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Abstract

We propose a new algorithm for computing validated bounds for the so-

lutions to the first order variational equations associated to ODEs. These

validated solutions are the kernel of numerics computer-assisted proofs

in dynamical systems literature. The method uses a high-order Taylor

method as a predictor step and an implicit method based on the Hermite-

Obreshkov interpolation as a corrector step. The proposed algorithm is

an improvement of the C1-Lohner algorithm proposed by Zgliczyński and

it provides sharper bounds.

As an application of the algorithm, we give a computer-assisted proof

of the existence of an attractor set in the Rössler system, and we show

that the attractor contains an invariant and uniformly hyperbolic subset

on which the dynamics is chaotic, that is, conjugated to subshift of finite

type with positive topological entropy.
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1 Introduction.

The aim of this paper is to provide an algorithm that computes validated en-
closures for the solutions to the following set of initial value problems





ẋ(t) = f(x(t)),

V̇ (t) = Df(x(t)) · V (t),
x(0) ∈ [x0],
V (0) ∈ [V0],

(1)

where f : Rn → R
n is a smooth function (usually analytic in the domain) and

[x0] ⊂ R
n, [V0] ⊂ R

n2

are sets of initial conditions. In contrast to standard
numerical methods, one step of a validated algorithm for (1) produces sets [x1]
and [V1] that guarantee to contain x(h) ∈ [x1] and V (h) ∈ [V1] for all initial
conditions x(0) ∈ [x0] and V (0) ∈ [V0], where h > 0 is a time step (usually
variable) of the method. The computations are performed in interval arithmetics
[25] in order to obtain guaranteed bounds on the expressions we evaluate.

The equation for V (t) is called the variational equation associated with an
ODE. Solutions V (t) give us an information about sensitivities of trajectories
with respect to initial conditions. They proved to be useful in finding periodic
solutions, proving their existence and analysis of their stability [3, 4, 12, 13,
15, 16]. They are used to estimate invariant manifolds of periodic orbits [7, 8].
Derivatives with respect to initial conditions are used to prove the existence
of connecting orbits [2, 39, 43] or even (non)uniformly hyperbolic and chaotic
attractors [40, 41]. First and higher-order derivatives with respect to initial
conditions can be used to study some bifurcation problems [17, 43, 44]. This
wide spectrum of applications is our main motivation for developing an efficient
algorithm that produces sharp bounds on the solutions to (1).

In principle, the problem (1) can be solved by any algorithm capable to
compute validated solution to IVP for ODEs. There are several available algo-
rithms and their implementations — just to mention a few of them: VNODE-LP
[27, 28, 29, 30], COSY Infinity [5, 22, 23], CAPD [6], Valencia-IVP [35]. The
above mentioned ODE solvers are internally higher-order methods with respect
to the initial state, which means that they use at least partial information about
the derivatives with respect to initial conditions to reduce the wrapping effect.
Therefore, direct application of these solvers uses a higher effective dimension
(the internal dimension of the solver) than the dimension of the phase space.
In the case of the codes VNODE-LP and CAPD, this effective dimension is
(n(n + 1))2, which dramatically decreases the performance of these methods
when applied directly to the extended system (1). This key observation mo-
tivated developing the C1-Lohner algorithm [47], which takes into account the
block structure of (1) and works in n2 effective dimension. Even in low dimen-
sions, it is orders of magnitude faster than direct application of a C0 solver to
the variational equations. However, it does not use derivatives of V (t) with
respect to other coefficients of V (i.e. second order derivatives of the original
system) to better control the wrapping effect. This is why it usually produces
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worse estimations than those obtained from direct application of a C0 solver to
the extended system.

In this paper, we propose a new algorithm for computation of validated
solutions to (1). Our algorithm consists of two steps. First, the high-order
Taylor method is used as a predictor step. Then, an implicit method based
on the Hermite-Obreshkov (HO) formula is used to compute tighter bounds for
the variational equations. This last step is motivated by the very famous and
efficient algorithm proposed by Nedialkov and Jackson [29] and implemented by
Nedialkov in the VNODE-LP package [28]. We name the proposed algorithm
C1-HO because it computes bounds for the first order variational equations and
it is based on the Hermite-Obreshkov interpolation formula.

Our algorithm, by its construction, cannot produce worse estimations than
the C1-Lohner algorithm. Complexity analysis (see Section 3) shows that, in low
dimensions, it is slower than the C1-Lohner algorithm by the factor 9/8 only.
This lack of performance is compensated by a significantly smaller truncation
error of the method. This allows to take larger time steps when computing
the trajectories and thus our algorithm appears to be slightly faster than the
C1-Lohner in real applications — see Section 5 for the case study.

We would like to emphasize that the proposed method can be directly ex-
tended to the nonautonomous case without increasing the effective dimension
of the problem. For simplicity in the notation, we consider the autonomous
case only. In [6], we provide an implementation of the C1-HO algorithm for the
nonautonomous case.

As an application of the proposed algorithm we give a computer-assisted
proof of the following new result concerning the Rössler system [36].

Theorem 1 For the parameter values a = 5.7 and b = 0.2 the system




ẋ = −y − z
ẏ = x+ by
ż = b+ z(x− a)

(2)

admits a compact, connected invariant set A that is an attractor. There is an
invariant subset H ⊂ A on which the dynamics is uniformly hyperbolic and
chaotic, that is, conjugated to a subshift of finite type with positive topological
entropy.

Verification that an ODE is chaotic is not an easy task in general. After de-
velopment of rigorous ODE solvers there appeared numerous computer-assisted
proofs of the existence of chaos in classical low-dimensional systems — just to
mention two pioneering results [24, 46]. To the best of our knowledge there
are only two computer-assisted proofs of the existence of chaotic and (non)-
uniformly hyperbolic attractors for ODEs [40, 41]. These results became pos-
sible with development of suitable theory and the algorithms capable to inte-
grate variational equations. In [41] the C1-Lohner algorithm implemented in the
CAPD library [6] was used.

The paper is organized as follows. In Section 1.1, we introduce the symbols
and notation used in the paper. Section 2 contains description of the algorithm
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and the proof of its correctness. In Section 3, we analyze the complexity of
the C1-HO algorithm and we compare it to the complexity of the C1-Lohner
algorithm. In Section 4, we compare the bounds obtained by the C1-Lohner and
C1-HO algorithms on several examples. In Section 5, we give a more detailed
statement and proof of Theorem 1. We discuss also how the computing time
depends on the choice of the C1-Lohner and C1-HO algorithms to integrate
variational equations.

1.1 Notation.

By I we denote the identity matrix of the dimension clear from the context. By
Df we denote the derivative of a smooth function f : Rn → R

m. By Dxf we
denote the partial derivative of f with respect to x.

The local flow induced by an ordinary differential equation (ODE) ẋ(t) =
f(x(t)) will be denoted by ϕ, i.e. ϕ(·, x) = x(·) is the unique solution passing
through x at time zero. We will often identify an element x ∈ R

n with the
function x(·) = ϕ(·, x). We denote ψ(t, x, V ) = Dxϕ(t, x) · V . Clearly ψ(·, x, V )
is a solution to the first-order variational equation associated with an ODE with
the initial conditions x and V .

Let f : R→ R
n be a smooth function. By f (i)(x) we denote the vector of ith

derivatives of f . Normalized derivatives (Taylor coefficients) will be denoted by
f [i](x) = 1

i!f
(i)(x). We apply this notation to derivatives and Taylor coefficients

of the flows ϕ and ψ taken with respect to the time variable

ϕ[i](t, x) := (ϕ[i](·, x))(t),

ψ[i](t, x, V ) := (ψ[i](·, x, V ))(t).

Interval objects will be always denoted in square brackets, for instance [a] =
[a, a] is an interval, and [v] = ([v1], . . . , [vn]) is an interval vector. Matrices or
interval matrices will be denoted by capital letters, for example [A]. Vectors
and scalars will be always denoted by small letters. We also identify Cartesian
product of intervals [v1] × · · · × [vn] with a vector of intervals ([v1], . . . , [vn]).
Thus interval vectors can be seen as subsets of Rn. The same identification will
apply to interval matrices.

The midpoint of an interval [a] = [a, a] will be denoted by â = (a+a)/2. The
same convention will be used to denote the midpoint of an interval vector or
an interval matrix; for example for [v] = ([v1], . . . , [vn]) we put v̂ = (v̂1, . . . , v̂n).
Sometimes, we will denote the midpoint of products of interval objects by
mid([V ][r]).

Throughout this article, interval vectors or interval matrices marked with
tilde [ỹ], [Ṽ ] will always refer to rough enclosures for the solutions to the IVP
problem (1) — see Section 2.1 for details.
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2 The algorithm.

Consider the initial value problem (1) and assume that we have already proved
the existence of the solutions at time tk, and we have computed rigorous bounds
[xk] and [Vk] for ϕ(tk, [x0]) ⊂ [xk], ψ(tk, [x0], [V0]) ⊂ [Vk], respectively. Let us
fix a time step hk > 0. A rigorous numerical method for (1) consists usually of
the following two steps:

• computation of a rough enclosure. In this step, the algorithm validates
that solutions indeed exist over the time interval [tk, tk + hk], and it pro-

duces sets [ỹ] and [Ṽ ], called rough enclosures, which satisfy

ϕ([0, hk], [xk]) ⊂ [ỹ] and (3)

ψ([0, hk], [xk], I) ⊂ [Ṽ ]. (4)

• computation of tighter bounds [xk+1], [Vk+1] satisfying ϕ(tk + hk, [x0]) ⊂
[xk+1] and ψ(tk + hk, [x0], [V0]) ⊂ [Vk+1].

In the sequel, we give details of each part of the proposed algorithm.

2.1 Computation of a rough enclosure.

This section is devoted to describe a method for finding rough enclosures (3-
4). The key observation is that the equation for V in (1) is linear in V , which
implies that the following identity holds

ψ(tk + hk, x0, V0) = ψ(hk, ϕ(tk, x0), I) · ψ(tk, x0, V0)

provided all quantities are well defined. This implies that

ψ(tk + hk, [x0], [V0]) ⊂ ψ(hk, [xk], I) · [Vk]. (5)

Hence, it is sufficient to use I as an initial condition for the variational equations
when computing a rough enclosure [Ṽ ].

One approach to find rough enclosures [ỹ] and [Ṽ ] is to compute them sep-
arately. Given a set [ỹ] satisfying (3) and computed by any algorithm [26, 30],

we can try to find an interval matrix [Ṽ ] such that

I + [0, hk]Df([ỹ]) · [Ṽ ] ⊂ [Ṽ ]. (6)

If we succeed, then the interval matrix [Ṽ ] satisfies (4). This method is known
as the First Order Enclosure (FOE). It has, however, at least one significant
disadvantage. If we already know that the solutions to the main equations exist
over the time step hk ([ỹ] has been computed) there is no reason to shorten this
time step because solutions to variational equation also exist over the same time
range. However, this shortening might be necessary to fulfill the condition (6).
To avoid this drawback, Zgliczyński proposes [47] a method based on logarithmic
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norms that always computes an enclosure [Ṽ ] satisfying (4) for the same time
step hk, provided we are able to find an enclosure [ỹ] satisfying (3). This type of
enclosure is also used in the Cr-Lohner algorithm [45] for higher order variational
equations.

Another strategy is to use the High Order Enclosure (HOE) method [10, 27,
30]. The authors propose to predict a rough enclosure of the form

[ỹ] =
m∑

i=0

[0, hk]
iϕ[i](0, [xk]) + [ε], (7)

where [ε] is an interval vector centered at zero. The inclusion

[0, hk]
m+1ϕ[m+1](0, [ỹ]) ⊂ [ε] (8)

implies that the set [ỹ] is indeed a rough enclosure, i.e. it satisfies (3). If the
inclusion (8) is not satisfied, then we can always find h̄k < hk such that (8)
holds with this time step, and thus [ỹ] is a rough enclosure for the time step
h̄k. This strategy is very efficient because we do not need to recompute [ỹ].
Furthermore, with quite high order m and a reasonable algorithm for time step

prediction, we usually have h̄k/hk =
(

‖ε‖
‖ϕ[m+1](0,[ỹ])‖

)1/(m+1)

≈ 1.

The above method can be used to find simultaneously two enclosures ([ỹ], [Ṽ ])
for the entire system (1). We predict [ỹ] as in (7) and

[Ṽ ] =

m∑

i=0

[0, hk]
iψ[i](0, [xk], I) + [E]. (9)

Then we check simultaneously (8) and

[0, hk]
m+1ψ[m+1](0, [ỹ], I)[Ṽ ] ⊂ [E]. (10)

Due to linearity of the equation for variational equations we can consider two
strategies when (10) is not satisfied. We can

1. either shorten the time step as we do in (8) or

2. compute [Ṽ 0] from the logarithmic norms for the same time step hk as

proposed in [47] and set [E] = [0, hk]
m+1ψ[m+1](0, [ỹ], I)[Ṽ 0]. Then [Ṽ ]

computed as in (9) with such [E] satisfies (4).

We would like to emphasize that in both cases we do not need to recompute the
coefficients ψ[i](0, [ỹ], I) which is very expensive. The first strategy is recom-
mended when the tolerance per one step is specified which means that there is
a maximal norm of [E] which should not be exceeded. The second strategy ap-
plies when the fixed time step is used (by the user choice or application specific
reason).
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Algorithm 1: Predictor.

Input : m - natural number (order of the Taylor method)
hk - positive real number (current time step)
[xk], [ỹ] - interval vectors

[Ṽ ] - interval matrix

Output: ([x0k+1], [r
0], [V 0], [R0]) ⊂ R

n × R
n × R

n2

× R
n2

Compute:
[A]←

∑m
i=0 h

i
kψ

[i](0, [xk], I);

y0 ←
∑m

i=0 h
i
kϕ

[i](0, x̂k);

[y]←
∑m

i=0 h
i
kϕ

[i](0, [xk]);

[r0]← [0, hk]
m+1ϕ[m+1](0, [ỹ]);

[x0k+1]← (y0 + [A]([xk]− x̂k)) ∩ [y] + [r0];

[R0]← [0, hk]
m+1ψ[m+1](0, [ỹ], I)[Ṽ ];

[V 0]← [A] + [R0];
return ([x0k+1], [r

0], [V 0], [R0]);

Our tests show that the C1 version of (HOE) gives better results than the
approach proposed by Zgliczyński, which uses logarithmic norms. Since com-
puting a rough enclosure (4) is not the main topic of the paper we omit details
here.

In what follows we assume that we have a routine that returns three quan-
tities: hk, [ỹ], [Ṽ ] for which the properties (3) and (4) hold.

2.2 The predictor step.

We give a short description of the C1-Lohner algorithm [47] which will be used
as a predictor step in the C1-HO algorithm.

Lemma 2 Assume hk, [xk], [ỹ], [Ṽ ] are such that (3) and (4) hold. Then the
quantities ([x0k+1], [r

0], [V 0], [R0]) computed by the Algorithm 1 satisfy

ϕ(hk, [xk]) ⊂ [x0k+1], (11)

ψ(hk, [xk], I) ⊂ [V 0], (12)

[0, hk]
m+1ϕ[m+1](0, [ỹ]) ⊂ [r0] and (13)

[0, hk]
m+1ψ[m+1](0, [ỹ], [Ṽ ]) ⊂ [R0]. (14)

Proof: The Taylor theorem with Lagrange remainder implies that for all xk ∈
[xk] and each component j = 1, . . . , n:

ϕj(hk, xk) =

m∑

i=0

hikϕj
[i](0, xk) + hm+1

k ϕj
[m+1](τj , xk) (15)
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for some τj ∈ (0, hk). By the assumptions ϕ(τj , xk) ∈ [ỹ] and by the group
property of the flow, we have

ϕj
[m+1](τj , xk) = ϕj

[m+1](0, ϕ(τj , xk)) ∈ ϕj
[m+1](0, [ỹ]).

Therefore

ϕ(hk, xk) ∈
m∑

i=0

hikϕj
[i](0, xk) + hm+1

k ϕ[m+1](0, [ỹ]) ⊂ [y] + [r0].

Since [xk] is convex, we can apply the mean value form to the polynomial
part of (15) and obtain that for xk ∈ [xk] there holds

m∑

i=0

hikϕ
[i](0, xk) ∈

m∑

i=0

hikϕ
[i](0, x̂k) + [A](xk − x̂k) ⊂ y0 + [A]([xk]− x̂k).

Gathering the above together, we obtain

ϕ(hk, [xk]) ⊂ (y0 + [A]([xk]− x̂k)) ∩ [y] + [r0] = [x0k+1]. (16)

In a similar way, we deduce that for xk ∈ [xk] and for each component j, c =
1, . . . , n there holds

ψj,c
[m+1](τj,c, xk, I) ∈ ψj,c

[m+1](0, [ỹ], [Ṽ ])

for j, c = 1, . . . , n, and in consequence

ψ(hk, [xk], I) ⊂ [A] + [R0] = [V 0].

2.3 The corrector step.

The goal of this section is to set forth a one-step method that refines the results
obtained from the predictor step and returns tighter rigorous bounds for the
solution to the ODE and its associated variational equation (1). The method
combines the algorithm by Nedialkov and Jackson [29] based on the Hermite-
Obreshkov interpolation formula with the C1-Lohner algorithm for variational
equations proposed by Zgliczyński [47]. For reader’s convenience, we recall here
the key ideas of the Hermite-Obreshkov method.

For natural numbers p, q, i such that i ≤ q, let

cq,pi =

(
q

i

)
/

(
p+ q

i

)
.

For a smooth function u : R→ R
n and real numbers h, t we define

Ψq,p(h, u, t) =

q∑

i=0

cq,pi hiu[i](t).

8



Using this notation, the Hermite-Obreshkov [32] formula reads

Ψq,p(−h, u, h) = Ψp,q(h, u, 0) + (−1)qcq,pq hp+q+1R(h, u), (17)

where

R(h, u) =
(
u1

[p+q+1](τ1), . . . , un
[p+q+1](τn)

)
, τi ∈ (0, h), i = 1, . . . , n.

The key observation which was the main motivation to develop rigorous

numerical method based on this formula is that the coefficient cq,pq =
(
p+q
q

)−1

can be very small for p = q. Thus, this formula can have significantly smaller
remainder than the Lagrange remainder used in the Taylor series method.

Now we would like to apply (17) to the flows ϕ and ψ := Dxϕ. Let [xk]
be a set of initial conditions and assume that from the predictor step we have
computed ([x0k+1], [r

0], [V 0], [R0]) satisfying (11–14).
Let us fix positive integers p, q such that m = p + q, xk ∈ [xk] and put

xk+1 = ϕ(h, xk). The formula (17) applied to this case reads

q∑

i=0

cq,pi (−hk)
iϕ[i](0, xk+1) =

p∑

i=0

cp,qi hikϕ
[i](0, xk) + ε,

where ε ∈ (−1)qcq,pq [r0]. Identifying vectors xk, xk+1 with unique solutions
xk(·), xk+1(·) to the ODE passing through them at time zero, we obtain the
equivalent but shorter form

Ψq,p(−hk, xk+1, 0) = Ψp,q(hk, xk, 0) + ε. (18)

Take the midpoints x̂0k+1 ∈ [x0k+1], x̂k ∈ [xk]. Since interval vectors are
convex sets, and the local flow is a smooth function in both variables, we can
apply the mean-value form to both sides of (18) to obtain

Ψq,p(−hk, x̂
0
k+1, 0) + J−(xk+1 − x̂

0
k+1) = Ψp,q(hk, x̂k, 0) + J+(xk − x̂k) + ε

for some

J− ∈
[
DxΨq,p(−hk, [x

0
k+1], 0)

]
and

J+ ∈ [DxΨp,q(hk, [xk], 0)] .

We obtained a linear equation for xk+1

J−(xk+1− x̂
0
k+1) = J+(xk− x̂k)+(Ψp,q(hk, x̂k, 0)−Ψq,p(−hk, x̂

0
k+1, 0))+ε (19)

in which the matrices J± are unknown, but they can be rigorously bounded.
Denoting

[δ] = Ψp,q(hk, x̂k, 0)−Ψq,p(−hk, x̂
0
k+1, 0),

[ε] = (−1)qcq,pq [r0],

[J−] =
[
DxΨq,p(−hk, [x

0
k+1], 0)

]
,

[J+] = [DxΨp,q(hk, [xk], 0)] ,

[S] = I − Ĵ−1
− [J−],

[r] = Ĵ−1
− ([δ] + [ε]) + [S]([x0k+1]− x̂

0
k+1)
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and applying the interval Krawczyk operator [1, 18, 31] to the linear system
(19), we obtain that for xk ∈ [xk],

ϕ(hk, xk) = xk+1 ∈ x̂
0
k+1 +

(
Ĵ−1
− [J+]

)
([xk]− x̂k) + [r] (20)

which is the main evaluation formula in the interval Hermite-Obreshkov method
for IVPs presented in [29]. Note that this formula has exactly the same structure
as (16) used in the predictor step.

Each coefficients of [S] is an interval containing zero and its diameter tends
to zero with hk → 0. The vector [δ] is almost a point vector, and [ε] can be
made as small as we need (manipulating the time step hk). Therefore, the total
error accumulated in [r] is usually very thin in comparison to the size of the set
[xk] we propagate. Thus, the main source of overestimation when evaluating

(20) comes from the propagation of the product
(
Ĵ−1
− [J+]

)
([xk] − x̂k). There

is a wide literature on how to reduce this wrapping effect for such propagation
(see [26] for a survey), and we will give some details concerning this issue in
Section 2.4.

In what follows we argue that, with a little additional cost, we can compute
a possibly tighter enclosure for the solutions to variational equation than the
bound [V 0] obtained from the predictor step. Let us fix xk ∈ [xk] and let
V = ψ(hk, xk, I). Applying (17) to the solutions to the variational equation, we
obtain

q∑

i=0

cq,pi (−hk)
iψ[i](0, xk+1, V ) =

p∑

i=0

cp,qi hikψ
[i](0, xk, I) + E,

where E ∈ (−1)qcq,pq [R0]. Since ψ is linear in V , we obtain that the matrix
V = ψ(hk, xk, I) belongs to the solution set to the linear equation

[J−]V = [J+] + [E],

where [E] = (−1)qcq,pq [R0]. Note that from the predictor step we already know
that V ∈ [V 0]. Applying the interval Krawczyk operator [1, 18, 31] to this linear
system we obtain

V ∈ Ĵ−1
− ([J+] + [E]) + (I − Ĵ−1

− [J−])[V
0] = Ĵ−1

− ([J+] + [E]) + [S][V 0].

Due to linearity of the variational equation, we can reuse the matrices [J−], [J+],

[S] and Ĵ−1
− computed in the corrector step for ϕ. Thus the additional cost is

just a few matrix additions and multiplications. Algorithm 2 and Lemma 3
summarize the above considerations.

Lemma 3 Assume that hk, [xk], [ỹ], [Ṽ ] are such that (3) and (4) hold and
that the quadruple ([x0k+1], [r

0], [V 0], [R0]) is returned by the predictor step (Al-
gorithm 1). Then the quantities ([xk+1], [V ]) computed by Algorithm 2 satisfy

ϕ(hk, [xk]) ⊂ [xk+1] and (21)

ψ(hk, [xk], I) ⊂ [V ]. (22)
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Algorithm 2: Corrector.

Input : p, q - positive integers
hk - positive real number
[xk] - interval vectors
([x0k+1], [r

0], [V 0], [R0]) - from the predictor step with
m = p+ q

Output: ([xk+1], [V ])
Compute:
[δ]← Ψp,q(hk, x̂k, 0)−Ψq,p(−hk, x̂

0
k+1, 0);

[ε]← (−1)qcq,pq [r0];

[J−]←
[
DxΨq,p(−hk, [x

0
k+1], 0)

]
;

[J+]← [DxΨp,q(hk, [xk], 0)];

[S]← I − Ĵ−1
− [J−];

[r]← Ĵ−1
− ([δ] + [ε]) + [S]([x0k+1]− x̂

0
k+1);

[R]← Ĵ−1
−

(
[J+] + (−1)qcq,pq [R0]

)
;

[xk+1]←
(
x̂0k+1 +

(
Ĵ−1
− [J+]

)
([xk]− x̂k) + [r]

)
∩ [x0k+1];

[V ]←
(
[R] + [S][V 0]

)
∩ [V 0];

return ([xk+1], [V ]);

We would like to emphasize that by its construction the proposed algorithm
always returns tighter bounds than the C1-Lohner algorithm because the result
obtained from the corrector step is intersected with the bound obtained from
the predictor step.

2.4 Propagation of product of interval objects.

It is well known that evaluation of expressions in interval arithmetic can produce
large overestimation due to dependency of variables and the wrapping effect
[1, 20, 25, 31]. To reduce this undesirable drawback we follow the ideas from

[20, 26, 29, 47], and we represent subsets of Rn and R
n2

in the forms (doubletons
in [26] terminology)

[xk] = xk + Ck[rk] +Bk[sk] and (23)

[Vk] = Vk +Ak[Rk] +Qk[Sk]. (24)

The initial conditions ([x0], [V0]) of (1) are assumed to be already in the form
(23–24). The parallelepipeds xk + Ck[rk] and Vk + Ak[Rk] are used to store
the main part of the sets [xk] and [Vk], respectively. The terms Bk[sk] and
Qk[Sk] are used to collect all usually thin quantities that appear during the
computation.

According to (5), the bound for ψ(tk + hk, [x0], [V0]) can be computed as

[Vk+1] = [V ][Vk],
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where [V ] satisfies (22). Substituting the representation (24) we obtain

[Vk+1] ⊂ [V ] (Vk +Ak[Rk] +Qk[Sk]) ∩ (Vk+1 +Ak+1[Rk+1] +Qk+1[Sk+1]) ,

where the new representation is computed as follows

[∆A] =
(
[V ]− V̂

)
(Vk +Ak[Rk]) ,

Vk+1 = V̂ Vk,

Ak+1 = V̂ Ak,

[Sk+1] =
(
Q−1

k+1[V ][Qk]
)
[Sk] +Q−1

k+1[∆A] and

[Rk+1] = [Rk].

In principle, the matrix Qk+1 can be chosen as any invertible matrix. The nu-
merical experiments [20, 26, 29, 47] show that one of the most efficient strategies
in reducing the wrapping effect is to compute Qk+1 as an orthogonal matrix

from the QR decomposition of the point matrix V̂ Qk. Note, that even if the
matrix Qk+1 is a point matrix, the inverse Q−1

k+1 must be computed rigorously
in interval arithmetic.

Similar strategy is used for propagation of products in

[xk+1] ⊂ x̂0k+1 +
(
Ĵ−1
− [J+]

)
([xk]− x̂k) + [r]

= x̂0k+1 +
(
Ĵ−1
− [J+]

)
(Ck[rk] +Bk[sk]) + [r]

— see [20, 26, 29, 47] for details.

3 Complexity.

In this section, we explain why the C1-HO algorithm may perform better than
the C1-Lohner algorithm, even if it has higher computational complexity. A
large numerical and theoretical study were performed to compare the Interval
Hermite-Obreshkov method (IHO) with the Interval Taylor Series Method (ITS)
[27]. It has been shown that, with the same step size and order, the IHO method
is more stable and produces smaller enclosures than the ITS method on constant
coefficient problems. Furthermore, the IHO method allows the use of a much
larger stepsize than the ITS method, thus saving computation time during the
whole integration. However, comparing these two methods in the nonlinear
case is not as simple as in the constant coefficient case. Our goal is to predict
the benefits of performing additional calculations required by the IHO method
applied to (1).

3.1 Cost of C1-Lohner and C1-HO methods per step.

We assume that both predictor (Algorithm 1) and corrector (Algorithm 2) have
the same order. That is, if the order of the predictor is m, we consider the

12



corrector step with p and q such that m = p + q. In what follows we list the
most time-consuming items of the predictor and corrector, which are the core
of their computational complexity.

In the analysis give below, we count the number of operations which are
really executed by the implementation, rather than the possible theoretical and
asymptotic complexity. Therefore, we assume that the product of two square
interval matrices is computed by the naive algorithm (three nested loops or
equivalent), which executes exactly n3 interval multiplications.

We would like to emphasize, that the rigorous integration of a differential
equation is a very difficult task even in quite low dimensions. Thus, dimensions
used in practice are usually less than 20. Computer-assisted proofs for 100-
dimensional systems are actually the state of the art — see for instance [15].
Therefore, the use of asymptotically fast algorithms for matrix multiplications,
such as the Strassen algorithm [38] or the Coppersmith-Winograd [9] algorithm,
does not make any sense.

Let us denote by cf the cost of evaluating the vector field (1). For the C1-
Lohner step we need the following operations (predictor step and propagation
of doubleton representations)

• simultaneous computation of ϕ[i](0, [xk]) and ψ
[i](0, [xk], I) up to orderm.

This is performed by means of automatic differentiation techniques, and
it takes cf (2n+ 1)(m+ 1)(m+ 2)/2 multiplications — see [34],

• simultaneous computation of ϕ[i](0, [ỹ]) and ψ[i](0, [ỹ], I) up to orderm+1.
This is performed by means of the automatic differentiation techniques and
it takes cf (2n+ 1)(m+ 2)(m+ 3)/2 multiplications — see [34],

• 13 matrix by matrix multiplications, 2 point matrix inversions and 2 point
matrix QR decompositions. Approximate QR decomposition of a point
matrix is much cheaper than the product of interval matrices and we may
assume that it takes O(n3) with a constant less than one (in terms of in-
terval multiplications). The inversion of a point matrix which is very close
to orthogonal is performed by means of the interval Krawczyk operator
[18] and takes n3 (one multiplication) because an approximate result is al-
ready known (transposition of an approximate orthogonal matrix). Thus,
the total cost of all matrix operations listed above is at most 17n3.

We did not list cheaper operations like additions, intersections of interval ob-
jects, matrix by vector products. All polynomial evaluations perform in total
O(n2m) interval multiplications, and they add significant cost to linear systems
(cf = 0) and to nonlinear systems but with very small number of nonlinear
terms (cf ≪ n). Thus, we skip them.

To sum up, the total costs of the C1-Lohner step is

CLO(n,m) ≃ cf (2n+ 1)(m+ 2)2 + 17n3.

In the C1-HO method, we can reuse the Taylor coefficients of ϕ and ψ com-
puted in the predictor step, which are needed for computing the [J+] matrix
and Ψp,q(hk, x̂k, 0). Thus, the additional cost is
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• computation of ψ[i](0, [x0k+1], I) up to order q. This is performed by means
of automatic differentiation techniques, and it takes cf(2n+1)(q+1)(q+
2)/2 operations — see [34],

• computation of Ψq,p(−hk, x̂
0
k+1, 0) takes cf (q + 1)(q + 2)/2,

• rigorous inversion of the point matrix Ĵ− takes at most 2n3 (one non-
rigorous inverse and one interval matrix multiplication in the Krawczyk
method) and

• 4 interval matrix multiplications require in total 4n3 operations.

The total additional cost of the C1-HO step is at most

cf (n+ 1)(q + 1)(q + 2) + 6n3.

Figure 1: Plot of CHO(n,m)/CLO(n,m) for cf = n and cf = n2, respectively.

Assume that m is an even number and take q = p = m
2 . Then the above

additional cost of the C1-HO method is approximately

1

4
cf (n+ 1)(m+ 2)(m+ 4) + 6n3.

Hence, total computational complexity of the C1-HO method is

CHO(n,m) ≃ CLO(n,m) +
1

4
cf (n+ 1)(m+ 2)(m+ 4) + 6n3.

In general, the complexity depends on the cost of the vector field evaluation cf
which can be arbitrary. In Fig. 1 we plot the graph of CHO/CLO for two cases.
The case cf = n means that the number of nonlinear terms in the vector field
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is equal to the dimension of the problem. We observe that, if order m of the
method is much smaller than the dimension n, then the complexity is dominated
by the matrix operations and we have

lim
n→∞

CHO(n,m)/CLO(n,m) =
23

17
≈ 1.35294.

for all fixed values of m. We observe, however, that for reasonable dimensions
and orders, this factor is much smaller than the limit value.

A model example for the cf = n2 case is a second order polynomial vector
field with nonzero coefficients in the quadratic terms. In this case we have

lim
n→∞

CHO(n,m)/CLO(n,m) =
9m2 + 38m+ 132

8m2 + 3m+ 100
.

The above analysis shows that the additional cost of the C1-HO method in
a typical nonlinear case approaches 1/8. In the next section, we argue that this
extra cost of the C1-HO method is compensated by the larger time steps this
method can perform without losing the accuracy.

3.2 Maximal allowed time step for a fixed error tolerance.

To obtain insights into the compared methods, we ask the following question:
given an acceptable tolerance ε per step, what is the maximal time step h of both
methods that guarantees achieving this constraint. For the C1-Lohner method,
we have to solve the following inequality

∥∥∥hm+1ϕ[m+1](0, [ỹ])
∥∥∥ ≤ ε.

In general, it is very difficult to answer this question because [ỹ] = [ỹ(h)] de-
pends on h. If [xk] is a point and ε is very small, we can assume that the vector
field is almost constant near [xk] and thus ϕ[m+1](0, [ỹ]) ≈ ϕ[m+1](0, [xk]). Since
[xk] ⊂ [ỹ], we always have ‖ϕ[m+1](0, [xk])‖ ≤ ‖ϕ

[m+1](0, [ỹ])‖. With this sim-
plification, we obtain an upper bound for the time step

hLO := h = m+1

√
ε∥∥ϕ[m+1](0, [xk])

∥∥ .

For the C1-HO method we obtain the following upper bound for the time
step

hHO := h = m+1

√(
m

⌈m2 ⌉

)
ε∥∥ϕ[m+1](0, [xk])

∥∥ ,

where by ⌈m/2⌉ we denote the smallest integer not smaller than m/2. Denote

g(m) := hHO/hLO = m+1

√(
m

⌈m2 ⌉

)
. (25)
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It is easy to show that
lim

m→∞
g(m) = 2.

In Fig. 2, we observe that the values of g(m) rapidly grow for small values of m.
This is important from practical point of view — even for small orderm = 6 the
C1-HO method allows up to 53% larger time steps than the C1-Lohner method.
For m = 16 this is 74%. For larger values of the tolerance ε, the computed
enclosure [ỹ] for h = hLO is usually significantly smaller than that computed for
h = hHO, which affects the norm

∥∥ϕ[m+1](0, [ỹ])
∥∥. Therefore, the value g(m) is

a theoretical upper bound for the possible growth ratio of the time step in the
C1-HO method achievable when ε→ 0.

Figure 2: Plot of the theoretical maximal factor of maximal time step in the
C1-HO and C1-Lohner methods for a fixed tolerance — see 25.

4 Benchmarks.

In this section, we present the results of a comparison of the C1-Lohner algorithm
and the C1-HO algorithm. The structure of the tests is as follows. For a given
ODE

• we take an initial condition u which is an approximate periodic orbit for
the system;

• we integrate the variational equations along this periodic orbit using the
C1-Lohner and C1-HO algorithms with the same algorithm for rough en-
closure (HOE), the same order m = p+ q of the methods and a constant
time step h;

• we compare the logarithm of the maximal diameter of the interval matrix
[Vk] (diameter of the widest component) computed by means of the two
algorithms; and
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• we repeat the above two steps six times: for two different orders of the
numerical methods each for three different time steps.

Fixing the time steps allows us to compare the size of the enclosures returned by
the two algorithms over the same time step. This will allow us to conclude that
the C1-HO algorithm can take larger time steps than the C1-Lohner algorithm
without significant lost of accuracy. The comparison of the two algorithms with
variable time steps will be given in Section 5.

The above test is performed for four ODEs: the Lorenz [21] system, the
Hénon-Heiles system [14], the Planar Circular Restricted Three Body Problem
(PCR3BP), and a 10-dimensional moderately stiff ODE. Below we give initial
conditions and discuss obtained results.

The Lorenz system [21] for “classical” parameters is given by





ẋ = 10(y − x),
ẏ = x(28− z)− y,
ż = xy − 8

3z.
(26)

The Hénon-Heiles system [14] is a hamiltonian ODE given by

{
ẍ = −x(1 + 2y),
ÿ = x2 − y(1 + y).

(27)

The PCR3BP is a mathematical model that describes motion of a small
body with negligible mass in the gravitational influence of two big bodies. The
motion is restricted to the plane, and the two main primaries rotate around
their common mass centre. The equations for motion of the small body is then
given by {

ẍ− 2ẏ = DxΩ(x, y),

ÿ + 2ẋ = DyΩ(x, y),
(28)

where

Ω(x, y) =
1

2
(x2 + y2) +

1− µ√
(x + µ)2 + y2

+
µ

(x− 1 + µ)2 + y2
.

The parameter µ stands for the relative mass of the two main bodies. For our
tests we fixed µ = 0.0009537, which corresponds to the Sun-Jupiter system.

The last ODE is the Galerkin projection of the following infinite dimensional
ODE

ȧk = k2(1− νk2)ak − k

k−1∑

n=1

anak−n + 2k

∞∑

n=1

anan+k (29)

onto (a1, . . . , a10) variables. The above system describes solutions to the one-
dimensional Kuramoto-Sivashinsky PDE [19, 37] under periodic and odd bound-
ary conditions, see [48, 49] for derivation.
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Figure 3: Approximate periodic orbits for (a) the Lorenz system (26), (b)
Hénon-Heiles hamiltonian (27), (c) the PCR3BP (28) and (d) a the 10-
dimensional Galerkin projection of the Kuramoto-Sivashinsky equation (29),
respectively.

We have chosen initial conditions that are close to periodic orbits of these
systems (see Fig. 3)

uLorenz = (−2.1473681756955529387, 2.078047612582596404, 27),

uHénon-Heiles = (0.0, 0.10903, , 0.5677233993382853, 0.0),

uPCR3BP = (0.92080349132074, 0.0, 0.0, 0.1044476727069111) and

uKS =




0.2012106
1.2899797585174486

0.2012106
−0.37786628185377774
−0.042309451521292417
0.043161614695331821
0.0069402112803455653
−0.0041564870501656455
−0.00079448972725675504
0.00033160609117820303




.

For the two Hamiltonian systems, the coordinates are given in the order (x, y, ẋ, ẏ).
The orbit uPCR3BP is the well known L1 Lyapunov orbit for the Sun-Jupiter-
Oterma system. In [48], a computer assisted proof of the existence of a periodic
solution for the full infinite dimensional system (29) is given. The projection of
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this periodic orbit onto the first 10 coordinates is very close to the point uKS.
In fact, due to very strong dissipation, the variables with high indexes have very
small impact on the dynamics of (29). The system becomes very stiff even for
relative small dimension of the Galerkin projection.

Figure 4: The results of the tests for the Lorenz system. We plot S(t) =
log10 diam([V (t)]) along trajectory of the point uLorenz integrated with order m
and with fixed time step h.

In Figs. 4–7 we present results of our numerical experiments. On these
figures we show plot of S(t) = log10 diam([V (t)]) along an approximate periodic
trajectory, where diam([V (t)]) is the largest width of coefficient in the interval
matrix [V (t)]. We can see that in each case the C1-HO method does not return
worse results than the C1-Lohner algorithm. This is due to its construction,
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Figure 5: The results of the tests for the Hénon-Heiles system. We plot
S(t) = log10 diam([V (t)]) along trajectory of the point uHénon-Heiles integrated
with order m and with fixed time step h.
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Figure 6: The results of the tests for the PCR3BP. We plot S(t) =
log10 diam([V (t)]) along trajectory of the point uPCR3BP integrated with order
m and with fixed time step h.
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Figure 7: The results of the tests for the 10-dimensional Galerkin projection of
the Kuramoto-Sivashinsky equation. We plot S(t) = log10 diam([V (t)]) along
trajectory of the point uKS integrated with order m and with fixed time step h.
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because the bounds computed in the corrector step are intersected with the
estimates from the predictor step, which is used in the C1-Lohner algorithm.
Indeed, in the Algorithm 2 we have

[V ]←
(
[R] + [S][V 0]

)
∩ [V 0].

Looking at the columns of Figs. 4, 5 and 6, we observe that in each case the
advantage of the C1-HO method increases when the time step is enlarged, and
the obtained bounds can be orders of magnitude tighter. This is due to the fact
that the C1-HO method has cq,pq times tighter truncation error than the Taylor
method. To give some numbers, let us take m = 20 which is a typical order
used in computations. Then p = q = 10 and cq,pq = c10,1010 ≈ 5.4 · 10−6.

Increasing the order of the method makes the truncation error of the C1-
Lohner method smaller when the time step is fixed. Therefore, in the right
columns of each figure we observe that the C1-Lohner method performs much
better than in the left column. The C1-HO method, however, still returns tighter
enclosures and is capable to take even larger time steps without significant lost
of accuracy. This is especially important for stiff problems, where the time
steps used by a nonstiff solver cannot be large and thus integration over large
time interval is very expensive. We would like to emphasize, that the maximal
possible time step that a rigorous ODE solver can take is limited mainly by
the possibility of finding a rough enclosure over the time step. To the best of
our knowledge, the HOE algorithm [30], which is nonstiff, is one of the most
efficient. Therefore construction of a general rigorous stiff ODE solver without
extra knowledge of the system is a challenge. Remarkable exceptions are solvers
for infinite-dimensional strongly dissipative systems [11, 48], where the structure
of the system is used to construct a dedicated so-called dissipative enclosure.

In Fig. 7 we can see that the C1-HO method can perform much larger time
steps keeping very good accuracy of computed bounds.

The bounds obtained by the C1-HO method are tighter than those returned
by the C1-Lohner algorithm, but as we observed in Section 3, the C1-HO method
is computationally more expensive. In the next section, we argue that this extra
cost per step is compensated by the larger time steps we can take.

5 Applications.

In this section, we present an application of the proposed algorithm to a computer-
assisted proof of a new result concerning the Rössler system [36]. We focus on
the comparison of the time of computation needed to prove this result, when the
C1-Lohner algorithm and the C1-HO algorithm are used to integrate variational
equations, which are necessary to prove this theorem.

The classical Rössler system [36] is given by (2). When the two parameters
a, b vary, the system exhibits wide spectrum of bifurcations. This system admits
period doubling bifurcations [44], which lead to chaotic dynamics [46]. In [33],
the existence of two periodic orbits was proved by means of the Conley index
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theory. All the above results about the system (2) are computer assisted and
use rigorous ODE solvers.

Figure 8: Typical chaotic trajectory of the system (2) and a slice of the Poincaré
section Π.

Let Π = {(x, y, z) ∈ R
3 : x = 0 and ẋ > 0} be a Poincaré section (see Fig. 8)

and let P : Π→ Π be the Poincaré map. Since the x coordinate is equal to zero
on Π, we use only two coordinates (y, z) to describe points on Π.

Theorem 4 Let lB = −10.7, rB = −2.3, lM = −8.4, rM = −7.6, lN = −5.7,
rN = −4.6, Z = [0.028, 0.034] and let

B = [lB, rB ]× Z,

M = [lM , rM ]× Z and

N = [lN , rN ]× Z.

For the classical parameter values a = 0.2, b = 5.7 the following statements
hold.

• The system (2) admits an attractor. The set B is a trapping region for the
Poincaré map, i.e. P is well defined on B and P (B) ⊂ B. In particular,
there exists a maximal invariant set A =

⋃
n>0 P

n(B) for the map P that
is compact and connected.

• The maximal invariant set for P 2 in N ∪M , denoted by H = inv(P 2, N ∪
M) ⊂ A, is uniformly hyperbolic; in particular it is robust under pertur-
bations of the system. The dynamics of P 2 on H is chaotic in the sense
that P 2|H is conjugated to the Bernoulli shift on two symbols.

Proof: The tools used in a computer-assisted proof of Theorem 4 are well
known, and we summarize them here.
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Figure 9: Geometric conditions that guarantee the existence of chaotic dynamics
— see (31).

Trapping region. Verification that B is a trapping region for P reduces to
checking the inclusion

P (B) ⊂ B.

We uniformly subdivided the set B onto N = 160 pieces of the form Bi =
[yi, yi+1]× Z, yi = lB + i · (rB − lB)/N . Then we verified that

N⋃

i=1

P (Bi) ⊂ B. (30)

We used a rigorous ODE solver of order 25 from the CAPD library which imple-
ments the C0 Hermite-Obreshkov algorithm proposed in [29]. Rigorous enclosure
for P (B) returned by our routine is shown in Fig. 10.

Figure 10: The set B (in red) and a rigorous enclosure for P (B) (in yellow)

obtained as the union of enclosures
⋃160

i=1 P (Bi) — see (30).
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Chaos. Semiconjugacy of P 2|H to the Bernoulli shift is proved by means of
the method of covering relations — the same as in [46] but applied to different
sets. It is sufficient to check the following geometric conditions

πyP
2(y, z) < lM for(y, z) ∈ {lM} × Z,

πyP
2(y, z) > rN for(y, z) ∈ {rM} × Z,

πyP
2(y, z) < lM for(y, z) ∈ {rN} × Z and

πyP
2(y, z) > rN for(y, z) ∈ {lN} × Z,

(31)

where πy denotes the canonical projection onto the y coordinate. The geometry
of these conditions is shown in Fig. 9. For the precise statement of a general
theorem concerning, the method of covering we refer to [46].

The conditions (31) have been verified in direct computation. We did not
need to subdivide any of the four edges of N and M that appear in (31).
Rigorous bounds on P 2({lM}×Z), P

2({rM}×Z), P
2({lN}×Z) and P

2({rN}×
Z), returned by our routine, are shown in Fig. 11.

Figure 11: The sets M and N and rigorous enclosures of the images of their
exit edges — see (31).

Hyperbolicity and full conjugacy. Uniform hyperbolicity of H is proved
by means of the cone condition introduced in [17]. Here we use our algorithm
for integration of variational equations. Derivatives with respect to initial con-
ditions are necessary for computation of the derivative of Poincaré map P 2. Let
Q be a diagonal matrix Q = Diag(λ, µ) with arbitrary coefficients satisfying
λ > 0 and µ < 0. It has been shown [41] that if for all (y, z) ∈ N ∪M the
matrix

DP 2(y, z)T ·Q ·DP 2(y, z)−Q (32)

is positive definite, then the maximal invariant set for P 2 in N ∪M is uniformly
hyperbolic. In our computations we used λ = 1 and µ = −1000.
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We uniformly subdivided both sets N and M onto 48 and 32 equal pieces,
respectively (only y coordinate was subdivided). Then, each rectangle was sub-
mitted to our routine that integrates the first order variational equations and
computes derivative of the Poincaré map P 2. Given a rigorous bound of the
derivative, we checked successfully the condition (32). Note that in the case of
2× 2 matrix it is easy to check positive definiteness of a matrix by the Sylvester
criterion.

5.1 Comparison of time of computation.

In the section, we discuss how the CPU-time needed for verification of the
uniform hyperbolicity in Theorem 4 depends on the choice of the algorithm used
to integrate variational equations. To this end, we did the following numerical
experiment. For fixed parameters

• m — the order of numerical method,

• tol — truncation error per one step of the numerical method,

• Alg — the algorithm used to integrate variational equations (C1-Lohner
or C1-HO algorithm)

we compute the following three numbers

• gN (m, tol), gM (m, tol) — minimal natural numbers, such that using algo-
rithm Alg, the method of order m with the tolerance tol we were able to
check the cone condition (32) subdividing uniformly the sets N , M onto
gN and gM parts, respectively,

• t(Alg) — CPU time of checking the cone condition on both sets N and
M with the algorithm and parameters as above.

Let us emphasize that the vector field of the Rössler system (2) contains only
one nonlinear term. Hence, we have cf = 1, and this is almost the worst linear
case for the C1-HO method when the complexity is dominated by the matrix
operations and the expected time savings from the C1-HO method are smaller
— see analysis in Section 3.

In Table 1, we present results from this experiment. We see that in each
case the C1-HO algorithm is faster than the C1-Lohner algorithm. Higher com-
putational complexity of the C1-HO algorithm is compensated by significantly
smaller truncation error. Therefore, a routine that predicts the time step (the
same routine was used in both cases) returns larger time steps for the C1-HO
algorithm, and in consequence, the total computing time is smaller. We also
notice that in some cases decreasing the tolerance increases the number of subdi-
visions gN and gM needed to check the cone condition — see for instance the row
with m = 14 and tol = 10−14. This is a consequence of many heuristics made
in the implementation (for instance reorganization of doubleton representation
after reaching some threshold values). These heuristics make the algorithm
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C1-Lohner C1-HO

m tol gM gN t(LO) gM gN t(HO)
t(LO)

t(HO)

10 10−10 39 33 0.90 48 32 0.82 1.10

10 10−12 38 31 1.29 37 31 1.02 1.26

10 10−14 25 31 1.69 23 30 1.20 1.41

10 10−16 25 28 2.25 24 25 1.67 1.35

14 10−10 45 52 1.13 48 48 0.84 1.34

14 10−12 42 39 1.22 41 36 0.90 1.35

14 10−14 47 33 1.65 49 33 1.21 1.36

14 10−16 36 32 1.70 36 31 1.38 1.23

18 10−10 63 77 1.67 62 56 1.20 1.40

18 10−12 48 56 1.41 63 49 1.26 1.12

18 10−14 44 43 1.76 47 38 1.18 1.50

18 10−16 40 37 1.91 54 34 1.44 1.33

22 10−10 151 95 3.36 101 67 1.93 1.74

22 10−12 78 78 2.44 59 58 1.81 1.35

22 10−14 52 61 2.05 61 49 1.56 1.32

22 10−16 45 41 1.80 47 47 1.53 1.17

Table 1: Comparison of C1-Lohner and C1-HO algorithms.

28



discontinuous with respect to parameters. Moreover, decreasing the tolerance
increases number of time steps needed to compute a full trajectory. This may
result in weaker control of unavoidable wrapping effect.

6 Conclusions.

Since the C1-Lohner algorithm appeared [47] it has been proved to be very useful
in rigorous analysis of ODEs. In this paper, we proposed an efficient alternative
for this algorithm and we provided free implementation of both C1-Lohner and
C1-HO algorithms available as a module of the CAPD library [6]. Numerical
tests show that the C1-HO algorithm is slightly faster than the widely used
C1-Lohner algorithm. We have shown that the C1-HO algorithm may be faster
in practical applications. This is not very important when the total time of
computation is counted in seconds, as we have seen in Section 5. Any progress
matters, however, if a problem requires hundreds or thousands CPU hours: for
example verification of the existence of an uniformly hyperbolic attractor of the
Smale-Williams type [41] or the coexistence of chaos and hyperchaos in the 4D
Rössler system [2, 42]. In the computation reported in [2, 42], the proposed
C1-HO algorithm has been used.

In [45], an algorithm for integration of higher order variational equations is
presented. Ideas from Section 2 can be directly used to design and implement
an algorithm, let us call it Cr-HO, with the Cr-Lohner method as a predictor
step. This requires encoding rather than theoretical effort and, we hope, this
implementation will be available soon as part of the CAPD library [6].
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