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Abstract

Preventive health care is of utmost importance to governments since they can make massive savings on health care

expenditure and promote the well-being of the society. Preventive care includes many services such as cancer screenings,

vaccinations, hepatitis screenings, and smoking cessation programs. Despite the benefits of these services, their uptake

is not satisfactory in many countries in the world. This can be attributed to financial barriers, social issues., and other

factors. One of the most important barriers for preventive care is accessibility to proper services, which is a function

of various qualitative and quantitative factors such as the distance to travel, waiting time, vicinity of facilities to other

attractive facilities (such as shopping malls), and even the cleanliness of the facilities. Statistics show that even a small

improvement in people’s participation can save massive amounts of money for any government and improve the well-being

of the people in a society.

This paper addresses the problem of designing a preventive health care network considering impatient clients, and

budget constraints. The objective is to maximize the accessibility of services to people. We model the problem as a

mixed-integer programming problem with budget constraints, and congestion considerations. An efficient variable neigh-

borhood search procedure is proposed and computational experiments are performed on a large set of instances.

Keywords. Preventive health care, Facility location, Equity, Variable neighborhood search, Network design.

1 Introduction

Efficient management of the health care supply chain is becoming a more active research field every passing

day. Scarcity of resources, increasing customer expectations in terms of quantity (due to the aging population)

and quality, increasing costs (both due to the increase in demand and investment costs of new health-related

technologies and drug discovery) are among the factors which make this topic a significant one for health care

service providers, insurance companies, as well as governments who are constantly striving to become as efficient

as possible in delivery of their services. Various methods from mathematics and operations research fields have

been used to facilitate management of health care systems, such as Markov chains, mathematical programming,

and simulation.
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Many costly, and disabling problems such as cancer, cardiovascular diseases, diabetes, and chronic respiratory

problems are linked by some risk factors which are preventable to a rather high extent and/or better managed by

regular checkups. A preventive health care program is the set of actions taken to avoid or to delay the onset of

diseases. The old idiom ”an ounce of prevention is worth a pound of cure” summarizes the benefits of preventive

health care in a perfect way. Generally speaking, there are three categories in preventive health care. Primary

interventions are those that reduce the risk of disease for healthy individuals (e.g. immunization programs,

diet schemes, autism screenings for children, etc.). Secondary interventions are those that are designed for

early detection of diseases for the individuals who are in the risk groups (e.g., screening for breast cancer for

females over a certain age, cholesterol control, screenings for osteoporosis, colonoscopies, consultancy services

provided for pregnant women, audiometric tests). Neither the individuals who receive primary prevention

services nor those who receive secondary services have any obvious sign of the disease. On the other hand,

tertiary interventions are designed for individuals who have been already diagnosed clinically for a disease and

the goal of the preventive health care service is reducing the complications that might be caused by it (e.g.,

for individuals that have diabetes, regular retinal checks are performed). Preventive health care programs can

bring about substantial reduction in the overall health care spending of the society (Maciosek [1] reports savings

of $3.7 billion for USA in 2006). Efficient management of preventive health care programs and increasing the

public participation would definitely benefit the society and patients simultaneously. For instance, studies in

USA show that for every HIV infection prevented, an estimated $355,000 is saved in the cost of providing

lifetime HIV treatment [2]. Moreover, a 5 percent reduction in the prevalence of hypertension would save $25

billion in 5 years [3].

Preventive health care is inherently different from programs for acute ailments. In contrast to sick people

who need urgent medical attention, people who seek preventive services have more flexibility as to when and

where to receive preventive health care services. Even though the benefits of preventive services are clear both

in terms of cost and health, most of the people are reluctant about their own health status and often prefer not

to participate. Therefore, the achievement of the desired participation level continues to be a challenge to many

preventive health care programs. The maximal participation levels lead to economies of scale in the operational

costs of preventive health care facilities. An increase in participation levels in such preventive programs reduces

the overall burden of health for the society and increases the expected benefits from the health care delivery.

Preventive health care Facility Network Design Problem (PHFNDP), briefly speaking, which deals with

where to locate the facilities and determination of their capacities, is among the most significant strategic level

decisions in any preventive health care program. The goal is to establish a set of facilities among a set of po-

tential locations, so that the participation level is maximized. Empirical research in health economics literature

deals with the concept of attractiveness of health care facilities and suggests that there are various factors that

influence attractiveness. For example, Bjorn and Godager [4] as well as Gravelle et al. [5] demonstrate that

the attractiveness of health care facilities is not only influenced by the proximity but also by other qualitative

factors such as quality, availability of other facilities in the neighborhood (e.g. shopping malls, restaurants,

etc.), amenities near the facility. etc. On the other hand, Muller et al. [6] determines that in urban areas,

distance influences the decision on which kind of medical services (e.g. a medical doctor or a hospital) the

patients use, whereas in rural areas of developing countries, distance is the decisive factor whether or not to

use medical services at all. Other research such as Varkevisser et al. [7] and Haynes et al. [8] also reveal

evidence that distance plays a pivotal role in the attractiveness of facilities. Note that, these empirical evi-
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dences are not from studies that focus particularly for preventive health care services but for general health

care services. Normally, in the literature of the PHNFND problem, distance is used as the only factor affecting

the attractiveness of a facility (e.g., Zhang et al. [9]; Zhang et al. [10]; Zhang et al. [11]; Gu et al. [12]). The

relation between distance and attractiveness can be modeled as linear or non-linear based on some demographic

issues, traffic conditions, etc. Figure 1 depicts a network with four facilities established on a plane and an

exponential attractiveness function in which darker areas are areas with good accessibility to facilities and the

accessibility wears out as clients move away from the facilities. As it is clear from this figure, the attractive-

ness of facilities can decrease dramatically by an increase of the distance (Distance can be replaced by travel

time which is a more realistic measure for our problem like many other health care related problem, both in

rural areas owing to possible difficulties of access and in urban areas because of the traffic conditions. For more

information, interested readers can refer to various sources such as Phibs and Luft [13], Schuurmann et al. [14]).

Insert Figure 1 around here

Chronic diseases such as cancer, diabetes, and heart diseases in US account for 75% of the country’s health

expenditure as reported by the Centers for Disease Control and Prevention while they are largely preventable.

An optimal provision of preventive health care services can save money up to $590,000/QALY for governments

as the health care providers [15]. As discussed in Daskin [16], the implications of poor location of health care

facilities can be well beyond cost and customer service considerations, increasing the prevalence of diseases, and

mortalities. That said, health care providers can benefit massively from a higher participation rate of individu-

als in addition to citizens. The main goal of the problem in this paper is to maximize the participation level of

people as a measure of the distance between facilities and population centers in order to efficiently manage the

health care spending, and promote the health status of a society. We contribute to the literature by proposing

an efficient heuristic procedure to solve the PHNDP with budget and capacity constraints.

The outline of this paper is as follows: It proceeds with a literature review of relevant publications in section

2. The mathematical model of the paper is presented in section 3. In section 4, our proposed solution procedure

is elaborated. Numerical experiments and some analysis appear in section 5, and finally, conclusions and some

future research avenues are provided in section 6.

2 Background and Literature Review

The publication of first papers regarding to the design of health care networks date back to early 60s when

[17] presented the problem of location on a graph with applications in telecommunication, police stations, and

hospitals. Later, many papers have been published in the context of health care network design such as locating

organ transplant centers (Belien et al. [18]), locating health care facilities assuming moving populations (Ndiaye

et al. [19]), locating ambulances (Shariat et al. [20]), and real-world case studies in Brazil (Galvao et al. [21]),

Burkina Faso (Cocking et al. [22]), and Malaysia Shariff et al. ([23]).

The problem of designing preventive health care network with congestion considerations is not new to the

literature. The first publication in this area was Verter et al. [24] where the problem of locating preventive

facilities was presented and case studies in Georgia, USA and Montreal, Canada were reported. Recently, [9]

presented the problem of preventive health care network design on a graph with optimal choice allocation and an
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objective of maximising participation level. They presented four different heuristic methods for their problem.

Later, Zhang et al. [10], addressed a similar problem and modeled it as a bi-level nonlinear optimization model.

In order to solve their problem, they developed a lower level problem and an upper level problem and proposed

gradient projection method and an efficient tabu search procedure. Gu et al. [12], developed an accessibility

measure for PHFLP and presented an efficient interchange algorithm to solve it. The impact of client choice

behavior on the network and the participation level of people was considered in Zhang et al. [11]. Their decision

variables are the location of facilities and also the number of facilities in each location. They presented a genetic

algorithm to solve the problem. In another recent paper, Gunes et al. [25], the physician allocation to health

care centers is modeled and an illustrative case study in Turkey has been presented.

Unlike sick people who usually take an appointment (unless it is a medical emergency situation) from a

health care service provider before a visit to the facility, usually individuals participate in the prevention health

care programs whenever they have time and they are in the vicinity of the facility. That is to say, the prevention

programs execute in a non-appointment setting and the participants ”walk-in” a center. Therefore, in line with

some of the existing literature (Gunes et al. [26]; Zhang et al. [9]; Zhang et al. [10]), in this paper the preventive

service provider facility is modeled as a queuing system due to the stochastic demand and limited capacity.

There is little discussion regarding the health benefits of prevention. However, there is an ongoing debate

both in the scientific literature and public regard in terms of the cost-effectiveness of the prevention programs.

Substantial evidence exits that it is more beneficial to prevent rather than cure (Holland et al. [27]; Woolf et

al. [28]; Maciosek et al. [1]). However, some researchers argue that it might be more beneficial to treat a few

sick patients rather than trying to prevent the whole population. Cohen et al. [29] conducted a systematic

review of 599 articles from cost-effectiveness literature and concluded that opportunities for efficient investment

for prevention and treatment are roughly equal. Therefore, the policy makers should be more selective while

allocating limited resources to prevention programs and only initiate those that would be more cost-efficient.

That is to say, as opposed to the existing literature that focus on preventive health care management, budget

should be considered as a concern in the model. Hence, we have included budget in our model. Note that, as

it is the case in most of the public service investment decision making problems (e.g., Aktas et al. [30]; Angulo

et al. [31]; Keranshahi et al. [32]), we also incorporated budget as a constraint to the model rather than an

objective function and conducted sensitivity analysis regarding to different budgetary levels.

From above and to the best of our knowledge, the case of preventive health care network design with equity

considerations and budget constraints has not been addressed in the literature. Hence, this paper presents a

model for such a problem and proposes an efficient Skewed Variable Neighborhood Search algorithm which is

able to reach solutions with errors not worse than 1.78%.

3 Mathematical model

Consider a region (say a city) with demands for preventive health care spread over the network nodes and

transportation links between nodes. The decision maker is interested in maximizing the participation level of

people throughout the region by establishing facilities in the network. There are candidate locations to establish

facilities and the proximity of clients to facilities is the key factor in making facilities more attractive. Besides,

there are budget constraints and also congestion considerations in the problem. The sets, parameters, and

decision variables of the problem are as follows (please note that for the sake of integrity, we use index i for the
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demand nodes and index j for the potential nodes to establish facilities.)

Sets

N Set of nodes (population centers, index i is used for this set)

F ⊆ N Set of potential nodes to establish facilities (index j is used for this set)

H = {1, 2, ...,Hmax} Set of available number of servers

Parameters

m Number of population centers (cardinality of the set N)

n Number of potential nodes to establish facilities (cardinality of the set F )

λ The number of clients requiring service per unit of time (following a Poisson distribution)

pi Population living at node i ∈ N

tij The shortest path from node i ∈ N to node j ∈ F

λk Maximum participation rate such that the system does not explode with k servers

η The attractiveness coefficient

aij The attractiveness of facility j ∈ F to the client at node i ∈ N (aij = e−ηtij )

B The budget available to establish facilities

cv The unit cost of adding a server to a facility

cfj The fixed establishment cost for a facility j ∈ F

Decision Variables

xij A binary variable taking a value 1 if node i ∈ N gets served by facility j ∈ F and 0 otherwise

hjk Binary variable taking a value of 1 if node j ∈ F has k ∈ H or more servers and 0 otherwise

We assume that each facility j ∈ F has k servers, each providing an exponentially distributed service at a

rate of µ service per unit of time. Moreover, ∇λk = λk − λk−1(k ∈ H) and λ0=0. Now, the mathematical

model of the problem as an integer programming model is as follows:

maxλ
∑
i∈N

pi
∑
j∈F

aijxij (1)

∑
j∈F

xij = 1 ∀i ∈ N (2)

xij ≤ hj1 ∀i ∈ N, j ∈ F (3)

hj,k+1 ≤ hjk j ∈ F, k ∈ H\{Hmax} (4)

tijxij ≤ tip +M(1− hp1) ∀i ∈ N, j ∈ F, p ∈ F (5)∑
j∈F

cfj hj1 + cv
∑
j∈F

∑
k∈H

hjk ≤ B (6)

λ
∑
i∈N

piaijxij ≤
∑
k∈H

∇λkhjk ∀j ∈ F (7)

xij ∈ {0, 1} ∀i ∈ N, j ∈ F (8)

hjk ∈ {0, 1} ∀j ∈ F, k ∈ H (9)
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Objective function (1) maximizes the total participation level of clients. Constraint (2) stipulates that each

region is served by one and only one facility (optimal choice). Constraint (3) guarantees that an allocation is

only possible to open facilities. Moreover, constraint (4) ensures that hjk is a non-increasing function of k. The

allocation of clients to the nearest open facility is guaranteed using equation (5). In this inequality constraint,

M is a sufficiently large number. Constraint (6) is the budget constraint in which the total investment is shown

as the sum of fixed establishment costs and the variable cost to add servers. Constraint (7) ensures that the

number of clients referring to an open facility with k servers should be below the capacity of the facility to

satisfy the maximum waiting time constraint. Finally, the set of constraints (8-9) are integrality constraints on

x and h variables.

The proposed mathematical model is a mixed-integer programming model for which finding optimal solutions

needs extended times if the problem size exceeds a certain threshold. That is why we propose an efficient heuristic

to find near-optimal solutions quickly.

4 Solution procedure

Numerical experiments clearly show that exact algorithms are handicapped to solve instances with a rather large

number of potential nodes in reasonable times. Hence, we propose an efficient variable neighborhood search in

this paper. One may argue that since location problem is a strategic problem, there is not enough justification

for using a non-exact method. However, the time to solve the problem to optimality grows exponentially which

makes solving real-world problems almost impossible even in extended periods of time. Moreover, the problem

discussed in this paper is applicable to cases such as mobile clinics where facilities are dynamic during the

planning period (e.g. a day) which means that solutions should be found quickly. The benefit of using a

heuristic is finding a near-optimal solution within a reasonable time. Although there are a myriad of procedures

available to solve this problem, we proposed a VNS algorithm which is fast and has a high potential to avoid

getting stuck in local optima. In this section, we will present an introduction to the classical VNS algorithm

and discuss our developed version of that which has been tailored for PHDNP.

4.1 Variable Neighborhood Search

Variable Neighborhood Search (VNS) has been a popular solution approach since its introduction by Mladenovic

et al. [33]. A clear indication of its popularity is the large number of its published applications such as those in

scheduling (Karimi et al. [34]), vehicle routing (Belhaiza et al. [35]), and facility location (Davari et al. [36]).

A VNS performs based on three assumptions (please note that the notations in this section are independent

from those in section 3):

• A local optimum found by neighborhood structure Ni is not necessarily optimum for another Nj

• In many cases, the local optima of several neighborhood structures are close to each other

• When a local optimum is optimum with respect to all neighborhood structures, it is called a global

optimum

The skewed VNS is a variant of VNS which can outperform the traditional one in many instances. In a SVNS,

a similar approach to simulated annealing is pursued by accepting worse solutions with a certain probability.
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In order to equip the classical VNS with the ability of exploring farther areas of solution space, solutions with

worse fitness values which are good enough are accepted, provided that they are far enough from the current

solution. In other words, in SVNS, the fitness of a new solution s′′ is found as f(s′′)− αρ(s, s′′) where ρ is the

distance function which can be defined as the hamming or euclidean distance between solutions or any other

rational distance function by the user. The pseudo-code of SVNS is given below.

Initialization . Define a set of neighborhood structures Nk(k = 1, 2, ..., kmax), initialize a solution s, set

s∗ ← s and f∗ ← f(s).

Repeat the following steps until the stopping criteria are met:

1. Set k = 1

2. Repeat the following steps until k = kmax:

(a) Shaking Generate a solution s′ from the kth neighborhood structure of s.

(b) Local Search Using the local search procedure, try to improve s′ and denote the improved solution

as s′′

(c) Improvement Checking If f(s′′) < f∗,set f∗ ← f(s′′)

(d) Move or not If f(s′′ − αρ(s′, s′′)) < f(s), set s← s′′; otherwise set k ← k + 1

In the proposed SVNS, we have used two ρ functions, namely the hamming distance and the modified euclidean

distance. The hamming distance dHam of two solutions is simply the number of different bits between two

solutions. Moreover, we propose a modified euclidean distance which is defined as follows. Assuming S1 as the

set of opened facilities in the first solution and S2 as the set of opened facilities in the second, the modified

euclidean distance is defined as follows:

dMEuc(S1, S2) = κ

∑
Xi∈S1\S2

∑
Xj∈S2\S1

d(Xi, Xj)

|S1\S2| |S2\S1|
(10)

in which Xi is the set of facilities opened in the ith solution, d is the euclidean distance measure between two

locations on the plane, κ is the scaling factor, and |.| is the cardinality of a set. In other words, our proposed

measure finds the average distance between the uncommon located facilities of the two solutions.

4.2 Solution Representation

Solution representation plays a pivotal role in success of any heuristic method including VNS. The structure

we have used in this paper represents a solution as a string of numbers. Assuming m population zones and n

potential facilities, the representation consists of l ≤ n elements each containing an integer number between

1 and n and showing the index of the facility located. Needless to say, the values in a solution should be

non-duplicate. For instance, a feasible solution is [1, 4, 5] which represents a solution in which three facilities

are located at nodes 1, 4, and 5. As the problem is solved for the optimal-choice where each zone is allocated

to its nearest facility, knowing the facilities located, the allocation scheme and the number of servers in each

facility are easily determined.

7



4.3 Initialization

Needless to say, the initialization procedure is another vital element of any heuristic algorithm. In our proposed

SVNS, we employed two distinct procedures to initialize the solutions. While in the first one, locations are

generated randomly, the second one employs a roulette-wheel selection module to generate initial locations. To

this end, assuming m population zones, both x and y planes are discretised into a number of identically-sized

areas u. Then, each of the u2 zones is given a value which equals the sum of the demands in that specific area.

Then, using a roulette-wheel selection procedure, facilities are located in these zones. Figure 2 depicts how this

procedure works for one of our problems with a uniform distribution of nodes, m=1000 where crosses show the

location of facilities. In the following sections of the paper, the two initialization algorithms will be mentioned

as RND for the random initialization and RWS for the roulette-wheel selection respectively.

Insert Figure 2 around here

4.4 Neighborhood search

The set of neighborhoods used for shaking is at the heart of the VNS. Each neighborhood should strike a proper

balance between perturbing the incumbent solution and retaining the good parts of the incumbent solution [37].

Therefore, search operators should be selected meticulously to equip the algorithm with the ability of searching

the space efficiently. The neighborhood search structures employed in this paper are explained in the following

sections.

4.4.1 addFacility operator

This operator adds a random number of new facilities to the list of opened facilities and updates the assignment

vector based on the new set of facilities. Assuming l < n facilities open, the number of facilities to be added

should be in the range [1, n − l] to keep the solution feasible. However, if n facilities are located, this move is

excluded from the list of moves in that iteration.

4.4.2 removeFacility operator

This operator deals with removing a random number of facilities from the list of open facilities and updating

the assignment vector based on the new set of facilities. Assuming l facilities open, the number of facilities to

remove should be in the range [1, l − 1] to keep the solution feasible.

4.4.3 swapFacility operator

This operator is to contribute to the algorithm by removing one of the facilities from the list of facilities located

and selecting one of the closed ones to become open.

Figure 3 schematically represents the performance of these three operators on a single solution where mod-

ified bits in a solution are highlighted.

Insert Figure 3 around here
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In any well-designed heuristic, there should be a balance between two strategies, namely diversification

and intensification. In simple terms, diversification deals with exploration of the search space and intensi-

fication refers to exploitation of the current solution. In our procedure, the addFacility and removeFacility

operators could be regarded as moves which diversify the solutions and the swapFacility is the operator used

for intensification. Hence, addFacility, and removeFacility are used as shaking mechanisms respectively and

swapFacility is the local search mechanism. The initialization procedure is also run if the procedure fail to

improve the solution in a certain number of iterations.

4.5 Stopping Criteria

Our experiments showed that running the procedure for more than 60 seconds rarely results in an improvement

in the solution quality. Hence, the proposed procedure stops after running for 60 seconds regardless of the

problem size and parameters.

5 Numerical experiments

In order to assess the performance of the proposed algorithm, a set of 54 hypothetical test problems with different

characteristics was developed. For each one of the 54 hypothetical test problems, ten random replications

were generated. Hence in total 540 experiments were conducted. These 54 test problems were generated for

m = 100, 150, 250; n = 25, 50, 75; and B = bn5 c ∗ δ for δ = 3000, 4000 and 5000. For each of these 27 possible

combinations, node coordinates were generated following a uniform distribution and also a normal distribution.

In all of the instances, the x-coordinate and the y-coordinate values were generated in a way that nodes get a

value in the range [0, 30]. The travel times between nodes are assumed to be equal to the distance (i.e, the unit

cost of traveling equals to 1) and found using the euclidean measure. Fixed costs to establish facilities were

generated using a uniform distribution between 1000 and 5000.

5.1 Parameter tuning

In order to fine-tune the proposed SVNS, we have done statistical analysis (Analysis of Variance, i.e., ANOVA)

on the effects of three possibly effective parameters, namely the value of α (α1 = 0.01, α2 = 0.03, α3 = 0.05), the

initialization procedure ω (ω1: RND and ω2: RWS), and also the ρ function (ρ1: hamming and ρ2: euclidean).

Table 1 demonstrates the results of the ANOVA test and also the significance of all the three parameters in the

performance of the algorithm where × shows the interaction between parameters. In this table, the rows con-

taining a significant parameter are highlighted in gray. Results show that all the three parameters tested have

considerable effects on the algorithm performance. Besides, the interaction of the initialization method and the

value of α is significant at the 5% level. In order to find the optimal values of these parameters, ten runs of each

of the twelve possible settings for the problem with normal distribution of nodes and (m,n,Qmax) = (250, 75, 20)

were conducted. The Box-Whisker diagram of the results of various combinations is presented in Figure 4 where

settings are shown on the horizontal axis as (α, ω, ρ). The results suggests that α = 0.01, initializing solutions

using the RWS methodology and using the eclidean distance as the distance measure of two solutions as the

best parameter setting.
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Insert Figure 4 around here

Table 1: ANOVA results

Source Sum Sq. d.f. Mean Sq. F Prob ≥ F

ω 660.08 1 660.08 5.11 0.0296

ρ 2523 1 2523 19.54 0.0001

α 7626.12 2 3813.06 29.54 0

ω × ρ 0.75 1 0.75 0.01 0.9396

ω × α 1424.29 2 712.15 5.52 0.0079

ρ× α 465.12 2 232.56 1.8 0.1789

Error 4905.63 38 129.1

6 Results and discussion

In this section, we present the results of the computational experiments for a set of test problems. The proposed

SVNS was coded in C++ language, compiled using Visual Studio 2012 and implemented on a laptop with Intel

Core 2 Duo 2.33 GHz processor with 4 GB RAM. Moreover, the exact results were obtained using IBM ILOG

CPLEX Studio 12.5.

Table 2 and Table 3 report the performance of our proposed SVNS for normal and uniform data sets

respectively. In these tables, column 5 shows the value of δ which represents the budget parameter. Moreover,

the sixth and seventh columns show the optimal value obtained using CPLEX and the required time. The

columns 8-10 show the worst, the average and the best fitnesses found in ten runs using SVNS respectively.

Besides, column 11 is the run time of the proposed SVNS which is 60 seconds for all instances regardless of

the problem characteristics. Moreover, the last three columns show the Relative Percentage Deviation (RPD)

of the worst, the average and the best performance of the algorithm. Please note that RPD is found using the

below formulation:

RPD =
ZCPLEX − ZBEST

ZCPLEX
(11)

where ZBEST and ZCPLEX are the best value found using the proposed VNS and the optimal values found

using CPLEX respectively. Please note that ZCPLEX can be the optimal value of the problem or an upper

bound for those problems for which CPLEX was unable to reach optimality in 6000 seconds.

For those instances where the proposed SVNS was able to reach the optimal fitness in all the ten runs, the

whole row is highlighted as gray. Results show that such rows are more common for those instances with a

normal distribution of nodes. Such an observation makes sense as in the Normal data set, demand nodes tend

to be located in the center, so solutions are most robust to change. In addition, in some instances, CPLEX

was unable to reach the optimal solution in 6000 seconds and we have reported the gap between the output

of the proposed SVNS and that upper bound. For those rows for which CPLEX was unable to reach optimal

solution in more than 6000 seconds, an asterisk has been added as a superscript to the index of the problem in

the respective row. Another interesting finding is the fact that the value of n affects the runtime much more

than the value of m. Knowing that, we divide the problems in three groups as small scale (n = 25), medium
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scale (n = 50) and large scale (n = 75). Figure 5 depicts the performance of the algorithm on these three

subcategories of data. Results show that on average, the error of the proposed procedure is 0.36% which is a

clear indication of its good performance.

Another analysis is about the role of the budget parameter δ on the solution and how it affects the quality of

solutions found by the proposed heuristic. Results show that although there is not a strong correlation between

the budget available and the quality of solutions found by VNS, in more than 70% of cases (13 out of 18), the

quality of the best solution found is worse for those cases with a higher budget (a higher value for the parameter

δ). On the other hand, the time to solve test problems to optimality is normally higher or those cases with a

higher value for the budget parameter. This can be attributed to the fact that an increased budget extends the

feasible region which means a larger region to explore for both the algorithms.

Insert Figure 5 around here

Results clearly show that the proposed SVNS achieves results with an error up to 1.80%. Furthermore,

in 50% of test instances, SVNS could reach the optimal solution in at least one of the runs and in almost 20%

of the cases, it gets the optimal results in all the ten runs. Therefore, the proposed algorithm is capable in

reaching high quality solutions in considerably less time than CPLEX.

7 Conclusion and future research

In this paper, we have addressed the problem of preventive health care network design. We developed an efficient

SVNS to solve this problem and examined its performance on some randomly generated data. The approach

proposed in this paper can be used in designing a preventive health care network from scratch or improving

the status-quo for an already established network. However, this calls for having a data warehouse comprising

the population of each residential area, travel times, and other factors as well. The set of candidate locations

can be defined using various techniques prior to being used in the proposed method as a function of various

social, political, and economical issues, using qualitative/quantitative methods. Case studies similar to ours

were carried out in Canada (such as Gu et al. [12]) and other countries (interested readers are referred to these

reports for further information).

We believe that future research stems from considering probabilistic choice environment, assuming uncertain

travel times or developing other heuristics. Another appealing future research is to assume a case in which pre-

ventive facilities are dynamic, like immunization programs. Then, the problem is to locate facilities dynamically

and to decide on the time the locations should be changed. As another possible extension to the PHNFDP

problem, other qualitative factors such as quality of the health care facility, availability of amenities near the

facility etc. which also influence the attractiveness of the health care facility besides the proximity, can also

be incorporated while modeling participation to preventive programs. A possible way of such an extension is

modeling participation by means of fuzzy numbers rather than crisp numbers and utilize fuzzy mathematical

programming approaches instead of traditional mathematical programming. As another extension, one can

conduct empirical analysis into using other solution methods such as different heuristics such as evolutionary

algorithms or simulation-based optimization procedures in case of uncertainty in the problem parameters. Last

but not least is the possibility of integrating preventive, screening and treatment decisions. In most of the

11
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studies to date, these three are assumed to be independent. However, in reality, these three have an impact on

a patient’s outcomes such as quality adjusted life span and total cost of health care.

Acknowledgement

This work was supported by The Scientific and Technological Research Council of Turkey under grant TUBITAK-

2216.

References

[1] Michael V. Maciosek, Ashley B. Coffield, Thomas J. Flottemesch, Nichol M. Edwards, and Leif I. Solberg.

Greater use of preventive services in us health care could save lives at little or no cost. Health Affairs,

29(9):1656–1660, 2010.

[2] Centers for Disease Control, Prevention (CDC), et al. Hiv prevention in the united states: At a critical

crossroads. Retrieved February, 22:2012, 2009.

[3] Barbara A Ormond, Brenda C Spillman, Timothy A Waidmann, Kyle J Caswell, and Bogdan Tereshchenko.

Potential national and state medical care savings from primary disease prevention. American Journal of

Public Health, 101(1):157–164, 2011.

[4] Erik Biørn and Geir Godager. Does quality influence choice of general practitioner? an analysis of matched

doctor–patient panel data. Economic Modelling, 27(4):842–853, 2010.

[5] Hugh S Gravelle, Carol Propper, and Rita Santos. Does quality affect patients? choice of doctor? evidence

from the uk. Technical report, CEPR Discussion Papers, 2013.

[6] Ivo Müller, Tom Smith, Steve Mellor, Lawrence Rare, and Blaise Genton. The effect of distance from home

on attendance at a small rural health centre in papua new guinea. International Journal of Epidemiology,

27(5):878–884, 1998.
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Figure 1: The attractiveness on the plane with an exponential attractiveness function
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Figure 2: A sample of the initialization procedure

Figure 3: The schematic view of the neighborhood search structures
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Figure 4: Parameter Tuning
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Figure 5: Comparing the performance of the algorithms for different instances based on the problem size

19


