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Abstract

The total value of domestic market capitalization of the Mexican Stock
Exchange was calculated at 520 billion of dollars by the end of November
2013. To manage this system and make optimum capital investments,
its dynamics needs to be predicted. However, randomness within the
stock indexes makes forecasting a difficult task. To address this issue,
in this work, trends and fractality were studied using GNU − R over
the opening and closing prices indexes over the past 23 years. Returns,
Kernel density estimation, autocorrelation function and R/S analysis and
the Hurst exponent were used in this research. As a result, it was found
that the Kernel estimation density and the autocorrelation function shown
the presence of long-range memory effects. In a first approximation, the
returns of closing prices seems to behave according to a Markovian random
walk with a length of step size given by an alpha-stable random process.
For extreme values, returns decay asymptotically as a power law with a
characteristic exponent approximately equal to 2.5.
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1 Introduction

Financial markets exibit a dynamic behaviour in the form of fluctuations, trends,
and volatility. Market regulations, globalization, changes in the interest rates,
war conflicts, new technologies, social movements, news and housing are only
a small sample of factors affecting the chaotic and complex structure of the
financial markets [1–13].

To assess all these interacting elements within a coherent theoretical eco-
nomic framework to create a prediction model is, at least for now, a nearly
impossible task. The behaviour of an economic system integrates a collec-
tion of emerging properties of chaotic and complex systems [14–21]. From a
deteministic approach, the effort requiered to model and characterize a such
system might be monumental. Complex correlations in the fluctuations of fi-
nancial and economic indices [22–25], the self-organization phenomena in market
crashes [26–29], the sudden high growth or sharp fall in the stock market during
periods of apparent stability [30–33], are only a few examples of situations that
can be considered difficult to understand or represent mathematically.

On one hand, from the stochastic-deterministic point of view of the physical
statistics [34–39], the dynamic variation of prices in a financial market can be
considered as a result of an enormous amount of interacting elements. For
instance, stock prices are the result of multiple increments and decrements that
result from a feedback response of every action defining the composition of an
index, which result, at the same time, from decisions and flows of information
that change from one moment to the next [40–44]. For this reason, a detailed
description of each trajectory, within the structure of a system, would be almost
imposible and futile: the series of events that gave birth to a specific trajectory
might not repeat, and a detailed description would not have a predictive utility.

On the other hand, by considering axiomatic that we are unable to reach a
deterministic understanding of a system as whole, a statistical approach might
be useful tu describe the uncertainty involved. At least we would be able to
gain some insight about the expected behaviour, size of fluctuations, or the
corresponding probabilities of rare events. This, with the final intention of
doing forecasts on the process future behaviour. The statistical description may
even predict in an essentially deterministic way, such as the diffusion equation
which describe the density of particles, each one performing a random walk in
a microscopic scale [45–47].

According to web portal of Mexican Stock Exchange, “The Prices and Quota-
tions Index (MEXBOL) is the Mexican Markets main indicator, it expresses the
stock market return according to the prices variations of a balanced, weighted
and representative Constituent List of the equities listed in the Mexican Stock
Exchange, in accordance to best practices internationally applied” [48]. The
daily values of the MEXBOL or IPC Index form a set of variables: The Open-
ing Price, the Closing Price, the High an Low values, the Adjusted Price and
the transaction Volume. The Fig. 1 show the variation in time of the closing
price {Yn, n = 0, 1, 2, · · · , N}, N = 5719.
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Figure 1: MEXBOL. Closing price of the IPC Index from 1991, November 8 to
2014, September 5. Coarse-grained approach: Despite of presence of at least
three strong financial crisis (see Fig. 10 in section conclusions), the closing price,
{Yn, n = 0, 1, 2, · · · , N}, N = 5719, show an ascendant “convex” trend until
about July of 2007; from March of 2009 initiates a “concave” sustained growth.
The economic “interregnum” between July/2007 and March/2009 marks the
transition between the two regimes.

2 Methodology

To perform this research, 23 years of observations from MEXBOL were used,
from November the 8th, 1991, to September the 5th, 2014. This information
is publicly available in several websites, see for instance the historical prices of
IPC(ˆMXX) or IPC Index-Mexico in [49].

This paper presents an assessment of the dynamic behaviour of closing and
opening princes of the IPC Index from three different perspectives: a) Anal-
ysis of the stochastic properties of the random behaviour and fluctuations of
returns of closing price. b) Estimation of the degree of fractality and long term
memory through the rescaled range or R/S analysis and the Hurst exponent.
c) Empirical autocorrelation function analysis.

All the analysis and the numeric and visual calculations of the IPC Index
properties were done using the GNU-R free software environment within an
Ubuntu-Linux 14.04 work enviroment.

2.1 Closing prices

The return values is a regular transformation used in economic data in order
to standardize and remove the trending. Thus, a simple and fast way to de-
trending the closing price {Yn, n = 0, 1, 2, · · · , N} serie, Fig. 1, is given by the
transformation

rn =
Yn
Yn−1

, n = 1, 2, · · · , N. (1)
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The mean value of this new series is 〈r〉 = 1.000729, i.e., the daily closing
price has a rate of return average of 〈∆Y/Y 〉 = 〈r〉 − 1 = 7.29 per 1000 units.
The corresponding standard deviation is 〈〈r〉〉 = 0.01548542. A comparison
between normalized logarithms of returns (mean zero and variance 1) with the
profile created by a Gaussian white noise, also with mean zero and variance 1,
is shown in Fig. 2.
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Figure 2: Top: Normalized logarithmic returns of the closing price {Yn} serie
for the IPC Index of Fig. 1. Bottom: The corresponding histogram for the
normalized logarithmic returns of the closing price for the IPC Index. The
quantiles corresponding to the area under the curve (0, 25%, 50%, 75%, 100%)
are (−9.30,−0.49, 0.01, 0.50, 7.82), approximately.

According to Figs. 2 and 3, unlike the normalized Gaussian white noise, the
distribution of returns or logarithmic returns is more narrower with a higher
concentration of values in ±1σ from the mean but with a tail somewhat heavier.

From a sample or time serie {Xi, i = 1, 2, · · · , N}, an empirical probability
density distribution P̂ (x) is given by the superposition of normalizated kernels
through the Kernel Density Estimator or KDE approximation [50]

P̂ (x) =
1

Nh

N∑
i=1

K

(
x−Xi

h

)
(2)

where h is the bandwidth or scale parameter and K(·) is a normalizated kernel
function.

Using the library kedd in GNU-R [51], an empirical probability density distri-
butions KDE-based with an optimal bandwidth for both, normalized Gaussian
white noise and normalized logarithmic returns, are obtained. In the Fig. 4
the sharpe fall of log(r) respect the normalized Gaussian white noise becomes
evident.
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Figure 3: Top: Empirical time serie for normalized Gaussian white
noise. Bottom: The corresponding histogram for the normalized Gaussian
white noise values with typical quantiles (−3.83,−0.66,−0.01, 0.66, 3.47) for
(0, 25%, 50%, 75%, 100%) area under the curve.
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Figure 4: Top: Kernels estimation density Kr(x) (continuous line) and Kz(x)
(dashed line) for normalized, logarithmic returns and Gaussian white noise,
respectively, with bandwidth h = 0.4044283, and an Asymptotic Mean Inte-
grated Squared Error (AMISE) of ≈ 0.0003. Bottom: Difference ∆K(x) =
Kr(x) − Kz(x) between both densities. Observe that, roughly when x ∈
[−2.71,−0.71]∪[0.81, 2.77],∆K(x) < 0 and the area below the Gaussian curve is
greatest that the area below the curve of log(r) values. However, in the central
region x ∈ [−0.71, 0.81],∆K(x) > 0 and the log(r) values are more concentrated
respect the Gaussian values. Finally, in the tails x ∈ [−6.0,−2.71] ∪ [2.77, 6.0]
the distribution of the log(r) is more heavy that the Gaussian white noise.

5



From the Fig. 4, for values approximately in 0.75σ around the mean, the
distribution of log(r) is more sharply. On the other hand, approximately when
| x |> 2.7σ heavy tails emerge and this indicates the presence of a coarse-
grained power law underlying the dynamics of return fluctuations, very similar
to the fluctuations in random variables with an α − stable Lévy distributions
Sα(x;β, γ, δ) characterized by α, β, γ and δ, the stability, skewness, scale, and
location parameters, respectively [52]. When x� 0, the density probability Sα
decays asymptotically as [53]

f(x) ∼ α(1 + β)Cαx
−(1+α) (3)

with Cα = Γ(α)[π sin(απ/2)]−1.
A comment : Assuming that fr(x) is the density probability function of the

closing prices {Yn}, the transformation {rn} → {Rn = ln(rn)}, n = 1, 2, · · · , N ,
define a density probability for the logarithmic returns fR(x) showing an asymp-
totic fall with a slightly higher heavy-tail such that fR(x) = fr(r(R))eR > fr(x).

2.2 Opening and Closing prices

To concentrate on analyzing the financial noise, another way to detrending
a time series is to obtain the first differences or jumps to nearest neighbors.
So some examples of this transformation are: the first differences within the
closing prices serie {Wn = Yn − Yn−1}, or the first differences delayed one day
between the opening and closing price series {Ln = Xn − Yn−1}, both with
n = 1, 2, · · · , N .

A graph with the differences {Ln} between the opening prices of (n)-th day
and the (n − 1)-th closing price of the day before can be observed in Fig. 5
in top. Here, much more than the logarithmic returns series the appearance of
extreme events is more evident. The mean and standar deviation values for this
serie are 〈L〉 ≈ 0.70 and 〈〈L〉〉 ≈ 19.29, respectively.

A special case of a transformation by differences are the first differences day
by day between the closing and opening prices serie {Dn = Yn − Xn, n =
0, 1, 2, · · · , N}. Particularly, this serie shows a symmetrical pattern around the
mean value 〈D〉 ≈ 7.14 with a standard deviation of 〈〈D〉〉 ≈ 242. Also, although
without apparent trend shows a high volatility increasing in time, see Fig. 5 in
bottom.

Unlike a Gaussian white noise, one of the main features of α−stable distri-
bution is the existence of long-term correlations. A measure of the intensity of
this memory effect and the fractal behavior type of fluctuations in a stochastic
process is given by the value of the Hurst exponent. The Hurst exponent can be
obtained by the rescaled range analysis, or R/S analysis, a standard technique
to measure the fractality or the persistence in time of correlations in time series.
In the next section, this technique is applied to the different series presented so
far.
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Figure 5: Top: The normalized differences {Ln = Xn − Yn−1, n = 1, 2, · · · , N}
between the opening price in the (n)-th day with the closing price in the
(n − 1)-th day. The quantiles (0%, 25%, 50%, 75%, 100%) for this serie are
(−39.7,−0.06,−0.04, 0.06, 36) approximately. Bottom: The normalized differ-
ences {Dn = Yn−Xn, n = 0, 1, 2, · · · , N} between the closing and opening prices
for the IPC Index in the n-th day. The quantiles (0%, 25%, 50%, 75%, 100%) for
the normalized differences {Dn} are (−8.08,−0.26,−0.029, 0.29, 8.60) approxi-
mately.

2.3 Hurst exponent

The Hurst exponent, a parameter introduced in 1951 by the British hydrologist
Harold Edwin Hurst to study the Nile river risings, is an instrument used to
measure at different scales the mean intensity of the fluctuations of a time
series and its tendency to form clusters of persistence. For construction, the
Hurst exponent (henceforth H parameter) is a real number between 0 and 1. If
0.5 < H ≤ 1 it is said that the mean tendency of the series is persistent (either
persistently upwards or downwards). If 0 ≤ H < 0.5 it is said that the series
is anti-persistent (it goes from upwards to downwards or vice-versa). Finally,
when H = 0.5 we can say that in average there is no persistence, and then it is a
memory-less process: the values of the process are completely uncorrelated and
the behaviour of the series is the one observed in a Gaussian white noise random
process or like the uncorrelated incremets in the Brownian motion process [54].

The strong trend observed in the closing prices of Fig. 1 is the result of
the persistence of high levels of correlation in time. In principle, the Hurst
exponentH allows to differentiate between series of Gaussian white noise created
by a series of independent random variables as the increments of an ordinary
Brownian motion, i.e., between a stochastic processes with a future completely
determined by the present (current state) and a more complex movement where
the quality associated with the estimation of future values depends, in principle,
of all previous observations.
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2.4 Rescaled range analysis

In the R/S analysis the time series {Xn, n = 1, 2, · · · , N} is divided into d
sub-series, each of approximate size m = N/d. A heuristic form to take the
partition of the serie is in power series of two, in this case the values of the
index d and m are, respectively, d = 1, 2, 4, · · · , 2K , for some integer K, and
m = N/1, N/2, N/4, · · · , N/2K . For each d sub-series find the mean E` and
the standard deviation S`, ` = 1, 2, · · · , d. Data are normalized by substracting

the mean of each sub-serie. With the cumulative deviations Yj =
m∑
i=1

(Xi −El),

j = 1, 2, · · · ,m; l = 1, 2, · · · , d the range R` = max(Yj) −min(Yj) is obtained
and it is rescaled by the standar deviation R`/S`, ` = 1, 2, · · · , d. The mean of

rescaled range for each partition, in the time scale d, is 〈R/S〉d = (1/d)
∑d
`=1

R`/S`. Repeat the same with other partition for another d value. Identifying
d ≡ t, Hurst found that 〈R/S〉t scales by power-law as time increases, i. e.,
〈R/S〉t = ctH where c is a constant. In practice H can be estimated as the
slope of a log/log plot of 〈R/S〉t versus length t.

2.5 Autocorrelation analysis

It is said to a stochastic process is weakly stationary or wide-sense stationary if
the function of mean is constant in time and the autocovariance function γ(t1, t2)
only depends on the elapsed time | t2 − t1 | [55]. Assuming the foregoing, the
empirical autocovariance function for a finite sample of N values of a wide-sense
stationary time series {Xt, t = 1, 2, · · · , N} can be estimated by [56]

γ̂(s, τ) ≡ γ̂(h) =
1

N

N−h∑
t=1

(Xt+h −X)(Xt −X) (4)

with h =| τ − s | and X the common empirical mean. And the empirical
autocorrelation function is

ρ̂(h) =
γ̂(h)

γ̂(0)
, −1 ≤ ρ(h) ≤ 1. (5)

with γ̂(0) = V ar(X) the variance of the time serie {Xt, t = 1, 2, · · · , N}.
The autocorrelation function for the returns dies quickly after a lag of 1 into

a pattern in appearance very similar to a Gaussian white noise, Fig. 8.

The progressive thinning of the autocorrelation function (an biased estima-
tor) for a Gaussian white noise shown in Fig. 8 is a border effect due to the scal-
ing factor 1/n in (5). In fact for a sample Gaussian white noise the distribution
of the autocorrelation function ρ(h) for a maximum h value is Gaussian approxi-
mately with mean 〈ρ〉 = 0 and standar deviation decaying as 〈〈ρ〉〉 = n−1/2 [56].

Nevertheless, unlike the Gaussian white noise, the fluctuations of the auto-
correlation function for the returns displays a strong correlation to first neigh-
bors. Moreover the maximum value in the autocorrelation function for the

8



−0.025

0.000

0.025

0 1000 2000 3000 4000 5000
h

ρ(
h)

−0.05

0.00

0.05

0.10

0 1000 2000 3000 4000 5000
h

ρ(
h)

Figure 6: The autocorrelation function (5) as a function of lag h. Top: The
typical profile of ρ(h) for a sample of Gaussian White noise; the mean and
the standar deviation are 〈ρ〉 = −8.7 × 10−5 and 〈〈ρ〉〉 = 0.0093, respectively.
Bottom: The autocorrelation function for the normalized returns of closing price
{rn}, mean value 〈ρ〉 = −8.9× 10−5 and standar deviation 〈〈ρ〉〉 = 0.0138. The
autocorrelation function presents a sharp fall for h > 1.

returns of any order occurs for a lag of h = 1. In other words, the transition
of the returns {rn} to a symmetrical non Gaussian autocorrelation function for
h > 1, Fig. 8 in bottom, suggest as a first approximation the following simple
Markovian random walk for the returns of closing prices

rt+1 = rt + ξt (6)

where the noise ξt is an α−stable random noise whose distribution has a stability
parameter α < 2 (non Gaussian), see Table 1.

Additionally the behavior of the autcorrelation function (5) for the first
differences of {Ln = Xn − Yn−1} and {Dn = Yn − Xn} series were estimated.
The landscape of the autocorrelation function for the first differences {Ln} show
correlations more complex at different scales, Fig. 7 on the left side. On the
other hand, the profile of the autocorrelation function for the differences {Dn}
are correlated beyond the first neighbors, Fig. 7 on the right side.

3 Results

The raw data used for this paper was the opening and closing prices of the
MEXBOL Index in the period Nov/08/1991-Sept/05/2014.

The Table 1 displays the optimal values of parameter (α, β, γ, δ) for the
empirical distributions α− stable of the returns r and logarithmic returns R of
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Figure 7: The autocorrelation function (5) as a function of the lag h. Left: For
the forward differences between the opening and closing prices {Ln = Xn −
Yn−1}, mean value 〈ρ〉 = −8.7 × 10−5 and standar deviation 〈〈ρ〉〉 = 0.0089.
Right: For the differences day by day {Dn = Yn − Xn}, mean value 〈ρ〉 =
−8.7× 10−5 and standar deviation 〈〈ρ〉〉 = 0.0095.

closing price, respectively, obtained with the function stableFit of the library
fBasics, implemented by GNU-R.

Table 1: Optimal parameters for α−stable Lévy distribution in returns
Time serie α β γ δ

rn = Yn/Yn−1 1.5870 −0.014 0.5148293113 −0.0006526977
Rn = ln(rn) 1.548 −0.041 0.5144696 0.0105618

With the values of Table 1 and the equation (3) the asymptotic decay in power
law for the normalized returns {rn} and the logarithmic returns {Rn = ln(rn)}
are

fr(x) =
C1

x1+αr
(7)

fR(x) =
C2

x1+αR

with C1 = 0.7354585, αr = 1.5870 and C2 = 0.6442726, αR = 1.548. For com-
parison, in [57–60] have reported that an empirical distribution for the extreme
values of the returns is a power-law type P (| r |> x) ∼ x−ζr , with ζr ≈ 3.

Given a set of parameters (α, β, γ, δ), using the library stabledist [53] the
corresponding numerical values of an α−stable distribution are obtained. The
differences between the α−stable distributions for the normalized returns and
logarithmics returns of time serie of closing prices {Yn, n = 0, 1, 2, · · · , N} are
presented inf Fig. 8.
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Figure 8: Top: Differences between the empirical α−stable distributions: ∆ =
PR(x)−Pr(x). Bottom: Differences for the power laws decay ∆ = fR(x)−fr(x),
equation (7).

The Table 2 shows the optimal α−stable parameters for the time series
{Ln = Xn − Yn−1} and {Dn = Yn −Xn}.

Table 2: Optimal parameters for α−stable Lévy distribution
First differences α β γ δ
Ln = Xn − Yn−1 0.757 0.097 0.05525003 −0.03788360
Dn = Yn −Xn 1.031 0.009 0.27469413 −0.03035873

In the Fig. 9 at the left the empirical α−stable density probability, correspond-
ing to the parameters of the Table 2, are shown. For comparison, a profile
of Gaussian white noise, with α−stable parameters (α, β, γ, δ) = (2, 0, 1, 0), is
included too.

Hurst exponent for the different analized time series were estimated using
different time scales, for example, daily return, return each 2 days and so on.

In the Table 3 the different values of hurst exponent calculated through R/S
analysis for all time series analyzed are shown.
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Table 3: Hurst exponent in the IPC Index

Data H
Opening prices Xn 1.018647
Closing prices Yn 1.018856
Logarithmic returns RX = log(Xn/Xn−1) 0.532947
Logarithmic returns RY = log(Yn/Yn−1) 0.5318121
Differences within ∆Yn = Yn − Yn−1 0.5284645
Differences between Dn = Yn −Xn 0.421346
Forward differences Ln = Xn − Yn−1 0.6051881
Gaussian white noise Zn 0.521465

The Fig. 9 at the right show the asymptotic behavior of Hurst exponent
when n→∞ for the R/S analysis. When the time scale increases the autocor-
relation also increases and the Hurst exponent approaches one, i.e., the effects
of long-term memory are amplified.
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Figure 9: Left: α−stable distribution in the forward differences {Ln = Xn −
Yn−1}, sharpest curve, in the differences day by day {Dn = Yn − Xn}, the
dashed curve, and a Gaussian white noise {Zn}, most flattened curve. Rigth:
Asymptotic limit in time for Hurst exponent of the returns {rn = Yn/Yn−1} for
the closing prices. On the horizontal axis the scale of time or lag h is the size
of partition in the R/S analysis, ranging from 1 to 4000. When the scale of
observation increases the correlation within the data and the trend is present.

A summary of some observed characteristics in IPC closing prices time series
are shown in Fig. 10. In this graph it is possible identified at least three
“bubble zones” corresponding each one of them with a specific financial crash,
“The effect Tequila” of 1994, the Asian financial crisis from 1997 to 1998 and
the recent Global financial crisis of 2008. The big fluctuations, argues, is an
indicative of significant correlations effects of long-term, corroborated by the
form of autocorrelation function between the opening price in the n-th day and
the closing price in the (n− 1)-th day, the Ln = Xn − Yn−1 differences.
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Figure 10: MEXBOL. Figs. at the left: A zoomed of the three turbulent mo-
ments of closing price {Yn} listed in Fig. 1. Figs. at the right: The correspond-
ing logarithmic returns rn = log(Yn/Yn−1). Top: The effect Tequila of 1994. In
middle: Asian crisis. Bottom: Global crisis.
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4 Conclusions

Heavy tails in the series of the returns of opening or closing prices and in the
delayed first differences between opening and closing prices, clearly indicates a
non diffusive fluctuations dynamics or a non Gaussian behavior for MEXBOL
IPC Index. At the same time, this allows the presence of long term correlations
and memory effects not compatible with the concept of an efficent market. In
other words, return values does not represent a simple random walk where jumps
are independent with a finite variance.

Despite returns {rn} and the logarithmic returns {Rn} of closing or open-
ing prices, even the differences {Ln}, exhibit a symmetric, stationary and ho-
moscedastic behavior (Figs. 2 and 5 in top), the series of differences {Dn} (Fig.
5 in bottom) show a growing volatility over time. This sistematic increment of
fluctuations size, and the average difference between closing and opening prices
〈D〉 = 7.14 create a clear large scale positive trend in the {Yn} serie, see the
Fig. 1. As before, even though the average margin of closing prices is small in
a daily scale, with a value slightly bigger than 1, 〈∆Y/Y 〉 = 7.29/104, it is big
enough to create a global growth of closing prices.

Although the Hurst exponent for the return of closing prices in the MEXBOL
Index given by the R/S are very similar and close to 1/2 (an expected value
for Gaussian white noise), the strong difference between the time series of log-
arithmic returns log(r) and an empirical Gaussian white noise, Figs. 2, 3, and
4, results from the presence at different time scales of recurrent large fluctua-
tions in returns {rn} or logarithmic returns log(r), a behavior that captures the
underlying fractal nature of many financial time series.

The IPC Index for closing and opening prices analysis shows an incresing
growth for long time period, it means that the Mexican stock market and the
economic stability is a good option to investment.

In spite of the recurrent crisis in past such as the Tequila effect, Asian crisis
and the recent Global crisis, the results in this research show that the Mexican
economy shown robustness along the past 23 years.
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