2,m′

3)e2πi(m
′

2−1)τ22+2πi(m′

1τ12+m′

3τ13) , j = 2

Ĥ(m′

1,m
′

2,m
′

3 − 2)e2πi(m
′

3−1)τ33+2πi(m′

1τ11+m′

2τ12) , j = 3
(5.1.6)

which implies that if
Ĥ(m′

1,m
′

2,m
′

3) = 0 (5.1.7)

hold for all combinations of m′

1 = 0, 1, m′

2 = 0, 1, m′

3 = 0, 1 , then all
Ĥ(m′

1,m
′

2,m
′

3) = 0, m′

i ∈ Z3 (i = 1, 2, 3) and δij representing Kronecker’s
delta. If we require

Ĥ(m′) =
∑

n∈Z3

H(2πi < 2n− θj , α >, ...2πi < 2n− θj , ω >)

eπi(<τ(n−θj),n−θj>+<τn,n>)

(5.1.8)
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where θj = (θ1j , θ
2
j , θ

3
j)T and θ1 = (0, 0, 0)T , θ2 = (0, 0, 1)T , θ3 = (0, 1, 0)T , θ4 =

(0, 1, 1)T , θ5 = (1, 0, 0)T , θ6 = (1, 0, 1)T , θ7 = (1, 1, 0)T , θ8 = (1, 1, 1)T , j =
1, .., 8, we can obtain three-periodic wave solutions.

According to the Theorem 5 αi, ρi, ki and ωi should provide the following
system with (2.14)

∑
(n1,n2,n3)∈Z3

[−4π2 < 2n− θj , ρ >< 2n− θj , ω >

−12π2 < 2n− θj , α >< 2n− θj , k > −16π4 < 2n− θj , α >3< 2n− θj , ρ >

+12π2u0 < 2n− θj , α >2 +c] × eπi[<τ(n−θj),n−θj>+<τn,n>] = 0
(5.1.9)

where j = 1, ..., 8. Our aim is solving this system namely

X(ω1, ω2, ω3, k1, k2, k3, u0, c)
T = b (5.1.10)

where X = (aij)8×8 matrix and b = (b1, b2, b3, b4, b5, b6, b7, b8).
By introducing the notation as

εj =
∑

(n1,n2,n3)∈Z3

eπi[<τ(n−θj),n−θj>+<τn,n>]

= λ
n2
1+(n1−θ1

j)
2

1 λ
n2
2+(n2−θ2j )

2

2 λ
n2
3+(n3−θ3

j)
2

3

λ
n1n2+(n1−θ1

j)(n2−θ2
j)

12 λ
n1n3+(n1−θ1j)(n3−θ3j )

13 λ
n2n3+(n2−θ2

j)(n3−θ3
j)

23

(5.1.11)

where

λ1 = eπiτ11 , λ2 = eπiτ22 , λ3 = eπiτ33

λ12 = e2πiτ12 , λ13 = e2πiτ13 , λ23 = e2πiτ23

j = 1, .., 8

(5.1.12)

and
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aj8 =
∑

n∈Z3

εj

aj7 =
∑

n∈Z3

12π2 < 2n− θj , α >2 εj

aj6 =
∑

n∈Z3

−12π2 < 2n− θj , α > (2n3 − θ3j)εj

aj5 =
∑

n∈Z3

−12π2 < 2n− θj , α > (2n2 − θ2j)εj

aj4 =
∑

n∈Z3

−12π2 < 2n− θj , α > (2n1 − θ1j)εj

aj3 =
∑

n∈Z3

−4π2 < 2n− θj , ρ > (2n3 − θ3j)εj

aj2 =
∑

n∈Z3

−4π2 < 2n− θj , ρ > (2n2 − θ2j)εj

aj1 =
∑

n∈Z3

−4π2 < 2n− θj , ρ > (2n1 − θ1j)εj

bj =
∑

n∈Z3

16π4 < 2n− θj , α >3< 2n− θj , ρ > εj

(5.1.13)

we can solve this system and we obtain three-periodic wave solution as

u = u0y + 2(lnϑ(ξ1, ξ2, ξ3, τ))x

where ϑ(ξ1, ξ2, ξ3, τ ) and parameters ω1, ω2, ω3, k1, k2, k3, u0, c are given by (5.1.1)
and (5.1.10). The other α1, α2, α3, ρ1, ρ2, ρ3, τ11, τ22, τ33, τ12, τ13 and τ23 are
arbitrary parameters .

5.1 Asymptotic property of three periodic waves

Teorem 6 If (ω1, ω2, ω3, k1, k2, k3, u0, c)
T is a solution of the system (5.1.10)

and for the three-periodic wave solution we take

αj =
µj

2πi , ρj =
νj

2πi , kj =
κj

2πi ,δj =
γj−πiτ jj

2πi ,

τ ij =
Aij

2πi , i, j = 1, 2, 3, i < j

(5.2.1)
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where µj , νj,κj , δj and Aij are given in Eq. (2.11) and (2.12) . Then we have
the following asymtotic relations

u0 → 0, c → 0, ξj →
ηj−πiτ jj

2πi , j = 1, 2, 3

ϑ(ξ1, ξ2, ξ3,τ ) → 1 + eη1 + eη2 + eη3 + eη1+η2+A12

+eη1+η3+A13 + eη2+η3+A23 + eη1+η2+η3+A12+A13+A23

as λ1, λ2, λ3 → 0.

(5.2.2)

That means the three-periodic solution tends to the three-solion solution under
a small amplitude limit.

Proof The Riemann theta function is

ϑ(ξ1, ξ2, ξ3, τ) =
∑

n∈Z3

eπi<τn,n>+2πi<ξ,n> (5.2.3)

Let’s expand this function

=
∑

n1,n2,n3∈Z3

e2πi(ξ1n1+ξ2n2+ξ3n3)+πi[τ11n
2
1+τ22n

2
2+τ33n

2
3+2n1n2τ12+2n1n3τ13+2n2n3τ23)]

= 1 + e2πiξ1+πiτ11 + e−2πiξ1+πiτ11 + e2πiξ2+πiτ22 + e−2πiξ2+πiτ22

+e2πiξ3+πiτ33 + e−2πiξ3+πiτ33 + eπiτ11+πiτ22+2τ12+2πiξ1+2πiξ2 + ...
(5.2.4)

and if we take ξj →
∼

ξ j−πiτ jj

2πi in Eq. (5.2.4) we have

ϑ(ξ1, ξ2, τ ) = 1 + e
∼

ξ1 + e
∼

ξ2 + e
∼

ξ3 + e
∼

ξ1+
∼

ξ2+2πiτ12 + e
∼

ξ1+
∼

ξ3+2πiτ13

+e
∼

ξ2+
∼

ξ3+2πiτ23 + e
∼

ξ1+
∼

ξ2+
∼

ξ3+2πiτ12+2πiτ13+2πiτ23 + λ2
1e

−

∼

ξ1 + λ2
2e

−

∼

ξ2

+λ2
3e

−

∼

ξ2 + λ2
1λ

2
2e

−

∼

ξ1−
∼

ξ2+2πiτ12 + ...

(5.2.5)

where λ1 = eπiτ11 , λ2 = eπiτ22 , λ3 = eπiτ33 and λ1, λ2, λ3 → 0

ϑ(ξ1, ξ2, ξ3, τ ) = 1 + e
∼

ξ1 + e
∼

ξ2 + e
∼

ξ3 + e
∼

ξ1+
∼

ξ2+2πiτ12 + e
∼

ξ1+
∼

ξ3+2πiτ13

+e
∼

ξ2+
∼

ξ3+2πiτ23 + e
∼

ξ1+
∼

ξ2+
∼

ξ3+2πiτ12+2πiτ13+2πiτ23

(5.2.6)

According to the three-soliton solution (2.9) we can write

τ12 =
A12

2πi
, τ13 =

A13

2πi
, τ23 =

A23

2πi
(5.2.7)
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For solving system (5.1.10) we can expand each funcion into a series with
λ1, λ2 and λ3

X = X0 + X1λ1 + X2λ2 + X3λ3 + X4λ
2
1 + X5λ

2
2 + X6λ

2
3

+X7λ1λ2 + X8λ1λ3 + X9λ2λ3 + ...
(5.2.8)

and we obtain

c = (384π4α3
1ρ1)λ2

1 + (384π4α3
2ρ2)λ2

2 + (384π4α3
3ρ3)λ2

3 + o(λi
1, λ

j
2, λ

k
3) , i + j + k ≥ 3

ω1 = (−3
α1k

(0)
1

ρ1
− 4π2α3

1 + 3
α2

1

ρ1
u
(0)
0 ) + (−3

α1k
(1)
1

ρ1
+ 3

α2
1

ρ1
u
(1)
0 )λ1 + (−3

α1k
(2)
1

ρ1
+ 3

α2
1

ρ1
u
(2)
0 )λ2

+(−3
α1k

(3)
1

ρ1
+ 3

α2
1

ρ1
u
(3)
0 )λ3 + ...

ω2 = (−3
α2k

(0)
2

ρ2
− 4π2α3

2 + 3
α2

2

ρ2
u
(0)
0 ) + (−3

α2k
(1)
2

ρ2
+ 3

α2
2

ρ2
u
(1)
0 )λ1 + (−3

α2k
(2)
2

ρ2
+ 3

α2
2

ρ2
u
(2)
0 )λ2

+(−3
α2k

(3)
2

ρ2
+ 3

α2
2

ρ2
u
(3)
0 )λ3 + ...

ω3 = (−3
α3k

(0)
3

ρ3
− 4π2α3

3 + 3
α2

3

ρ3
u
(0)
0 ) + (−3

α3k
(1)
3

ρ3
+ 3

α2
3

ρ3
u
(1)
0 )λ1 + (−3

α3k
(2)
3

ρ3
+ 3

α2
3

ρ3
u
(2)
0 )λ2

+(−3
α3k

(3)
3

ρ3
+ 3

α2
3

ρ3
u
(3)
0 )λ3 + ...

(5.2.9)
where we expand the notations as follows

ki = k
(0)
i + k

(1)
i λ1 + k

(2)
i λ2 + k

(3)
i λ3 + k

(11)
i λ2

1 + k
(22)
i λ2

2

+k
(33)
i λ2

3 + k
(12)
i λ1λ2 + k

(13)
i λ1λ3 + k

(23)
i λ2λ3 + .. i = 1, 2, 3

(5.2.10)

and parameters ωi, c and u0 are similar to (5.2.10).
If we choose u0

0 = 0 , and (λ1, λ2, λ3) → (0, 0, 0), we can find

u0 → 0 , c → 0

ω1 = −3α1k1

ρ1
− 4π2α3

1

ω2 = −3α2k2

ρ2
− 4π2α3

2

ω3 = −3α3k3

ρ3
− 4π2α3

3

(5.2.11)
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According to the Theorem 6, we obtain

̟1 = − 3µ1κ1

ν1
+ µ3

1 , ̟2 = − 3µ2κ2

ν2
+ µ3

2

̟3 = − 3µ3κ3

ν3
+ µ3

3, c → 0

when u0 = o(λ1, λ2, λ3) → 0 .

(5.2.12)

From (5.2.12), we conclude that the three-periodic solution tends to the
three soliton solution as λ1, λ2, λ3 → 0

5.2 Conclusion

In this paper, we have obtained the one, two and three periodic wave solutions of
the (3+1) generalized BKP equation, by using Hirota’s bilinear method and the
Riemann theta functions. Moreover, we have shown that they can be reduced
to classical solitons, under a small amplitude limit.

The results can be extended to the case N ≥ 4 but when solving the sys-
tem we need more unknown parameters so there is certain difficulties in the
calculation and it is still open problem for us .
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