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Abstract The aim of this paper is to present the convergence analysis of
a very general class of gradient projection methods for smooth, constrained,
possibly nonconvex, optimization. The key features of these methods are the
Armijo linesearch along a suitable descent direction and the non Euclidean
metric employed to compute the gradient projection. We develop a very general
framework from the point of view of block–coordinate descent methods, which
are useful when the constraints are separable.

Keywords Constrained optimization · gradient projection methods ·
alternating algorithms · nonconvex optimization.

Mathematics Subject Classification (2000) 65K05 · 90C30

1 Introduction

This paper deals with the problem

min
x∈Ω

f(x), (1)

where Ω ⊆ R
n is a closed and convex set and f is a continuously differentiable

function. The aim of this work is to generalize the class of gradient projection
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methods whose basic iteration is given by

x(k+1) = x(k) + λ(k)(y(k) − x(k)), (2)

where y(k) is the Euclidean projection of x(k) − σk∇f(x(k)) onto Ω, i.e.

y(k) = PΩ(x
(k) − σk∇f(x(k))) ≡ arg min

x∈Ω
‖x− x(k) + σk∇f(x(k))‖2, (3)

and σk > 0, λ(k) ∈ (0, 1] control the steplength.
Iteration (2)–(3) is also referred as gradient projection method with linesearch
along the descent direction [5,18], which depends on two parameters λ(k), σk.
Usually, in iteration (2), λ(k) is adaptively computed to ensure the sufficient
decrease of the objective function and, thus, the convergence of the whole
scheme, while σk is a ’free’ parameter which can be chosen in order to improve
the effectiveness of the algorithm (see e.g. [4,12,13,15]).
In our analysis, we extend the convergence results about the gradient projec-
tion method (2)-(3) to the more general case where y(k) is defined as

y(k) = argmin
x∈Ω

h
σ

(k)(x,x(k)) (4)

and hσ is a suitable strictly convex function depending on the array of param-
eters σ ∈ R

q. The choice of hσ can be addressed by taking into account some
features of problem (1). For example, h

σ
(k)(x,x(k)) may represent a local ap-

proximation of f at x(k), or may play the role of barrier for a given constraint
set, forcing the iterates to stay in the interior of it [1–3].
In particular, we present our results in the more general framework of the
block–coordinate methods, which are useful when the constraint set in (1) has
a separable structure, i.e. Ω = Ω1 × . . . Ωm, with Ωi ⊆ R

ni ,
∑m

i=1 ni = n, so
that any x ∈ Ω can be block partitioned as x = (xT

1 , . . . ,x
T
m)T , xi ∈ R

ni .
Such methods are based on the idea of performing successive minimizations
over each block, as in the classical nonlinear Gauss-Seidel method [5]:

x
(k+1)
i ∈ arg min

x∈Ωi

f(x
(k+1)
1 , ...,x

(k+1)
i−1 ,x,x

(k)
i+1, ...,x

(k)
m ). (5)

However, the convergence of this approach is not ensured without quite re-
strictive convexity assumptions (see [5,17]) and, in addition, computing an
exact minimum of f , even if restricted to a single block, can be impractical.
On the other side, inspired by the idea of (5), effective methods able to handle
general nonconvex problems and with global convergence properties can be
designed [7,9,16].
In this paper we further develop the cyclic block gradient projection method
proposed in [7], allowing generalized projections based on non Euclidean dis-
tances. In particular, we propose a method consisting in applying a finite
number of iterations of the form (2)–(4) to each subproblem of type (5) and
we show that any limit point of the generated sequence is stationary without
any convexity assumption. Our general framework includes, but it is not lim-
ited to, several state-of-the-art methods, such as the scaled gradient projection
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method [8], the spectral projected gradient method [6], the cyclic block gradi-
ent projection method [7] and the successive convex approximation algorithm
[19].
The paper is organized as follows: in section 2 we devise the property of the
operator hσ in (4) which allow to reformulate the stationarity condition of
(1) by means of a class of generalized projection operators. We also show that
they can be used to design families of descent directions. Building on this ma-
terial and on the well known properties of the Armijo linesearch procedure, in
section 3 we define a block–coordinate generalized gradient projection method
and we develop the related convergence analysis. Our conclusions are given in
section 4.

2 Generalized gradient projections

In this section we give the definition of a generalized projection operator,
providing some examples of well-known functions belonging to this category.

Definition 1 Let S ⊆ R
q. We define a metric function associated to f any

continuously differentiable function hσ : Ω ×Ω → R such that for any choice
of the parameter σ ∈ S the following properties hold:

(H1) hσ is convex with respect to its first argument, i.e.

hσ(y, z) ≥ hσ(x, z) +∇1hσ(x, z)
T (y − x) ∀x,y, z ∈ Ω (6)

and, for any z ∈ Ω, hσ(·, z) admits a unique minimum point;
(H2) for any point x ∈ Ω and for any feasible direction d ∈ R

n we have

∇1hσ(x,x)
Td = ∇f(x)Td; (7)

(H3) hσ continuously depends on the parameter σ.

We denote by H(f,Ω, S) the set of the metric functions satisfying properties
(H1)–(H3) and, for any hσ ∈ H(f,Ω, S), we define the associated generalized
gradient projection operator p( · ;hσ) : Ω → Ω as

p(x;hσ) = argmin
z∈Ω

hσ(z,x) ∀x ∈ Ω. (8)

Example 1 Properties (6)–(7) are satisfied when the function hσ is defined as

hσ(x,y) = ∇f(y)T (x− y) + dσ(x,y), (9)

where dσ ∈ D(Ω). In these settings we can find:

a) the standard Euclidean projection p(x;hσ) = PΩ(x − σ∇f(x)), obtained
by choosing

dσ(x,y) =
1

2σ
‖x− y‖2, σ > 0; (10)
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b) the scaled Euclidean projection, considered for example in [6,8], corre-
sponding to the choice

d(α,D)(x,y) =
1

2α
(x− y)TD−1(x− y). (11)

In this case the array of parameters σ is given by the pair (α,D), where
α ∈ R>0 and D ∈ R

n×n is a symmetric positive definite matrix;
c) the Bregman distance associated to a strictly convex function b : Ω → R,

which is defined as

dσ(x,y) =
1

σ
(b(x)− b(y)−∇b(y)T (x− y)), σ > 0. (12)

Example 2 If f is convex, a further class of functions satisfying the properties
of Definition 1 is given by

hσ(x,y) = f(x) + dσ(x,y), (13)

where again dσ ∈ D(Ω). If dσ is chosen as in (10), the resulting hσ leads to
the so-called resolvent (or proximity) operator associated to f (see e.g. [10,11]
or [14] for the general case).

Example 3 Consider the case when f = f0 + f1, where f0, f1 : Ω → R and f0
is convex. Then, the function defined as

hσ(x,y) = f0(x) + dσ(x,y) +∇f1(y)
T (x− y) ∀x,y ∈ Ω, (14)

with dσ ∈ D(Ω), belongs to H(f,Ω, S). If dσ reduces to (10), the correspond-
ing projection operator is also known as the proximal gradient operator, which
is employed to define forward-backward splitting algorithms for convex opti-
mization [11,19].

Observe that the metric functions defined in (13)-(14) are majorant of the
objective function, that is hσ(x,y) ≥ f(x) for all x,y ∈ Ω. Further, any
convex upper bound function in the sense of [19, Assumption 1] admitting a
unique minimum point clearly satisfies the premises of Definition 1.
Remark. For sake of simplicity, in Definition 1 we assume hσ and f to be
smooth functions, but this could be relaxed, requiring only the existence of
directional derivatives. Indeed, properties (6) and (7), as well as the analysis
carried out in the rest of this section, could be reformed in terms of directional
derivatives.
In general, any function hσ ∈ H(f,Ω, S) can be exploited to define a descent
direction for problem (1), as stated in the following proposition.

Proposition 1 Let x ∈ Ω, σ ∈ S ⊆ R
q, hσ ∈ H(f,Ω, S) and

y = p(x;hσ). (15)

Then we have that
∇f(x)T (y − x) ≤ 0 (16)

and the equality holds if and only if y = x.
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Proof. Inequality (6) with z = x yields

∇1hσ(x,x)
T (y − x) ≤ hσ(y,x)− hσ(x,x) ≤ 0,

where the rightmost inequality follows from (8) and, since the minimum point
of hσ(·,x) is unique, the equality holds if and only if x = y. Then, the thesis
follows recalling (7). ⊓⊔

In the following proposition, we show that the stationary points of (1) can
be characterized as fixed points of the generalized projection operator (8).

Proposition 2 Let S ⊆ R
q, σ ∈ S and hσ ∈ H(f,Ω, S). A point x ∈ Ω is a

stationary point for problem (1) if and only if x = p(x;hσ).

Proof. Assume that for a point x∗ ∈ Ω the following equality holds:

x∗ = argmin
x∈Ω

hσ(x,x
∗).

Then, the stationarity of x∗ yields

∇1hσ(x
∗,x∗)T (x− x∗) ≥ 0 ∀x ∈ Ω.

Since by assumption (7) we have ∇1hσ(x
∗,x∗)T (x−x∗) = ∇f(x∗)T (x−x∗),

it follows that x∗ is a stationary point for problem (1).
Conversely, let x∗ ∈ Ω be a stationary point of (1) and define

x̄ = argmin
x∈Ω

hσ(x,x
∗).

Assume by contradiction that x∗ 6= x̄. Then, combining (6) with x = z = x∗,
y = x̄ and (7) we obtain

∇f(x∗)T (x̄− x∗) ≤ hσ(x̄,x
∗)− hσ(x

∗,x∗) < 0,

where the last inequality follows from the fact that x̄ is the unique minimum
point of hσ(·,x

∗) and x∗ 6= x̄. This contradicts the stationarity assumption
on x∗. ⊓⊔

3 Cyclic block generalized gradient projection method

In this section we consider problem (1) where the constraint set has the fol-
lowing separable structure

Ω = Ω1 × . . .Ωm, Ωi ⊆ R
ni ,

m
∑

i=1

ni = n (17)

so that any x ∈ Ω can be block partitioned as x = (xT
1 , . . . ,x

T
m)T , xi ∈ R

ni .
The key ingredients of our approach are the sufficient decrease of the objective
function enforced by a block version of the well known Armijo backtracking
procedure and a suitable metric function hσ ∈ H(f,Ω, S) defined so that is
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Algorithm 1 Armijo linesearch algorithm

Let {z(k)}k∈N be a sequence of points in Ω and {d
(k)
i }k∈N a sequence of descent directions,

for a given i ∈ {1, ...,m}. Fix δi, β ∈ (0, 1) and compute λ
(k)
i as follows:

1. Set λ
(k)
i = 1;

2. If

f(z
(k)
1 , ...,z

(k)
i + λ

(k)
i d

(k)
i , ...,z

(k)
m ) ≤ f(z(k)) + βλ

(k)
i ∇if(z

(k))Td
(k)
i (18)

Then go to step 3.

Else set λ
(k)
i = δiλ

(k)
i and go to step 2.

3. End

separable with respect to the partition in (17).
Then, we first recall in Algorithm 1 the block version of the Armijo linesearch
method. In the following proposition we give conditions which guarantee that
Algorithm 1 is well defined. Its proof can be derived from known results (see
[5,17]).

Proposition 3 Let {z(k)}k∈N be a sequence of points in Ω. Assume that z(k)

converges to some z̄ and for i ∈ {1, ...,m} let {d
(k)
i }k∈N be a sequence of

feasible directions such that

(A1) there exists a number M > 0 such that ‖d
(k)
i ‖ ≤ M for all k ∈ N;

(A2) we have ∇if(z
(k))Td

(k)
i < 0 for all k ∈ N;

(A3) we have lim
k→∞

f(z(k)) − f(z
(k)
1 , ..., z

(k)
i + λ

(k)
i d

(k)
i , ..., z(k)

m ) = 0, where λ
(k)
i

is computed with Algorithm 1.

Then, for each k ∈ N the LS procedure terminates in a finite number of steps

and, furthermore, limk→∞ ∇if(z
(k))Td

(k)
i = 0.

In order to formally introduce the method and perform its convergence anal-
ysis, we choose the metric function hσ ∈ H(f,Ω, S), where S = S1 × ...× Sm,
Si ⊂ R

qi , such that the parameter σ can be partitioned as σ = (σ1, . . . ,σm).
Moreover, we define hσ so that it is separable over the m blocks with respect
to its first variable, i.e.

hσ(x,y) =

m
∑

i=1

hi
σi
(xi,y), (19)

where the functions hi
σi

: Ωi ×Ω → R satisfy the following conditions:

(BH1) hi
σi

is convex with respect to its first argument and admits a unique min-
imum point;

(BH2) for any point x ∈ Ω and for any vector d ∈ R
ni such that xi + d ∈ Ωi we

have
∇1h

i
σi
(xi,x)

Td = ∇if(x)
Td, (20)

where ∇if(x) denotes the gradient of f with respect to the i–th block of
variables;
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(BH3) hi
σi

continuously depends on the parameter σi ∈ R
qi .

It is easy to see that the metric function hσ defined in (19), thanks to the as-
sumptions (BH1)–(BH3), belongs to H(f,Ω, S) and the associated generalized
gradient projection can be also partitioned by blocks as

p(x;hσ) =







p1(x;h
1
σ1

)
...

pm(x;hm
σm

)






, where pi(x;h

i
σi
) = arg min

zi∈Ωi

hi
σi
(zi,x). (21)

Lemma 1 Let x ∈ Ω and σ ∈ S ⊆ R
q. Then,

(i) x is stationary for problem (1) if and only if pi(x;h
i
σi
) = xi ∀i = 1, . . . ,m;

(ii) ∇if(x)
T (pi(x;h

i
σi
) − xi) ≤ 0 ∀i = 1, . . . ,m and the equality holds if and

only if xi = pi(x;h
i
σi
).

Part (i) of the previous Lemma directly follows from (21) and from Proposi-
tion 2, while part (ii) can be easily proved by employing the same arguments
as in the proof of Proposition 1.

Algorithm 2 Cyclic Block Generalized Gradient Projection Method
Define a compact set S and a metric function hσ ∈ H(f, Ω, S) as in (19). Choose β, δ ∈ (0, 1).
Choose x(0) ∈ Ω and the upper bounds for the inner iterations numbers L1, . . . , Lm.
For k = 0, 1, 2, ...

1 Set z(k, 0) = x(k)

2 For i = 1, ...,m

2.1 Set x
(k,0)
i = x

(k)
i

2.2 Choose the inner iterations number L
(k)
i ≤ Li

2.3 For ℓ = 0, ..., L
(k)
i − 1

2.3.0 Set x̃(k,ℓ) = (x
(k+1)
1 , . . . ,x

(k+1)
i−1 ,x

(k,ℓ)
i

,x
(k)
i+1, . . . ,x

(k)
m )

2.3.1 Choose the parameter σ
(k,ℓ)
i

∈ Si

2.3.2 Compute the descent direction

d
(k,ℓ)
i = pi(x̃

(k,ℓ); hi

σ
(k,ℓ)
i

)− x
(k,ℓ)
i

and set d̃
(k,ℓ)

= (0, . . . , 0,d
(k,ℓ)
i , 0, . . . , 0)

2.3.3 Compute with Algorithm 1 the Armijo steplength λ
(k,ℓ)
i such that

f(x̃(k,ℓ) + λ
(k,ℓ)
i d̃

(k,ℓ)
) ≤ f(x̃(k,ℓ)) + βλ

(k,ℓ)
i ∇if(x̃

(k,ℓ))Td
(k,ℓ)
i

2.3.4 Set x
(k,ℓ+1)
i = x

(k,ℓ)
i + λ

(k,ℓ)
i d

(k,ℓ)
i

End

2.4 Set x
(k+1)
i = x

(k,L
(k)
i

)

i

2.5 Set z(k, i) = (x
(k+1)
1 , ...,x

(k+1)
i ,x

(k)
i+1, ...,x

(k)
m )

End

3 Set x(k+1) = z(k,m)

End
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The previous results can be exploited to design a cyclic block generalized gra-
dient projection (CBGGP) method, whose steps are outlined in Algorithm 2.
Before to analyze the convergence properties of this approach, we observe that
it is a descent method and, in particular, the objective function is nondecreas-
ing over the partial updates z(k, i), i = 0, ...,m, k = 1, 2, ... defined at step 2.5.
Indeed, the following inequalities hold

f(z(k, i+ 1)) ≤ f(z(k, i)) + βλ
(k,0)
i+1 ∇i+1f(z(k, i))

Td
(k,0)
i+1 ≤ f(z(k, i))

which also implies

f(z(k + 1, 0)) = f(z(k,m)) ≤ f(z(k, i+ 1)) (22)

≤ f(z(k, i)) ≤ f(z(k, 0)) = f(z(k − 1,m)).

We are now ready to give the first result about Algorithm 2.

Proposition 4 Let {x(k)}k∈N be the sequence generated by Algorithm 2. Sup-
pose that for some i ∈ {0, ...,m} the sequence {z(k, i)}k∈N admits a limit point
z̄. Then pi+1(z̄;h

i+1
σi+1

) = z̄i+1 ∀σi+1 ∈ Si+1 if i < m, while p1(z̄;h
1
σ1
) = z̄1

∀σ1 ∈ S1 if i = m.

Proof. Suppose first that i < m. From Lemma 1, we only need to show that
there exists σ̄i+1 ∈ Si+1 such that equality pi+1(z̄;h

i+1
σ̄i+1

) = z̄i+1 holds.

Assume by contradiction that pi+1(z̄;h
i+1
σi+1

) 6= z̄i+1 for all σi+1 ∈ Si+1. Let

K be the set of indices such that {z(k, i)}k∈K converges to z̄ and {σ
(k,0)
i+1 }k∈K

converges to some σ̄i+1 ∈ Si+1. If ‖pi+1(z̄;h
i+1
σ̄i+1

)− z̄i+1‖ = 2ǫ > 0, the conti-
nuity of the generalized projection operator with respect to all its arguments
guarantees that, for k ∈ K being sufficiently large, we have

‖d
(k,0)
i+1 ‖ > ǫ > 0,

where d
(k,0)
i+1 = pi+1(z(k, i);h

i+1

σ
(k,0)
i+1

) − x
(k)
i+1 (see also Step 2.3.2 of Algorithm

2). Then, by applying Lemma 1 (ii) we have

∇i+1f(z(k, i))
Td

(k,0)
i+1 ≤ −η < 0, (23)

where η is some positive scalar.
On the other side, inequalities (22) guarantee that, for all i, we have limk→∞ f(z(k, i)) =
f(z̄), thus we obtain that

lim
k→∞

f(z(k, i))− f(x
(k+1)
1 , ...,x

(k+1)
i ,x

(k)
i+1 + λ

(k,0)
i+1 d

(k,0)
i+1 , ...,x(k)

m ) = 0.

Moreover, since {z(k, i)}k∈K is a convergent sequence, it is also bounded.

Therefore the sequence {d
(k,0)
i+1 }k∈K is bounded and Proposition 3 implies that

lim
k→∞,k∈K

∇i+1f(z(k, i))
Td

(k,0)
i+1 = 0,
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which contradicts (23).
The same arguments can be applied also when i = m, since z(k,m) = z(k +
1, 0). ⊓⊔

The previous proposition is crucial for proving the main convergence result
for Algorithm 2, given below.

Theorem 1 Let {x(k)}k∈N be the sequence generated by Algorithm 2 and as-
sume that x̄ is a limit point of {x(k)}k∈N. Then x̄ is a limit point also for the
sequences {z(k, i)}k∈N for any i = 1, ...,m− 1 and it is a stationary point for
problem (1).

Proof. The proof runs by induction on the block index i and on the inner
iteration number ℓ and it is similar to that of Theorem 4.2 in [7]. Since x̄

is a limit point for {x(k)}k∈N = {z(k, 0)}k∈N, from Proposition 4 it follows
that, denoting by K0 a set of indices such that {x(k)}k∈K0 converges to x̄

and {σ
(k,0)
1 }k∈K0 converges to some σ̄0

1 ∈ S1, we have p1(x̄;h
1
σ̄

0
1
) = x̄1 and

limk→∞,k∈K0 ‖d
(k,0)
1 ‖ = 0.

From Step 2.3.4 of Algorithm 2, it follows that limk→∞,k∈K0 ‖x
(k,1)
1 −x

(k)
1 ‖ =

0, i.e., x̄1 is a limit point also for the sequence {x
(k,1)
1 }k∈N.

Introducing a subset of indices K1 ⊆ K0 such that the sequence {x
(k,1)
1 }k∈K1

converges to x̄1 and {σ
(k,1)
1 }k∈K1 converges to some σ̄1

1, we have

lim
k→∞,k∈K1

d
(k,1)
1 = lim

k→∞,k∈K1

p1((x
(k,1)
1 ,x

(k)
2 , ...,x(k)

m );h1

σ
(k,1)
1

)− x
(k,1)
1

= p1(x̄;h
1
σ̄

1
1
)− x̄1 = 0,

where the second equality follows from the continuity of the generalized pro-
jection operator and the third one is a consequence of Proposition 4.
Using the same arguments, by induction on ℓ we can conclude that, for each ℓ =

0, ..., L1−1, there exists a suitable subset of indicesKℓ such that limk→∞,k∈Kℓ
d
(k,ℓ)
1 =

0 and we obtain

‖x
(k+1)
1 − x

(k)
1 ‖ ≤

L
(k)
1

∑

ℓ=0

λ
(k,ℓ)
1 ‖d

(k,ℓ)
1 ‖ ≤

L1
∑

ℓ=0

λ
(k,ℓ)
1 ‖d

(k,ℓ)
1 ‖

k→∞,k∈K̄1
−−−−−−−−→ 0,

where K̄1 = ∩L1−1
ℓ=0 Kℓ. Thus, the point x̄ is a limit point also for the sequence

{z(k, 1)}k∈N = {(x
(k+1)
1 ,x

(k)
2 , ...,x

(k)
m )}k∈N, and Proposition 4 ensures that

p2(x̄;h
2
σ̄

0
2
) = x̄2 for some σ̄0

2 ∈ S2.

Proceeding by induction on i and employing the same arguments used for
i = 1, we prove that x̄ is a limit point of the sequences {z(k, i)}k∈N for
any i = 1, ...,m− 1. As a result of this, invoking again Proposition 4, we can
conclude that for any i = 1, ...,m there exist σi ∈ Si such that pi(x̄;h

i
σi
) = x̄i.

Therefore, by Lemma 1 (i) we can conclude that x̄ is a stationary point of
problem (1). ⊓⊔
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4 Conclusions

In this paper we address the general problem of the constrained minimization
of a differentiable function in which the unknown can be partitioned in blocks,
each with a convex and closed feasible set. In order to address this problem,
we considered block coordinate first order methods exploiting suitable descent
directions based on very general projection operators. In particular, we in-
troduce a class of generalized projection operators based on non Euclidean
metrics, which includes as special cases Bregman projections, proximity and
proximal gradient operators. Our approach combines the properties of these
generalized projections with those of the Armijo linesearch strategy to obtain
a generalized gradient descent method able to produce a sequence of iterates
whose limit points are stationary.
Future work will include a generalization of these results to nonsmooth ob-
jective functions, the analysis of suitable strategies to design the parameters
defining the metric functions and the extensive application of the proposed
optimization approaches in real-world problems in astronomy and microscopy.
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