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Abstract

A method for solving spectral problems for the Sturm-Liouville equation (pv’) — qv + Arv
= 0 based on the approximation of the Delsarte transmutation operators combined with the
Liouville transformation is presented. The problem of numerical approximation of solutions and
of eigendata is reduced to approximation of a pair of functions depending on the coefficients
p, g and r by a finite linear combination of certain specially constructed functions related to
generalized wave polynomials introduced in [I1], [I6]. The method allows one to compute both
lower and higher eigendata with an extreme accuracy. Several necessary results concerning the
action of the Liouville transformation on formal powers arising in the method of spectral pa-
rameter power series are obtained as well as the transmutation operator for the Sturm-Liouville

operator % (%p% - q).

1 Introduction

Consider the linear second order differential equation
(pv") —qu+Arv =0 (1.1)

where p, ¢ and r are reasonably good functions (the precise conditions imposed on them are
specified below) and A is a complex number. In a constantly increasing number of applications it is
necessary to find its solution for a big set of different values of the spectral parameter A. Preferably
the method for solving (L)) is sought to be accurate and fast. Another desirable feature of the
method is the possibility to obtain the approximate solution in an analytical form. This allows one
to study different qualitative properties of the solution and of related quantities.

Meanwhile the accuracy and the fast computation can be attributes of purely numerical tech-
niques (we refer to [23] for a recommendable introduction into the subject), the availability of an
analytical form for the approximate solution is a feature of some asymptotic methods, as, e.g., the
WKB method (see, e.g., [7]) or of the spectral parameter power series (SPPS) method (see, e.g.,
[12], [14], [9], [15]). In both the asymptotic and the SPPS methods there appear natural limitations
on the largeness or smallness of the parameter A. In the recent paper [I8] a method offering all the
above mentioned advantages: accuracy, speed, analytical form of solution and, additionally, free of
the limitations on the size of A, was developed for equations of the form

' —qu+ Au=0. (1.2)
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The method is based on the concept of transmutation operators introduced by Delsarte in [4] and
later studied in dozens of publications (see the review [24] and the books [1], [2], [21], [22] and [25]).
Several recent results concerning the transmutation operators made it possible in [I8] to convert
them from a purely theoretical tool into an efficient practical method for solving (I.2]) and related
spectral problems.

Apparently the availability of a good method for (L2) signifies its availability also for (L1]). It is
well known that these equations are related by the Liouville transformation. However, application
of the Liouville transformation, first, imposes additional restrictions on the coefficients p, ¢ and
r (for example, p and r must be real-valued) and second, implies the transformation of all the
functions involved as well as of the derivatives of some of them. This may lead to undesirable
limitations and difficulties. The aim of the present paper is to develop the transmutation method
directly for equation (L)) with no necessity to transform it into (I2]). For this we study the
action of the Liouville transformation on the transmutation operators as well as on the systems of
functions involved, called formal powers, which emerge in relation with the SPPS method and are
the main ingredient in the transmutation method [I8]. We prove that the Liouville transformation
maps formal powers of (ILT]) into formal powers of (I.2]) which gives us the possibility to develop the
transmutation method directly for (IT]) and to prove corresponding estimates for the accuracy of
approximation. Moreover, we observe that final representations for approximate solutions of (I.1))
do not involve the Liouville transformation and apparently are not restricted by its applicability.
One of the developed numerical examples confirms this observation and the applicability of the
proposed method under weaker conditions than required by the Liouville transformation. This is
formulated as a conjecture.

In the next Section Bl we remind some known facts on the Liouville transformation. In Section
[Bl we study the action of the Liouville transformation on the systems of formal powers. In Section
[ we combine the transmutation operator for (L2]) with the Liouville transformation and obtain
a transmutation operator transforming the differential operator from (1)) into the operator %
and study its properties. This leads to an analytical form for the approximate solution and cor-
responding estimates (Theorem [4.9]). Representations for approximate derivatives of the solutions
are obtained as well. In Section [0l we propose a computational algorithm based on the obtained
representations. describe its numerical realization and discuss some test problems. We show that
big numbers of eigendata can be found with a remarkable accuracy and find out that the restrictions
imposed by the Liouville transformation are most likely superfluous.

2 The Liouville transformation

Let (A, B) denote an interval in R. By AC),.(A, B) we denote all complex valued functions,
absolutely continuous with respect to Lebesgue’s measure on all compact subintervals of (A, B).

Lemma 2.1 ([6]). Let p andr: (A, B) — R be such that p,p’,r,7" € ACjo.(4, B) and p(y),r(y) > 0
for ally € (A, B). If yo € (A, B) and xg € (a,b), then the mapping l : (A, B) — (a,b) defined by

Y
Uy) =20+ [ {r(s)/p(s)}"*ds,  forally € (A, B)
Yo
has an inverse mapping ="' : (a,b) — (A, B), where

Yo B
a=xo— [ {r(s)/p(s)}?ds  and bi=wo+ / {r(s)/p(s)}/2 ds.
A Y

0



In what follows we assume that both segments [A, B] and [a,b] (and, hence, the integral
ff{r(s)/p(s)}lﬂ ds) are finite.
Remark 2.2. If in Lemma 2.T] we choose g = 0 and y € [A, B] such that

0 B
Ay {r(s)/p(s)} 2 ds = [ {r(s)/p(s)}"/*ds (2.1)
Yo

then [ : [A, B] — [—b,b]. Due to Bolzano’s theorem such yq exists.

According to [6] the following theorem establishes the possibility of the Liouville transformation
under the minimal possible requirements.

Theorem 2.3 ([6]). Let the functions p and r satisfy the conditions of Lemma [2l. Then the
Sturm-Liouville differential equation

()" —aly)v=—Ar(y)v  for ally € (A, B), (2.2)
is related with the Schrodinger differential equation
" — Q(x)u=—Iu, for all x € (a,b) (2.3)
by the Liouville transformation of the variables y and v into x and u,
u(w) = u(l(y)) = {pW)r@)} o(y)  for ally € (A, B)
= {p(l_l(x))r(l_l(x))}l/4 v(l_l(a:)) for all x € (a,b),

and the coefficient Q) is given by the relation

Q(z) = r(v) " aly) — {rw) P p) Y W) Epw)r@)} YY) forally e (A,B).  (24)

Remark 2.4. The function ¢ in the last theorem can be complex-valued.

Denote p(y) := (p(y)r(y))*/*. The Liouville transformation can be considered as an operator
L : C[A, B] — Cla,b] acting according to the rule

u(z) = L[v(y)] = p(I™* (2))o(1 ™ (2)).

Let us introduce the following notations for the differential operators
d? d? 1 d d
A=—-——, B=—— d C=—|— — | = .
a e B=-L 0w m (5 () -aw)
The following proposition summarizes the main properties of the operator L.

Proposition 2.5. 1. The uniform norm of the operator L is ||L|| = supyc(a, g lp(v)]-

2. The inverse operator is defined by v(y) = L™ u(z)] = ﬁu(l(y))

3. The equality
BL =LC (2.5)

is valid on C[A, B].



Proof. The proof of 1. and 2. is obvious. Let us prove 3. Due to the equality p(y)v(y) = u(l(y)) =
u(x) with z = I(y) = zo + y‘% (7‘(5)/]0(5))1/2 ds (see Lemma [2T]) we obtain (pv), = u,l, and hence

(,O’U)y . (26)

Uy =
l
y

Then for the second derivatives we have (pv),, = umlz + ugly,y and

o — (PV)yy — Ualyy
Tr l2 .
y

Straightforward calculation gives us the equality

~taaa) + Q) = =20 )0 0) + 10D ) ~ a0)o) .1)
and hence Bu(x ) = p(y)C (y). By definition of L we get Bu(x) = BL[v(y)] and p(y)Cu(y) =
p(I=H(@)) [Cv] (I} (x)) = LC[v(y)] which proves (). 0

3 Formal powers

In [12] (see also [14] and [13]) a representation for solutions of the Sturm-Liouville equation in
the form of a spectral parameter power series (SPPS) was obtained for which the construction of
certain systems of functions called formal powers is essential. We introduce such systems for (2.3))
and for (Z2]) and establish a relation between them under the Liouville transformation.

Definition 3.1 ([12]). Let f € C?(a,b) N C[a,b] be a complex valued solution of the equation

f"=Q)f=0 (3.1)
such that f(z) # 0 for any = € [a,b]. The interval (a,b) is supposed to be finite. Let us consider
the two systems of auxiliary functions {X (n) }n and {X (n) } o defined recursively as follows

X(O)( ) = X0 @) =1, (3.2)

)= n / T () (£2() T ds, (3.3)
)(x) = n/ xX=Y(s) (f (s))(_l)n ds, (3.4)

where ¢ is an arbitrary fixed point in [a,b]. Then the system of functions called formal powers
corresponding to (2.3]) is defined for any £ € NU {0} by the relations

f@)X®)(z), k odd,
Pr(@) = {f(a:))z(k) (x), Kk even.

The other “half” of the recursive integrals X™ and X™ are used to define another system of
functions
X®)(z), k even,

fio)
Vile) = { XK (2), k odd.

f(x

v



Remark 3.2. Definition B.J] requires the existence of a nonvanishing complex valued solution of
BI). In the case when @ is a continuous real valued function on [a, b], (B.I]) possesses two linearly
independent regular, real-valued solutions fi and fo whose zeros alternate. Hence one may choose
f = f1+ ife, and this solution has no zeros in [a,b]. If @ is a continuous complex valued function
on [a,b] one can guarantee the existence of a nonvanishing solution [I4, Remark 5]. Let us note
that for the construction of the system of formal powers the knowledge of a nonvanishing solution
is not strictly necessary. When f possesses zeros the system of formal powers can be constructed
following the procedure from [15].

Analogously, let us introduce a system of formal powers corresponding to equation ([2.2I).

Definition 3.3 ([14]). Let g,p,r : [A, B] — C be functions such that g% and 1/ (¢%p) are contin-
uous on [A, B]. Then the following two families of auxiliary functions are well defined

YO ) =vO) =1,
" k(Y (k 1)
y (k) (y) = {k‘fy v (k-1

y(k=1)

/(s)g*(s)r(s)ds, & odd,
)(s)=s———=ds, k even,
(s) 52

)9

g%(s p(s

s ds, k odd,
g )

(k) —
Y (y) o {k‘fy%) Y(k 1) ( ( ) ( )dS k even,

where y is an arbitrary fixed point in [A, B] such that p is continuous at yo and p(yo) # 0.

Now let us assume additionally that the function ¢ is a solution of the equation

(p(y)g') = aly)g = 0. (3.5)
Then similarly to Definition 3.1 we define the formal powers associated to equation (2.2]).

Definition 3.4. Under the conditions of Definition B.3] the formal powers associated to equation
[22) are defined for any k € NU {0} as follows

Y®(y), kodd, Ly ®)(y), k even,

g Y ®(y), k even. @f/(’“)(y), k odd.

Theorem 3.5. Let p,q,r,Q be functions satisfying the conditions of Theorem [2.3. Assume that
(33) possesses a particular solution g on (A, B) such that the conditions of Definition are
fulfilled, and hence f(z) := f(l(y)) = p(y)g(y) is a particular solution of (31) on (a,b). Then the
following relations are valid

p() P (y) = on(x)  for allm e NU{0}, (3.6)
that is
en(z) = L [@n(y)].
Proof. Let us prove first that Y () (y) = X (), for all n € NU {0}. This will give us (B8] for all
odd n. The proof can be conducted by induction. For n = 0 the required equality follows from the
corresponding definitions. Assume that Y ¥ (y) = X*) () for n = k. Consider n = k + 1.
i) If k is even we obtain the following chain of equalities

U(y)
X0 (2) = (k + 1) / X)) s = (k+1) [ X0 s
o) F3(s)

= (k+1) X(k)(l(s)) L (),

%o F2(U(s)) p(s)1/2

_ Yy w1 gy
_(k:+1)/yOY ) s =Y

5



ii) In the case when k is odd the proof is similar,
T I(y)
XE (@) = (k + 1)/ X®)(s)f2(s)ds = (k +1) X®)(s)(s)ds
T (o)

Yok 9 7‘(3)1/2
= (k1) [ X0 )

=(k+1) /y Y(k)(s)gz(s)r(s)ds = Y(kH)(y).

0

ds

Analogously one can prove that Y (y) = X (z) for all n € NU {0} which gives us (3:0) for all
even n. O

Remark 3.6. In a similar way the equalities
1

@an(y) =1p(z) for all n € NU{0},

are proved. That is,
Ya(z) = L [Laly)/r(y)] (3.7)
for all n € NU {0}.

Ezample 3.7. Consider the following equation
V' —20= -, y€(0,2).

It can be transformed into the equation

9
- U= —Au, z€(-1,1)

by means of the following Liouville transformation. Since p(y) = r(y) = g(y) = €Y and ¢(y) =
2eY, we obtain Q(x) = 9/4. Choosing yo = 1 and g =0 we have z = I(y) =y — 1 and a = xg — 1,
b =xg+ 1. Therefore

u/

y=z+4+1, a=-1, b=1 and f(z)=@+D/2

Now we can calculate the first and the second formal powers from Theorem [3.5]

YW (y) = % (€% —€); YW(y) = % (€2 —e)
Y@ (y) = g <€3(1_y) +3y - 4) ; Y@ (y) = g (e3(y_1) — 3y + 2) :
X0 = L <e(3x+1) _ e3> , XW () = L (6_3 N 6—3(:2—1—1))

3 ’ 3
X(Q)(x):g(e_?’x—k?)x—l); X(Q)(x)zg(e?’x—?)x—l).

Then indeed,

o1(2) = 1) XV (@) = KD/ 2 (78— U = 22 (oo o) (3.8)
= ¥, (y) = {p(y)r(y)}'/* ®1(y),
and
AR () _ Bet)/2 23 1) = W32 2 30—y 1
po(z) = f(2)X® (2) = 5 (e +3z—1) =¥ 9 <€ Y43y —1) 1) (3.9)

= /20, (y) = {p(y)r(y)}/* ®a(y).



4 Transmutation operators and approximate solutions

We will use the following statements proved in [11].

Theorem 4.1 ([I1]). Let Q be a continuous complex valued function of an independent real variable
x € [~b,b] and let f be a particular solution of (31)) such that f € C?[—b,b], f # 0 on [~b,b] and
f(0) = 1. Denote h := f'(0) € C. Suppose T is the operator defined by

Tu(z) = u(z) + ’ K(z,t; h)u(t)dt

—T

with the kernel

K(z,t;h) = g + K(z,t) + g /tm(K(:E,S) — K(x,—s))ds,

where K (x;t) is a unique solution of the Goursat problem
0? 0
(2 - QW) KGant) = oK)

K(z,x) = %/Ox Q(s)ds, K(z,—x)=0.
Then T transforms x* into ¢y (z) for any k € NU {0} and
BTw = TAw (4.1)
for any w € C?[—b,b].

Theorem 4.2 ([I1]). The inverse operator T~' exists and has the form
x

T lu(z) = u(z) — K(t, z; h)u(t)dt. (4.2)

—T

Combining (23] with (41 we obtain the following statement.

Theorem 4.3. Let x € [-b,b], z9 = 0 and yo € (A, B) be such that (21) holds. Then the operator
T~ 1L is a transmutation operator for the pair A and C on C?[A, B, i.e.,

AT 'L =T 'LC. (4.3)

Application of T~! to (Z5) and substitution of T™'B by AT~! (due to (&I])) gives us the
result.
In the following example we calculate the operator T'L.

Ezample 4.4. Consider the operator

Co(y) = —vyy(y) - 2(y) + [é + ﬁ] v(y),
2

where y € [1,2]. Notice that 7(y) = p(y) = v, p(y) = y*/? and q(y) = é + (yfﬁ Choosing

xo = 0 and yo = 3/2 we propose the change of the variable in the form x = I(y) = y — 3/2. Then



€[-1/2,1/2] and Q(z) = x+1) A particular solution f of f” — Q(x)f = 0, such that f(0) =

and h = f(0) = 2, can be chosen in the form f(z) = (z + 1)2. In [I7] it was shown that for this
particular function the corresponding transmutation kernels have the form

2 + 2t + 2% — 2 6x + 4 + 322 + 2t — 3¢t?
K(z,t) = Az t+1) K(z,t;2) = Az +1)
Then
T 'Lv(y)] =T '[u](z) = u(z) — K(t,z; h)u(t)dt

l(y) h
— p(y)oly) - / K (t, 1(y): h)u(t)dt

I(—y+2yo0)
)
— o)~ [ KO mu(o) (1.4)
—y+2y0
)
o) - [0 K. ot
—y+2y0
Yoo 32 —3t+ 11y — 3y? — 8
=y 2u(y) — / p _y2 Y tY20(t)dt.
—y+3

This is a closed form of the operator transmuting solutions of Cv = Av into solutions of Aw = Aw.
2
For example, application of the obtained operator to the function g(y) = L=!f(x) = % (which

is a null solution of C) gives us T™'L [g(y)] = 1 (a null solution of A). The inverse operator L~'T
can also be constructed explicitly. We have

LT [w(x)] = L7} [w(:z:) + ' K(x,t; h)w(t)dt}

—T

1 Uy)

~ o) (w(l(y)) + _l(y)K(l(y),t;h)w(t)dt>
1 Uy)

~ o) (w(l(y)) T _l(y)K(l(y),t;h)w(t)dt> .

Its application to w = 1, indeed, gives us the function g(y).

Due to (1) the operator T maps solutions of the equation Aw = Aw (linear combinations of
cos vV Az and sin v/Az) into solutions of Bu = \u.

Together with the transmutation T it is often convenient to consider the other two operators
enjoying the transmutation property (@) on subclasses of C?[—b,b] (as well as on subclasses of
C?[0,b]), for details see [22] and additionally [L7],

Tow(x) = w(zx) + /01‘ C(z, t)w(t)dt

Tsw(x /S:Et

with the kernels C and S related to the kernel K by the equalities

and

C(z,t) = K(z,t;h) + K(z, —t; h) (4.5)



and
S(z,t) = K(z,t;h) — K(x,—t; h). (4.6)

The following statement is valid.
Theorem 4.5 ([22]). Solutions c(w,z;h) and s(w,x;00) of the equation
— " 4 Q(x)u = w?u, Q € C[0,b] (or Q € C[-b,0]) (4.7)

satisfying the initial conditions

c(w,0;h) =1, c(w,0;h) = h (4.8)
s(w, 0;00) =0, st (w,0;00) =1 (4.9)
can be represented in the form
c(w,z; h) = coswx +/ C(x,t) coswt dt (4.10)
0
and ) . ot
s(w, x;00) = i —I—/ S(:E,t)smw dt. (4.11)
w 0 w

Let f € C?(—b,b) N C'[—b,b] be a solution of (1) such that f(z) # 0 for any x € [—b,b] and
f(0) =1, f(0) = h € C. Denote

co(z) = f(w), (4.12)

Cm(z) = L2 <k>xkcpm_k(a:), m=1,2,... (4.13)

S (2) = () mk(z), m=12,... (4.14)
oddzk::l <k> 7 ’

where the functions ¢,, are those from Definition B.I] with zg = 0.
In [I§] the following result was proved.

Theorem 4.6 ([I8]). The solutions c(w,x; h) and s(w,z;00) of equation [{.7) satisfying ([4-8) and
(4-9) respectively can be approzimated by the functions

n

N xT
en(w,z) = coswz + 2 Z an Z (Z) On—r(z) / t* cos wt dt (4.15)
0

n=0 even k=0

and
1 N n n z
sy(w,x) = - <sinw:1: +2 Z b, Z (k‘) On—k(x) /0 tF sinwt dt) (4.16)
n=1 odd k=1
where the coefficients {an}gzo and {bn}ivzl are such that

hoo1 (e al
7+ Z/O Q(s)ds — ;Z:Oancn(x) <e (4.17)




and

. N
i/o Q(s)ds — nZ::l bpsn(z)| < &2 (4.18)
for every x € [=b,b], and the following estimates hold
le(w, z; h) — en(w,x)| < %(Cx) (4.19)
and )
|s(w, z;00) — sy (w, z)| < %(CCZE) (4.20)

for any w € C, w # 0 belonging to the strip [Imw| < C, C > 0, where ¢ > 0 depends on 1, £9 and

Q.

Remark 4.7. The approximation problems represented by (4.17]) and (d.I8]) can be written in terms
of the variable y and with no reference to equation (.1). Indeed, the following equalities hold

547 ) =57 [ s { = e f s = i),
1 [ e =3 [ e { e o s = G,
co(z) = Co(y) == p(y)g(y),
e () = En(y) = p(y) ") AW R pr(y), m=1.2,
y pyevenZ];:O(k) y k(Y
sule) =50 =) > () U0 Onls) m= 1.2
odd k=1

where the system of functions ®,, is constructed from a particular solution g of (8.5 satisfying the
initial condition

9(y0) = (P(yo)r(yo)) ™" (4.21)
(in this case f(0) = 1, where f(x) = L [g(y)]), and h equals the value of the following expression in
Yo,

h— p(yo) (9’@0) + P/(y0)> (4.22)

(in this case f'(0) = h).
Thus, the coefficients {an}gzo and {bn},]:[:1 are such that

N
Gi(y) = > anu(y)| < &1 (4.23)
n=0
and N
Gay) — Y buSn(y)| < &2, (4.24)
n=1

for all y € [A, B].

10



Remark 4.8. The expressions for the functions G; and G5 involve second derivatives of the coef-
ficients. It is easy to transform them into a form requiring first derivatives only. Indeed, besides
([24) the potential ) admits the following representation (see, e.g., [27, p. 141])

ay) pﬂ
Q(z) = ) + )

11 / / / 2
The integral [ p;S ds can be written in the form (due to the identity % = (%) + <%) )
x -1 1 x 2
/ pss gy _ Lo1@) _ pulZ(0)) +/ (p) ds
0o P p(=1(x))  p(=1(0))
1 1
=7 (Ply) - 1_6/0
1 1 [Y pl/2 (1)
Z(P(?J) 1_6/yo T1/2T T)dT

where P(y) := p_1/2(y)7,—3/2(y) ' (y)r(y) + py)r'(v)).

Let us consider the preimages of the solutions c¢(w,x;h) and s(w,z;00) under the Liouville
transformation

L:C[A B] = Cl=bb]  with I(y)= /y{r(s)/p(s)}l/2ds, (4.25)
Yo

vi(w,y) == L7 e(w,z;h)] and  wvy(w,y) := L™ s(w,z;00)].
Being solutions of the equation
(p()v') —aly)v = —w?r(y)v  on (4, B), (4.26)

they satisfy the initial conditions

v1(w,y0) = (4.27)

p(yo)’

UQ(UJ,Z/(]) =0, ’Ué(w7y0) = (428)

Theorem together with Theorem allow us to obtain convenient representations for approxi-
mations of v; and vs.

Theorem 4.9. Let g be a solution of (35) satisfying the initial condition g(yo) = (p(yo)r(yo)) /*
such that the conditions of Definition[3.3 are fulfilled. Let vi and vy be solutions of (4-26]) satisfying
(7-27) and ({{-28) respectively, where h is the complex number defined by ({.23). Let L be the
Liowville transformation ({{.25). Then vi and vy can be approximated by the functions vi N and
vy N respectively, defined by the equalities

()
v N(w,y) = p(ly) cos (wl(y +2Zan Z < )q)n_k(y)/o t* cos wt dt (4.29)

even k=0

11



and
1 ( sin( " n i) e
vo,N(w,y) = " +2Zb Z k @n_k(y)/ t"sinwtdt |, (4.30)
n=1  odd k=1 0

where the coefficients {an}_y and {b,}"_, are such that ([F23) and ([f-24) are fulfilled. The
following estimates hold

Jor — v < OED) (4.31)
and (b (Ch)
£pp Sin
v — v N < TR (4.32)

for any w € C, w # 0 belonging to the strip [Imw| < C, C > 0, where ¢ > 0 depends on 1, £9 and
Q, po:=||1/p|l and ||| denotes the mazimum norm on [A, B].

Proof. Observe that v1 n(w,y) = L™ ey (w, )] and vo y(w,y) = L™ sy (w,x)]. Indeed, applica-
tion of Theorem gives us the result. The estimates (£31]) and (£32]) follow from (£I9]) and
([@20) taking into account that ||L~t| = ||1/p]|. O

Solution of problems involving derivatives in boundary conditions requires convenient approx-
imations for v} and v}. Direct differentiation of ([A29) and (£30) does not present any difficulty,
nevertheless it is still necessary to be able to obtain corresponding estimates for the difference
v' — vy where v represents v or vo. In [I8] it was shown that instead of this direct approach one
may choose another possibility based on certain results concerning transmutations for Darboux
associated equations of the form (Z3]). As a result the approximation of the derivatives of the
solutions c¢(w, x; h) and s(w,x;00) of (A7) is obtained in the form

n

N T /
en(w, ) = —wsinwz + 2w Z an Z (Z) wn_k(x)/ t* sin wt dt + f'(z) en(w,z)  (4.33)
0

n=1  odd k=1 f(z)

and

n

N x /
Sn(w, x) = coswz — 22 bn Z <Z> wn_k(x)/o t* cos wt dt + f'(@) sy (w, x). (4.34)

n=0 even k=0 f(.Z')

The coefficients {an}gzo and {bn}ivzl are the same as in (£I5]) and (4.I6), and by = h/2.
The formulas for the approximations of the derivatives v} and v can be obtained with the aid
of (Z.6). Indeed, from (Z.8) for v(y) = L~ [u(x)] we have

/
vy = l—yux - \/TL_1 [u/(z)] — L.

p p

Considering v = v;(w,y) and u = ¢(w, x; h) we obtain

[7() P (v)
o) L L (w, 23 h)] — ) v1(w,y).

Similarly we have




Now we can use the fact that the approximations for the functions ¢(w,z;h), s'(w,z;00) and

v1(w,y), vo(w,y) are given by (£33)), (£34) and ([4.29), (A30) respectively. Hence the approxima-

tions of the derivatives v} and v} are given by the functions

o r(y) . 1o P (y)

G y) =[S e )] = PR, y) (4.35)
and

o r(y) 1o p(y)

Vo N(w,y) = @L 1 [sN(w,x)} — o) v2, N (w, ) (4.36)
respectively.

In order to calculate L™! [ZN(W,$)] and L~} [gN(w,x)} we use Theorem [B.5] relations (B.7])

and the equality
S [f@)] 1 ply) (W) | Py
. [f(w)} )\ () (g(y) " p(y)>'

Thus,
N n 1(y)
-1 ¢ ——Lsin w 2w a " k sin w
17! et = — s ) + 2 S 3 (3) st [ kst
pW) (9@ WY
" r(y)< W) p(y)> L 9)
and

Lt |:§N(w,:n)] = Lcos (wl(y)) — 2 EN:bn 2": (Z) U, _r(y) /Ol(y) t* cos wt dt

n=0 even k=0

p) (9 )  Py)
" <g(y) ) ) vz ()

o W @sin w g’(y)v w
vLN(wy) = p(y) \ p(y) (i) + 9(y) v, )

N i " (4.37)
il " k sin w
T 2 () po-sto) [t imita
and
o L r(y) J'(y)
v, N (W, Y) =2\ o) (wi(y)) + W) va, N (W, y)
(4.38)



Remark 4.10. It is often convenient to have available the pair of solutions V;(w,y) and Va(w,y) of
([#26) satisfying the initial conditions

Vl(w7y0) = 17 ‘/ll(way()) =0

and
V2(W=?JO) = 07 ‘/2,(("')7y0) =1L

Simple calculation gives us the following relations

Vi(w,y) = p(yo)vi(w,y) + | p'(v0) p(yO)—hp(yo) va(w, y)
7(Yo)

and

Vi) = o)y 22 o).

Solution of Sturm-Liouville spectral problems for equation (28] can be reduced to the search
of zeros of a so-called characteristic function which can be written as a linear combination of the
solutions v1, v9 and their derivatives. Numerical search of zeros of the characteristic function can
benefit from the knowledge of the derivatives of vy, ve, v} and v} with respect to w, e.g., the
Newton method can be used. One can differentiate the expressions (4.10]) and (4.11]) with respect
to the variable w and apply the constructed approximations of the transmutation operator to
obtain the approximate derivatives and the corresponding error estimates. It appears that the final
expressions obtained coincide with the termwise derivatives of (£.29), (4.30), (437) and [@.38)), cf.,
[20], thus in order not to oversaturate the paper we provide only the approximations of d,v1(w,y)
and 0,v2(w,y):

N n I(y)
01 (w,y) = _M sin (wl(y)) — 2 Z an Z <Z> D, _r(y) / th 1 sin wt dt (4.39)
p(y) n=0 even k=0 0
and
1 (1(y) cos (wi(y)) S (n o
Opv2(w,y) ~ — # — vy N(w,y) + 2 Z by Z f D, _r(y) t" T sinwtdt | .
w Py n=1 odd k=1 0

(4.40)

5 Numerical solution of spectral problems

5.1 General scheme

Consider a Sturm-Liouville spectral problem for equation (2.2)) on a segment [A, B] with two general
boundary conditions

anv(A) + apv' (A) + aizv(B) + ayv' (B) = 0, 1=1,2, (5.1)

where a;; are arbitrary complex numbers. Moreover, a;; can be sufficiently smooth functions of the
spectral parameter.

The general scheme of application of the proposed method of analytic approximation of the
transmutation operators to the solution of such spectral problems consists in the following, cf., [18]
Section 7.1].
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1. Compute I(y) = [44r(s)/p(s)}'/2ds, y € [A, B).

2. Find yg such that [(yo) = I(B)/2, and let I(y) = l(y) — {(yo).

3. Find a non-vanishing on [A, B] solution g of (3.3 satisfying the initial condition (£2I]). For
this the SPPS method [14] or Remark [5.1] can be used.

4. Compute the functions ®x(y) and ¥i(y), £ =0,..., N according to Definition [3.4
5. Compute the functions ¢y(y), ¢, (y) and S,,(y), m = 1,..., N according to Remark A.7]
6. Find the approximation coefficients {a,}"_; and {b,}Y_, from (@23 and (@24).

7. Calculate the approximations vy n(w,y) and v n(w,y) of solutions v; and vy by ([£29) and
(4.30). If necessary, calculate the approximations of the derivatives of these solutions by

([E37) and (E35).

8. The characteristic equation of the spectral problem can be obtained as usual, see, e.g., [22]
§1.3]. The nontrivial solution cjv; 4 cyve satisfies both boundary conditions (5.1]) if and only
if the determinant of the obtained linear system of equations for ¢; and ¢y is equal to zero.
Changing v and v9 and their derivatives by the corresponding approximations one obtains a
function whose zeros approximate the eigenvalues of the spectral problem.

It should be noted that all the steps of the proposed algorithm can be performed numerically,
it is not necessary to know the exact particular solution ¢ or to evaluate the integrals defining
functions ®j, and Uy, in a closed form. We refer the reader to [I8, Section 7.1] for the details of the
numerical recursive integration (step 4) and of the solution of the approximation problems (step
6). It is worth mentioning that changing the summation order in (@.29)), (£30), (437) and (£38)
can lead to a significant speed advantage due to the possibility to precompute the sums related to
the point y (they remain unchanged during solution of the spectral problem). We refer the reader
to [10] for the details.

Remark 5.1. Suppose that the functions p and ¢ are real valued and nonvanishing on [A, B]. Then
a nonvanishing particular solution of (3.5]) can be constructed using the method described above.
Indeed, writing equation (B.5]) as

(pg') = —Aag

we obtain an equation of the form (2.2 with either r = g and A = —1 or r = —g and A = 1
depending whether p- ¢ < 0 or p-q > 0 on [A,B]. The proposed method can be applied to
this equation using gg = 1 as a nonvanishing particular solution. If the normalized solution Vj
constructed as in Remark 10| possesses a zero on [A, B], a combination Vj + iV5 can be taken.
The zeros of the linearly independent solutions V; and Vs can not coincide and the approximations
(#29) and ([430) are real valued even for A = —1 (hence for w = i) ensuring that the expression
V1 + iV, is nonvanishing on the whole [A, BJ.

Since the point yg is distinct from either of the endpoints A and B, the algorithm in the proposed
form does not made full use of the knowledge of the initial values of the solutions v; and vy given
by ([A27) and (Z28). One possible way to make use of these initial conditions was proposed in
[18, Remark 5.3]. It consists in working with the transmutation operators T, and T instead of
the transmutation operator T. Then for the construction of the corresponding integral kernels it
is sufficient to know the potential Q(x) only on [0, b], see Theorem Therefore in the Liouville
transformation we can take yg = A, and the approximate kernels and the approximate solutions
can be constructed in an exactly same way with the only change, one has to use yy = A.
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The knowledge of the initial values (4.27)) and ([4.28) is especially useful when the first boundary
condition (5.I]) involves values of the solution and of its derivative only at the point A, i.e., has the

form
CL11U(A) + CL12’U/(A) =0. (5.2)

In this case the proposed algorithm can be slightly simplified.
1-2. Compute I(y) = fg{r(s)/p(s)}l/2 ds, y € [A, B].
3-7. Perform the same steps as in the original algorithm using yo = A.

8. Find a nontrivial linear combination cjv; + covy satisfying the first boundary condition (5.2)).
According to Remark [£.10] one can take, e.g., v = —a12V; + a11 V5. The characteristic equa-
tion of the problem is given by the second boundary condition. Replacing v; and vy and
their derivatives by the corresponding approximations one obtains a function whose zeros
approximate the eigenvalues of the spectral problem.

5.2 Numerical examples

Ezample 5.2. Consider the following spectral problem (c.f., Example [£.4])

/A 1 2 — w2
v y+<4y2+(y_%)2)fu w*v,

(5.3)
v(1) =v(2) = 0.

To make its consideration consistent with Example 4.4l we applied the first proposed algorithm. A

particular solution ¢ satisfying the initial conditions

g(yo)z\/g, g’(yo)zg %

(which give us h = 2 according to ([@21)) and ([£22])) was computed numerically using the SPPS
representation [I4] in Matlab 2010 in machine precision. On step 4, 60 formal powers and 4001
uniformly distributed points were used to represent all the functions involved and to perform all
the integrations modified 6 point Newton-Cottes integration rule was applied.

As was shown in [16], the kernel of the transmutation operator T corresponding to (5.3)) is a
finite linear combination of generalized wave polynomials and hence the approximations (£.13]) and
(£I6]) turn out to be exact solutions with the following coefficients

3 3 3 1 3

a0:17 ap = —5, a2 =— b1:27 bQZ_Z

We approximated numerically the functions G; and Go from (4.23]) and (4.24)) using the Remez
algorithm (see [11] and references therein) and obtained the following coefficients

ap=1, a1 =-15, ay=-0.75, a3z =0.749999999999999,
b1 = 0.500000000000001, by = —0.750000000000001,

close to the exact ones.
The exact characteristic equation for the problem (5.3]) can be written in the form

(4 + 3w?) sinw — 4w cosw = 0. (5.4)
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This allows us to compare numerical results and the exact ones. The exact eigenvalues were found
from (5.4) by Wolfram Mathematica’s function FindRoot. To find approximate eigenvalues we
computed the characteristic function for the values of w from 1 to 101 with the stepsize 0.02,
constructed a spline through the obtained points and found its zeros. Matlab’s functions spapi
and fnzeros were used. All 32 eigenvalues on this segment were found, and the maximal absolute
error of the approximate eigenvalues was 1.4- 107, while the relative error was less than 5- 10716,

Ezample 5.3. Consider the Bessel equation [8, Eqn. 2.162] with the following boundary conditions

(zu) + xu = —\%, (5.5)
uw' (1) =u(4) =0. '

The characteristic equation of this problem has the form
Jiwo(4) (Yiwot1(1) = Yie—1(1)) = Yiw(4) (Jiws1(1) = Jiw-1(1)), (5.6)

where A = w?, and the spectrum consists of one negative eigenvalue and of an infinite series of
positive eigenvalues. In terms of normalized solutions introduced in Remark [£.10]l the characteristic
equation has the form Vj(w,4) = 0.

To this problem we applied the simplified algorithm as described in the end of the previous
subsection. Note that the mapping [(y) for this problem is not linear. For a nonvanishing partic-
ular solution g we used the complex valued combination g = g1 + g2 of the solutions computed
numerically from the SPPS representation (see [I4, Remark 5]). As in the previous example, we
used 60 formal powers and a uniform mesh of 4001 points to represent all the functions involved.
The least squares method was used to solve the approximation problems ([{.23]) and ([4.24]), where
28 functions were sufficient for an optimal machine-precision approximation. The corresponding
g1 and €2 were 9- 1071 and 1.4 - 107!, As it has been already observed in [18, Example 7.5],
the proposed method may produce unreliable results for the values of w close to the origin. To
overcome this difficulty we combined the computed eigenvalues with those obtained from the SPPS
method (known to work the best close to the origin). All 88 eigenvalues satisfying A < 2002 were
found with a maximum relative error 5-107'. The computation time was 1.7 seconds. On Figure[]
we present the absolute and the relative errors of the computed eigenvalues. The exact eigenvalues
were obtained solving the characteristic equation (5.0]) with the aid of Mathematica 8.

-8
10 T T T T T T T T

0 P 1
RSRIIAXHIRIILIIIIHIIHIRPHIEIISORAIIISRHROERORSHORIOROGILOPIXAIPERIHXNHK
X

10_16 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90

Figure 1: Graphs of the absolute (red circles) and relative (blue crosses) errors of the computed
eigenvalues from Example 5.3l The eigenvalue index is on the abscissa.
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Ezample 5.4. Consider the following problem (see [8] Eqn. 2.273(11)])
u” —2u' +u=—-\y?+ u,
u(0) —u/(0) =0, (5.7)
u(2) +u'(2) = 0.

This problem is of the form ([2.2) with p(y) = e=%, q(y) = —e~ % and 7(y) = (y*> + 1)e”?Y. The
characteristic equation of the problem has the form

1+iww 1 S4+iww 3
u—mma(ﬁﬁﬁAM>:wﬁ4mw«'Tﬂ?mg, (5.8)

where A = w? and 1 F} is the Kummer confluent hypergeometric function. In terms of the normalized
solutions introduced in Remark [£.10Q] the characteristic equation can be written as

Vi(w,2) + Va(w,2) + V{(w,2) + V3(w,2) = 0.

We applied the “simplified” algorithm. A non-vanishing particular solution was computed using
the SPPS representation. The parameters for computation were chosen as in the previous examples.
The precision achieved in solving the approximation problems ([#23) and [#24) was 2.8 - 1078
and 3.8 - 1078 respectively (with 20 functions involved). We computed the first 100 eigenvalues
and compared them with the exact ones obtained with the help of Wolfram Mathematica from
the characteristic equation (0.8). The maximum absolute and relative errors of the approximate
eigenvalues were 4.7 - 1077 and 8.5 - 1079, respectively. On Figure Pl we present the graphs of the
erTors.

faTATA"A"ATATATA"A"ATATATA"ATATATA"ATATATA"A"A
SITTIRRRRRERISRRIMIIII IS EIISISS SIS INS SNSRI S IAIREL
Y

B TaTATATATaTATATa"a"aTaTaYaTaTa A a"a"a"ATAYATATAATATA

0 10 20 30 40 50 60 70 80 90 100

Figure 2: Graphs of the absolute (red circles) and relative (blue crosses) errors of the computed
eigenvalues from Example 5.4l The eigenvalue index is on the abscissa.

Remark 5.5. Although the first step in applying the proposed method is the Liouville transformation
which apparently requires that the coefficients p and r be real-valued, a more thorough analysis
leads to a surprising conclusion, that this condition might be superfluous. Indeed, the construction
of functions p, I, ®,,, ¥,,, ¢, and s, and Remark 7] show that the approximation problems can
be written in terms of quantities defined by the original equation (Z2) only, without an explicit
use of the Liouville transformation.

In the last example we illustrate that the proposed method works under more general conditions
on the coefficients p and r.
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Ezxample 5.6. Consider the following spectral problem

W' = —\éVu,
{U/(O) =0, u(m) + u/(ﬂ') =0. (5.9)

The characteristic function of the problem is given by
Flw) = w<2Kl(2w) (Jo(2w) — iw i (2w)) + 71 (2w) (—iJo(2w) — w i (2w) — Yo(2w) + ti1(2w))),

where w? = X and I, J, K and Y are the Bessel functions. In terms of the normalized solutions
introduced in Remark .10l the characteristic function can be written as F'(w) = Vi (w, m)+ V{(w, 7).
Since the characteristic function is necessarily an analytic function of the variable w, we can apply
the argument principle to localize its zeros, see [26], [3] and our recent paper [19] for details. After
the zeros were localized within rectangles with the sides smaller than 0.1, we applied several Newton
iterations to obtain approximate eigenvalues, the values of F’(w) were computed using formulas
#39) and (440). On Figure B] we illustrate the work of the algorithm based on the argument
principle. The absolute errors of the calculated eigenvalues satisfying | Rew| < 50 were less than
2.9-107® while the errors achieved in the approximation problems (23] and ([@24]) were 2.7-107 1.

i

!_I
_t|

-12 1 1 1 1 1 )
0 2 4 6 8 10 12

Figure 3: Illustration to the work of the algorithm based on the argument principle in Example
Blue rectangles show the regions used to count the number of zeros on the subdivision step.
Red circles mark the found eigenvalues.

Based on Remark and Example [0.6] we can formulate the following conjecture.

Conjecture 5.7. Theorem[4.9 holds and the proposed method works under weaker conditions than
those required by Lemmal2d. Namely, it is sufficient that p and r be complex-valued nonvanishing
on (A, B), the requirement p(y), r(y) > 0 is superfluous.
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