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Abstract

Obtaining the transient probability distribution vector of a continuous-time Markov chain
(CTMC) using an implicit ordinary differential equation (ODE) solver tends to be advanta-
geous in terms of run-time computational cost when the product of the maximum output rate
of the CTMC and the largest time of interest is large. In this paper, we show that when ap-
plied to the transient analysis of CTMCs, many implicit ODE solvers are such that the linear
systems involved in their steps can be solved by using iterative methods with strict control of
the 1-norm of the error. This allows the development of implementations of those ODE solvers
for the transient analysis of CTMCs that can be more efficient and more accurate than more
standard implementations.
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1 Introduction

Consider a finite continuous-time Markov chain (CTMC) X = {X(t); t ≥ 0} with infinitesimal
generator. The state space of X will be denoted by Ω = {1, . . . ,m}, its initial probability distribu-
tion (column) vector by p0, and the transpose of its infinitesimal generator by Q = (qi,j)1≤i,j≤m ,
i.e., qi,j , i 6= j, will denote the transition rate from state j to state i and |qi,i| = −qi,i =

∑m
j=1
j 6=i

qj,i

will denote the output rate from state i. In this paper, we will be concerned with the computation
of the transient probability distribution vector of X, p(t) = (P [X(t) = i])1≤i≤m , t ≥ 0, when Q is
large and sparse.

When Q is large, the only practical methods to compute p(t) are uniformization (also called ran-
domization) [1, 2], uniformization-based methods (see, e.g., [3], [4], [5]), the Krylov-based method
described in [6], and formulating p(t) as the solution of an initial value problem (IVP) for the
Kolmogorov system of ordinary differential equations (ODEs) and solving the IVP using an ODE
solver. When qt� 1, where q = max1≤i≤m |qi,i|, this latter alternative can be very attractive from
the point of view of run-time computational cost. The IVP to be solved is

dp(t)

dt
= Q p(t), t ≥ 0 ,

p(0) = p0 .

(1)

That IVP is stable because, using the Gershgorin circle theorem [7], which states that the eigenval-
ues of QT, which are the same as those of Q, lie in the union of the m discs in the complex plane
with centers qi,i ≤ 0 and radii

∑m
j=1
j 6=i
|qj,i| = |qi,i|, it turns out that the eigenvalues of Q different
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from 0 have negative real part. As in [8], we will say that the IVP (1) is stiff if qt � 1. That
such a stiffness criterion is reasonable is argued in [8] as follows. For each distinct eigenvalue λj
of Q, component i of p(t), 1 ≤ i ≤ m, will include a factor of the form

∑mj−1
k=0 ci,j,kt

keλjt, where
mj denotes the multiplicity of λj and the ci,j,k are appropriate constants. Consequently, when
maxj |λj |t � 1, we can expect p(t) to have components with large relative variation in the time
interval [0, t), making the IVP (1) stiff. But, again by the Gershgorin circle theorem, maxj |λj |
is bounded from above by ‖Q‖1 = 2q. Therefore, if qt � 1, it is reasonable to expect the IVP
(1) to be stiff. For an ODE solver applied to the solution of the IVP (1) to be effective when the
IVP is stiff, the ODE solver should be implicit and, preferably, A-stable [9]. In this paper, we will
consider the use of implicit ODE solvers to solve the IVP (1).

Several papers have considered the use of implicit ODE solvers for solving the IVP (1) [8, 10,
11, 12, 13, 14, 15, 16]. In [8], the performance of TR-BDF2 [17], an L-stable [18] linear two-step
implicit ODE solver, was analyzed. The conclusions were that the run-time computational cost of
TR-BDF2 was lower than the run-time computational cost of both uniformization and the explicit
ODE solver RKF45 [19], but that, being only a second-order method, it required a small step size
to achieve high accuracies. In [10], TR-BDF2 and a third-order L-stable implicit Runge-Kutta
ODE solver (IRK3) were compared between them and with several uniformization variants. The
conclusions were that both TR-BDF2 and IRK3 were preferable to the uniformization variants
and that when the required accuracy was high, the run-time computational cost of IRK3 was
lower than that of TR-BDF2. The performances of TR-BDF2 and IRK3 were analyzed in [11]
for the case in which X is nearly completely decomposable [20], with the conclusion that those
implicit ODE solvers should be implemented exploiting the near complete decomposability of X.
In [12], the performance of IRK3 was analyzed when X is acyclic so that Q can be put into
lower triangular form and the linear system involved in each step of the method can be solved
very efficiently using direct methods. The conclusions were that IRK3 could be highly accurate
and that its run-time computational cost was lower than the run-time computational cost of a
uniformization variant and lower than the run-time computational cost of an improved version of
an specific method for the transient analysis of acyclic CTMCs [21]. In [13], it was proposed to
combine RKF45 and either TR-BDF2 or IRK3 in such a way that RKF45 is used up to some
intermediate time and the other method is used from that point on. The result was a significant
reduction in run-time computational cost compared with any of the ODE solvers used in isolation.
In [14], the performance of several ODE solvers was analyzed (implicit Euler [22], trapezoidal rule
[22], 2-stage Radau IIA [18, 23], 2-stage Gauss [24], a singly diagonally implicit Runge-Kutta ODE
solver of order two with two stages, and another one of order three with two stages) with the
conclusion that the trapezoidal rule implemented using extrapolation, which gives a fourth-order
implicit method, was a good alternative. In [15], it was proposed to combine uniformization and
TR-BDF2 in such a way that uniformization is used up to some intermediate time and TR-BDF2 is
used from that point on with significant reductions in run-time computational cost compared with
TRB-BDF2 and uniformization. Finally, in [16] some of the ODE solvers in the VODPK package
[25] were compared with uniformization and with the Krylov-based method described in [6], with
the conclusion that for ‖Q‖t > 500, the Krylov-based method and a variant of the implicit ODE
solver based on backward differentiation formulae (BDFs) with variable coefficients available in
the package had a run-time computational cost lower than that of uniformization.

Applied to the IVP (1), an ODE solver produces approximations pn, n = 0, 1, . . . , to p(tn)
at a set of time points tn starting from t0 = 0 and p0 = p0. Step n ≥ 1 spans the solution
from t = tn−1 to t = tn and has step size hn = tn − tn−1. If the ODE solver is implicit,
computing the approximation pn, n = 1, 2, . . . , requires solving one or more linear systems of
equations with matrices related to Q. In the case of the implicit ODE solvers considered in
[8, 10, 11, 12, 13, 14, 15, 16], the linear systems were solved by using iterative methods including
Gauss-Seidel (GS) [26], a mixture of Jacobi [26] and GS, successive overrelaxation (SOR) [26],
and a variant of restarted GMRES [27]. The convergence of some of those methods was only
analyzed in [14], where it was noted that the Jacobi method was guaranteed to converge for some
of the implicit ODE solvers considered. At the best of the authors’ knowledge, the impact of the
errors with which the linear systems are solved has never been explicitly analyzed. It is clear,
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however, that if those errors are large, they can affect adversely not only the accuracy but also
the run-time computational cost of the ODE solvers. Roughly speaking, the reason is that those
errors may introduce significant spurious components in the computed solution associated with
eigenvalues of Q of large absolute value, which are the ones that will limit most the step size and,
then, to reduce to an acceptable level the impact of those spurious components in the error of the
computed solution, the ODE solver may be forced to take steps smaller than the ones it would
take if those errors were absent. The errors introduced in the solution of the linear systems will be
referred to as step approximation errors. To clarify, the local error at step n of the ODE solver,
en = pn − eQhnpn−1, has three components. The first component, called here the inherent local
error, reflects the inherent error of the approximation formula underlying the ODE solver and is
in = p+

n − eQhnpn−1, where p+
n is pn computed exactly. The second component, which is the one

that we call step approximation error, reflects the error introduced by solving the linear systems
using iterative and, hence, inexact methods. Formally, that error is sn = p̂n−p+

n , where p̂n is pn
computed by solving the linear systems using iterative methods, ignoring the impact of round-off
errors. The third component of the local error collects the impact of round-off errors on pn.

The 1-norm is a convenient norm for measuring and controlling local error components for the

IVP (1). The reason is that (eQτ )
T

= eQ
Tτ , τ ≥ 0, being a stochastic matrix, we have ‖eQτ‖1 = 1,

τ ≥ 0, implying that, measured in the 1-norm, local errors will not be amplified as they propagate
through the solution to define the global error. Therefore, according to the discussion in the
previous paragraph, it is convenient that ‖sn‖1, n = 0, 1, . . . , be small enough. But, ‖sn‖1 will be
determined by the stopping criterion of the iterative method with which the involved linear systems
are solved and unless there exists strict control of ‖sn‖1, any reasonable implementation of the
ODE solver will have to use heuristic stopping criteria trying to guarantee that ‖sn‖1 are indeed
small enough. If such criteria are optimistic, in the sense that the actual ‖sn‖1 are larger than
the intended ones, the ODE solver may be forced to take smaller steps than necessary, impacting
adversely the run-time computational cost of the ODE solver. On the contrary, if the stopping
criteria are pessimistic, the number of required iterations in the solution of the linear systems can
be larger than necessary, again impacting adversely the run-time computational cost of the ODE
solver. In conclusion, having strict control of the step approximation errors can be convenient from
the point of view of both the quality of control of the error and the run-time computational cost
of the ODE solver.

In this paper, we show that when applied to the IVP (1), many implicit ODE solvers are such
that, using a known upper bound for the ∞-norm of the inverse of a strictly diagonally dominant
matrix, the properties of the matrix Q allow to adapt some classes of iterative methods to solve
the linear systems with strict control of the 1-norm of the step approximation error. Using some
of the adapted iterative methods, we will describe an implementation with strict control of the
1-norm of the step approximation error of an implicit ODE solver based on BDFs with variable
coefficients and will show, using numerical experiments, that that implementation can be more
efficient and more accurate than a reasonable standard implementation.

The rest of the paper is organized as follows. In Section 2, we show how two classes of iterative
methods to solve linear systems can be modified to provide strict error control when applied
to linear systems with strictly diagonally dominant matrices. In Section 3, we identify three
classes of implicit ODE solvers that when applied to the IVP (1), the properties of the matrix
Q allow to solve the linear systems involved in each step by using iterative methods with the
modifications discussed in Section 2 with strict control of the 1-norm of the step approximation
error. In Section 4, we review an implicit ODE solver based on BDFs with variable coefficients when
applied to the IVP (1) and describe two implementations of that ODE solver: An implementation
that provides strict control of the 1-norm of the step approximation error and a reasonable standard
implementation that does not provide such a control. In Section 5, we compare the performance
of the implementation of VBDF with strict control of the 1-norm of the step approximation error
with that of the standard implementation. Finally, Section 6 presents the conclusions. The online
supplement collects the mathematical proofs of some theoretical results used in the paper.
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2 Strictly Diagonally Dominant Matrices and Iterative Meth-
ods

Assume we want to solve the linear system

Vx = u , (2)

where V = (vi,j)1≤i,j≤n is a real or complex nonsingular matrix of dimension n. This section shows
how iterative methods that produce the residual after each iteration or after a predefined number
of iterations and splitting-based iterative methods can be modified to provide strict control of the
error of the solution of (2), ignoring the impact of round-off errors.

Iterative methods producing the residual after each iteration or after a predefined number
of iterations include well-known Krylov subspace methods such as restarted GMRES, CGS [28],
the implementation of QMR described in [29], and Bi-CGSTAB [30]. Splitting-based iterative
methods include GS, Jacobi, and SOR. In all those iterative methods, iterates x(l), l = 0, 1, 2, . . .
are obtained which should converge to the solution of the linear system.

We will say that V is strictly row diagonally dominant (SRDD) if |vi,i| >
∑n

j=1
j 6=i
|vi,j |, 1 ≤ i ≤ n.

This collects the usual notion of a strictly diagonally dominant matrix. Similarly, V will be said
to be strictly column diagonally dominant (SCDD) if |vi,i| >

∑n
j=1
j 6=i
|vj,i|, 1 ≤ i ≤ n. Note that,

using the Gershgorin circle theorem [7] and the fact that a matrix and its transpose have the same
eigenvalues, both SRDD and SCDD matrices are nonsingular, since the union of the corresponding
Gershgorin circles does not include the origin.

The following proposition collects several results that can be easily obtained from a well-known
result on the ∞-norm of the inverse of an SRDD matrix [31, 32].

Proposition 1. Consider the linear system (2) and let y be an arbitrary vector of dimension n.
Then:

1. If V is SRDD,

‖V−1‖∞ ≤
1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

.

2. If V is SCDD,

‖V−1‖1 ≤
1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

.

3. If V is SRDD,

‖x− y‖∞ ≤
‖u−Vy‖∞

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

.

4. If V is SCDD,

‖x− y‖1 ≤
‖u−Vy‖1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

.

Proof. See the online supplement.

Consider the application to the solution of (2) of iterative methods that produce the residual,
u−Vx(l), after each iteration or after a predefined number of iterations. The following theorem,
which is an almost direct consequence of Proposition 1, specifies when to stop the iterations to
provide strict control of the ∞-norm or the 1-norm of the error.

Theorem 1. Let δ > 0 and consider the application to the solution of (2) of an iterative method
that produces the residual after each iteration or after a predefined number of iterations. If the
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matrix V is SRDD, to guarantee, if the method is successful, ‖x− x(l)‖∞ ≤ δ, l ≥ 0, it suffices to
stop the method when the residual satisfies

‖u−Vx(l)‖∞ ≤ δ min
1≤i≤n

{
|vi,i| −

n∑
j=1
j 6=i

|vi,j |
}
,

and, if the matrix V is SCDD, to guarantee, if the method is successful, ‖x− x(l)‖1 ≤ δ, l ≥ 0, it
suffices to stop the method when the residual satisfies

‖u−Vx(l)‖1 ≤ δ min
1≤i≤n

{
|vi,i| −

n∑
j=1
j 6=i

|vj,i|
}
.

Proof. See the online supplement.

Often, restarted GMRES, CGS, QMR, and Bi-CGSTAB use preconditioning to speed up their
convergence. Preconditioning means replacing the linear system (2) by the equivalent one

M−1
1 VM−1

2 y = M−1
1 u, y = M2x ,

where M1 and M2 are the left- and right-preconditioner. In practice, it is not necessary to use both
preconditioners. Theorem 1 also holds for the particular case of right-preconditioned methods, i.e.,
when M1 is an identity matrix, which still produce the true residual.

Splitting-based iterative methods are based on an splitting of V, V = M−N, and are defined
by the recurrence

x(l+1) = M−1Nx(l) + M−1u . (3)

With the decomposition V = D + L + U, where D is the diagonal of V, L is the strict lower part
of V, and U is the strict upper part of V, Jacobi is obtained for M = D and N = −(L + U),
GS for M = D + L and N = −U, and SOR with relaxation parameter ω for M = D/ω + L and
N = ((1− ω)/ω)D−U. Strict diagonal dominance by rows of the matrix V ensures convergence
of Jacobi and convergence of SOR for 0 < ω < 2/(1 + ρJ), where ρJ denotes the spectral radius of
the Jacobi iteration matrix −D−1(L + U) [33]. From [34], strict diagonal dominance by columns
of the matrix V also ensures convergence of Jacobi. Finally, strict diagonal dominance by rows or
by columns of the matrix V ensures convergence of GS [34].

Consider the application to the solution of (2) of splitting-based iterative methods. The fol-
lowing theorem specifies when to stop the iterations to provide strict control of the∞-norm or the
1-norm of the error.

Theorem 2. Let δ > 0 and consider the application to the solution of (2) of an splitting-based
method defined by (3). If the matrix V is SRDD, to guarantee, if the method is successful, ‖x −
x(l)‖∞ ≤ δ, l ≥ 1, it suffices to stop the method when

‖x(l) − x(l−1)‖∞ ≤ δ
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vi,j |}

‖N‖∞
,

and, if the matrix V is SCDD, to guarantee, if the method is successful, ‖x− x(l)‖1 ≤ δ, l ≥ 1, it
suffices to stop the method when

‖x(l) − x(l−1)‖1 ≤ δ
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vj,i|}

‖N‖1
.

Proof. See the online supplement.
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3 Strict Control of the Step Approximation Error

This section will identify three classes of implicit ODE solvers such that when applied to the
IVP (1), ignoring the impact of round-off errors, the properties of the matrix Q allow to solve the
linear systems involved in each step by using iterative methods with strict control of the 1-norm
of the step approximation error.

Before identifying the classes, we need to describe briefly implicit Runge-Kutta (IRK) ODE
solvers and linearly implicit Runge-Kutta (LIRK) ODE solvers (also called Rosenbrock ODE
solvers). A step of an s-stage IRK ODE solver applied to the IVP (1) is defined by

pn = pn−1 + hn

s∑
j=1

bjQ gj , n = 1, 2, . . . ,

where the stage vectors gi, k = 1, . . . , s, are the solution to the m × s-dimensional linear system

gi = pn−1 + pn−1 + hn

s∑
j=1

ai,jQ gj , i = 1, . . . , s .

The real quantities ai,j , bj , 1 ≤ i, j ≤ s, are coefficients of the IRK ODE solver and at least one
coefficient ai,j , j ≥ i, is nonzero. Let A = (ai,j)1≤i,j≤s and b = (bi)1≤i≤s. Also, let ⊗ denote the
Kronecker product, let 1k denote an all-ones vector of dimension k, and let In denote an identity
matrix of dimension n. In practice [22], it is more convenient to introduce the vectors

zi = gi − pn−1, 1 ≤ i ≤ s ,

and z = (z1
T, . . . , zs

T)
T

and formulate the IRK ODE solver as

(Is ⊗ Im − hnA⊗Q)z = hn(A 1s)⊗ (Q pn−1), (4)

pn = pn−1 + hn(bT ⊗ Im)
(
(Is ⊗Q)z + 1s ⊗ (Qpn−1)

)
. (5)

If the matrix A is invertible, we have, from (4),

(A−1 ⊗ Im)z = hn
(
(Is ⊗Q)z + 1s ⊗ (Qpn−1)

)
and, therefore, denoting dT = (d1, . . . , ds) = bTA−1, (5) is equivalent to the more convenient
expression

pn = pn−1 + (dT ⊗ Im)z . (6)

For the IVP (1), a step of an s-stage LIRK ODE solver is defined by

pn = pn−1 +

s∑
j=1

βjηj , n = 1, 2, . . . ,

where the vectors ηi, i = 1, . . . , s are the solution to the m × s-dimensional linear system

ηi = hnQpn−1 + hnQ
( i−1∑
j=1

(αi,j + γi,j)ηj + γi,iηi

)
, i = 1, . . . , s .

The real quantities αi,j , βi, γi,k, 1 ≤ i ≤ s, 1 ≤ j ≤ i − 1, 1 ≤ k ≤ i, are the coefficients of the
LIRK ODE solver. Let Θ = (θi,j)1≤i,j≤s = (γi,j + αi,j)1≤i,j≤s. If Θ is invertible, then, denoting

Θ−1 = (θ
(−1)
i,j )1≤i,j≤s and defining ω = (ω1

T, . . . ,ωs
T)

T
= (Θ⊗ Im)(η1

T, . . . ,ηs
T)

T
, the method

is more conveniently formulated as

(Θ−1 ⊗ Im)ω = Is ⊗ (hnQpn−1) + (Is ⊗ hnQ)ω, (7)

pn = pn−1 +
((

(β1, . . . , βs)Θ
−1)⊗ Im

)
ω = pn−1 +

s∑
k=1

( s∑
j=k

βjθ
(−1)
j,k

)
ωk . (8)
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We claim that when applied to the IVP (1), the following three classes of implicit ODE solvers
are such that the linear systems involved in each step can be solved by using iterative methods
with strict control of the 1-norm of the step approximation error:

1. Implicit ODE solvers for which pn is the solution to a linear system of the form

(a(n)Im −Q)pn = un, n = 1, 2, . . . , (9)

where a(n) > 0 for all n.

2. IRK ODE solvers such that either ai,j = 0 for all j > i (such ODE solvers are called diagonally
implicit Runge-Kutta —DIRK— ODE solvers ), a1,1 ≥ 0, and ai,i > 0 for all i ≥ 2, or else
the matrix A is invertible and the eigenvalues of A−1 are all distinct and have positive real
part.

3. LIRK ODE solvers with γi,i > 0 for all i.

To justify the claim, we will need the following two results. The first one states that under
certain conditions, a matrix of the form (χ + jω)Im − ξQ, where χ, ω, ξ are real quantities and
j =
√
−1, is SCDD. The second result will be needed to justify the claim in the case of DIRK and

LIRK ODE solvers.

Proposition 2. Let χ, ω, ξ be real quantities satisfying χ ξ > 0, or χ = 0, ω 6= 0. Then, the
possibly complex matrix V = (vi,j)1≤i,j≤m = (χ+ jω)Im − ξQ is SCDD and

min
1≤i≤m

(
|vi,i| −

m∑
j=1
j 6=i

|vj,i|
)

= |χ+ jω + ξq| − |ξ|q .

Proof. See the online supplement.

Proposition 3. Let n be a positive integer, let χk,j, ξk,j, 1 ≤ k, j ≤ n, be real quantities such
that χk,kξk,k > 0, and consider the sets of vectors {xk, 1 ≤ k ≤ n : (χk,kIm − ξk,kQ)xk =

uk +
∑k−1
j=1 (ξk,jQ + χk,jIm)xj}, {x̃∗k, 1 ≤ k ≤ n}, and {x∗k, 1 ≤ k ≤ n : (χk,kIm − ξk,kQ)x∗k =

uk +
∑k−1
j=1 (ξk,jQ + χk,jIm)x̃∗j}, where uk, 1 ≤ k ≤ n, are real vectors. Then,

‖xk − x̃∗k‖1 ≤
k−1∑
j=1

(
2|ξk,j |min

{ q

|χk,k|
,

1

|ξk,k|
}

+
|χk,j |
|χk,k|

)
‖xj − x̃∗j‖1 + ‖x∗k − x̃∗k‖1, 1 ≤ k ≤ n .

Proof. See the online supplement.

We will now justify that the linear systems involved in each of the three classes of ODE solvers
previously mentioned can be solved by using iterative methods with strict control of the 1-norm
of the step approximation error.

3.1 Class 1

This class includes the implicit ODE solvers for which pn is the solution to (9) with a(n) > 0,
n = 1, 2, . . . . By Proposition 2 with χ = a(n), ω = 0, and ξ = 1, it follows that the matrix V =
(vi,j)1≤i,j≤m = a(n)Im−Q is SCDD and that min1≤i≤m{|vi,i|−

∑m
j=1
j 6=i
|vj,i|} = |a(n)+q|−q = a(n).

Therefore, given ε > 0, if the linear system (9) is solved using iterative methods that produce the
residual after each iteration or after a predefined number of iterations, with stopping criterion

‖un − (a(n)Im −Q)p(l)
n ‖1 ≤ ε a(n), l ≥ 0 , (10)
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or is solved using splitting-based iterative methods defined by (3) with x = pn, M−N = a(n)Im−
Q, and u = un, with stopping criterion

‖p(l)
n − p(l−1)

n ‖1 ≤ ε
a(n)

‖N‖1
, l ≥ 1 , (11)

by Theorems 1 and 2 with δ = ε and min1≤i≤m{|vi,i| −
∑m

j=1
j 6=i
|vj,i|} = a(n) we will have ‖sn‖1 ≤ ε,

i.e., strict control of the 1-norm of the step approximation error.1

3.2 Class 2

This class includes DIRK ODE solvers with a1,1 ≥ 0, and ai,i > 0 for all i ≥ 2 and IRK ODE
solvers such that the matrix A is invertible and the eigenvalues of A−1 are all distinct and have
positive real part.

Consider first an s-stage DIRK ODE solver with ai,i > 0, 1 ≤ i ≤ s. In this case, the m × s-
dimensional linear system (4) can be split into a set of s coupled linear systems of dimension m
each, ( 1

hnak,k
Im −Q

)
zk =

1

ak,k

( k∑
j=1

ak,j

)
Qpn−1 +

k−1∑
j=1

ak,j
ak,k

Qzj , k = 1, . . . , s .

These linear systems can be solved for increasing values of k starting at k = 1. This implies that
the linear systems actually dealt with will be

( 1

hnak,k
Im −Q

)
z∗k =

1

ak,k

( k∑
j=1

ak,j

)
Qpn−1 +

k−1∑
j=1

ak,j
ak,k

Qz̃∗j , k = 1, . . . , s , (12)

where z̃∗k, 1 ≤ k ≤ s, denotes the computed approximation for z∗k. Let V = (vi,j)1≤i,j≤m =
(1/(hnak,k))Im −Q. By Proposition 2 with χ = 1/(hnak,k), ω = 0, and ξ = 1, it follows that the
matrix V is SCDD and that min1≤i≤m{|vi,i| −

∑m
j=1
j 6=i
|vj,i|} = |1/(hnak,k) + q| − q = 1/(hnak,k).

Therefore, if the kth linear system (12) is solved using iterative methods that produce the residual
after each iteration or after a predefined number of iterations, with stopping criterionwwww 1

ak,k

( k∑
j=1

ak,j

)
Qpn−1 +

k−1∑
j=1

ak,j
ak,k

Qz̃∗j −
( 1

hnak,k
Im −Q

)
z
∗(l)
k

wwww
1

≤ δ 1

hnak,k
, l ≥ 0 , (13)

for some δ > 0, or is solved using splitting-based iterative methods defined by (3) with x = z∗k,

M −N = (1/(hnak,k))Im −Q, and u = (1/ak,k)(
∑k
j=1 ak,j)Qpn−1 +

∑k−1
j=1 (ak,j/ak,k)Qz̃∗j , with

stopping criterion

‖z∗(l)k − z
∗(l−1)
k ‖1 ≤ δ

1

hnak,k‖N‖1
, l ≥ 1 , (14)

for some δ > 0, by Theorems 1 and 2 with min1≤i≤m{|vi,i| −
∑m

j=1
j 6=i
|vj,i|} = 1/(hnak,k), we will

have ‖z∗k − z̃∗k‖1 ≤ δ. Then, by Proposition 3 with xk = zk, χk,k = 1/(hnak,k), ξk,k = 1,

uk = (1/(ak,k))(
∑k
j=1 ak,j)Qpn−1, ξk,j = ak,j/ak,k, 1 ≤ j ≤ k − 1, χk,j = 0, 1 ≤ j ≤ k − 1,

x̃∗k = z̃∗k, x∗k = z∗k, and n = s, it follows that

‖zk − z̃∗k‖1 ≤
k−1∑
j=1

2
|ak,j |
ak,k

min
{
qhnak,k, 1

}
νj(δ) + δ = νk(δ), k = 1, . . . , s .

Now, since A is invertible because, as assumed, ai,i > 0, 1 ≤ i ≤ s, we can compute pn using (6)
with zk replaced by the approximation z̃∗k, incurring a step approximation error sn that will satisfy

1Note that, since we are ignoring the impact of round-off errors, we have, in terms of the notation introduced in

Section 1, p̂n = p
(l)
n , p+

n = pn and, therefore, sn = p̂n − p+
n = p

(l)
n − pn.
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‖sn‖1 ≤
∑s
k=1|dk|‖zk − z̃∗k‖1 ≤

∑s
k=1|dk|νk(δ). Therefore, given some ε > 0, taking for δ in (13),

(14) the value of x that satisfies
∑s
k=1|dk|νk(x) = ε will result in ‖sn‖1 ≤ ε, i.e., strict control of

the 1-norm of the step approximation error.
Consider next an s-stage DIRK ODE solver with a1,1 = 0 and ai,i > 0, 2 ≤ i ≤ s. In this case,

the m × s-dimensional linear system (4) can be split into z1 = (0, . . . , 0)
T

and the set of s − 1
coupled linear systems

( 1

hnak,k
Im −Q

)
zk =

1

ak,k

( k∑
j=1

ak,j

)
Qpn−1 +

k−1∑
j=2

ak,j
ak,k

Qzj , k = 2, . . . , s .

Those linear systems can be solved for increasing values of k starting at k = 2. This implies that
the linear systems actually dealt with will be

( 1

hnak+1,k+1
Im−Q

)
z∗k+1 =

1

ak+1,k+1

( k+1∑
j=1

ak+1,j

)
Qpn−1+

k−1∑
j=1

ak+1,j+1

ak+1,k+1
Qz̃∗j+1, k = 1, . . . , s−1 ,

(15)
where z̃∗k, 2 ≤ k ≤ s, denotes the computed approximation for z∗k. We have already argued that
the matrix V = (vi,j)1≤i,j≤m = (1/(hnak+1,k+1))Im − Q is SCDD and that min1≤i≤m{|vi,i| −∑m

j=1
j 6=i
|vj,i|} = 1/(hnak+1,k+1). Consequently, if the kth linear system (15) is solved using iterative

methods that produce the residual after each iteration or after a predefined number of iterations,
with stopping criterionwwww 1

ak+1,k+1

( k+1∑
j=1

ak+1,j

)
Qpn−1 +

k−1∑
j=1

ak+1,j+1

ak+1,k+1
Qz̃∗j+1 −

( 1

hnak+1,k+1
Im −Q

)
z
∗(l)
k+1

wwww
1

≤ δ 1

hnak+1,k+1
, l ≥ 0 , (16)

for some δ > 0, or is solved using splitting-based iterative methods defined by (3) with

x = z∗k+1, M − N = (1/(hnak+1,k+1))Im − Q, and u = (1/ak+1,k+1)(
∑k+1
j=1 ak+1,j)Qpn−1 +∑k−1

j=1 (ak+1,j+1/ak+1,k+1)Qz̃∗j+1, with stopping criterion

‖z∗(l)k+1 − z
∗(l−1)
k+1 ‖1 ≤ δ

1

hnak+1,k+1‖N‖1
, l ≥ 1 , (17)

for some δ > 0, by Theorems 1 and 2 with min1≤i≤m{|vi,i| −
∑m

j=1
j 6=i
|vj,i|} = 1/(hnak+1,k+1), we

will have ‖z∗k+1− z̃∗k+1‖1 ≤ δ. Therefore, by Proposition 3 with xk = zk+1, χk,k = 1/(hnak+1,k+1),

ξk,k = 1, uk = (1/(ak+1,k+1))(
∑k+1
j=1 ak+1,j)Qpn−1, ξk,j = ak+1,j+1/ak+1,k+1, 1 ≤ j ≤ k − 1,

χk,j = 0, 1 ≤ j ≤ k − 1, x̃∗k = z̃∗k+1, x∗k = z∗k+1, and n = s− 1, it follows that

‖zk+1 − z̃∗k+1‖1 ≤
k−1∑
j=1

2
|ak+1,j+1|
ak+1,k+1

min
{
qhnak+1,k+1, 1

}
νj+1(δ) + δ

= νk+1(δ), k = 1, . . . , s− 1 .

Now, denoting A′ = (ai,j)2≤i,j≤s, z′ = (z2
T, . . . , zs

T)
T

and recalling that z1 = (0, . . . , 0)
T

, we
have, by (4),

(Is−1 ⊗ Im − hnA′ ⊗Q)z′ = hn
(
(A′ 1s−1)⊗ (Q pn−1) + (a2,1, . . . , as,1)

T ⊗ (Q pn−1)
)
,

which, since the matrix A′ is invertible because, as assumed, ai,i > 0, 2 ≤ i ≤ s, implies

((A′)−1 ⊗ Im)z′ = hn
(
(Is−1 ⊗Q)z′ + 1s−1 ⊗ (Qpn−1) +

(
(A′)−1(a2,1, . . . , as,1)

T)⊗ (Qpn−1)
)
.
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Combining this expression with (5) gives, recalling again that z1 = (0, . . . , 0)
T

and denoting
(d′2, . . . , d

′
s) = (b2, . . . , bs)(A

′)−1,

pn = pn−1 + hnb1Qpn−1 + hn((b2, . . . , bs)⊗ Im)
(
(Is−1 ⊗Q)z′ + 1s−1 ⊗ (Qpn−1)

)
= pn−1 + hnb1Qpn−1 + ((b2, . . . , bs)⊗ Im)

((
(A′)−1 ⊗ Im

)
z′

− hn((A′)−1(a2,1, . . . , as,1)
T

)⊗ (Qpn−1)
)

= pn−1 + hn
(
b1 − (d′2, . . . , d

′
s)(a2,1, . . . , as,1)

T)
Qpn−1 + ((d′2, . . . , d

′
s)⊗ Im)z′ .

Then, pn can be computed using the above expression with zk replaced by the approximation
z̃∗k, incurring a step approximation error sn that will satisfy ‖sn‖1 ≤

∑s
k=2|d′k|‖zk − z̃∗k‖1 ≤∑s

k=2|d′k|νk(δ). Therefore, given some ε > 0, taking for δ in (16), (17) the value of x that satisfies∑s
k=2|d′k|νk(x) = ε will yield ‖sn‖1 ≤ ε, i.e., strict control of the 1-norm of the step approximation

error.
Finally, consider an s-stage IRK ODE solver whose matrix A is invertible and the eigenvalues

of A−1 are all distinct and have positive real part. Following standard practice [22], in that case
it is possible to transform the m × s-dimensional linear system (4) into several, uncoupled linear
systems of dimension m each as follows. First, we left multiply (4) by (hnA)−1 ⊗ Im and obtain

((hnA)−1 ⊗ Im − Is ⊗Q)z = 1s ⊗ (Qpn−1) . (18)

Next, using a change of basis matrix T = (ti,j)1≤i,j≤s, we apply a similarity transformation
T−1A−1T = Λ, obtaining

(h−1n Λ⊗ Im − Is ⊗Q)v = (T−11s)⊗ (Qpn−1) , (19)

where
v = (v1

T, . . . ,vs
T)

T
= (T−1 ⊗ Im)z . (20)

Assume that A−1 has r real eigenvalues ρ1, . . . , ρr and, consequently, (s− r)/2 complex conjugate
eigenvalue pairs σr+1 ± jφr+2, . . . , σs−1 ± jφs, let rk, 1 ≤ k ≤ r, denote the real eigenvector
associated with ρk, and let rk± jck+1, r+1 ≤ k ≤ s−1, denote the complex conjugate eigenvector
pair associated with σk ± jφk+1. Then, by setting to rk columns k = 1, . . . , r, r+ 1, r+ 3, . . . , s− 1
of T and to −ck columns k = r + 2, r + 4, . . . , s of T, the matrix Λ becomes block diagonal

with diagonal blocks the 1 × 1 matrices (ρk) and the 2 × 2 matrices Λk =
(

σk −φk+1

φk+1 σk

)
. Hence,

denoting T−1 = (t
(−1)
i,j )1≤i,j≤s, it is easily seen that the linear system (19) can be split into r real

and (s− r)/2 complex linear systems of dimension m each,

( ρk
hn

Im −Q
)
vk =

( s∑
j=1

t
(−1)
k,j

)
Qpn−1, 1 ≤ k ≤ r , (21)

(σk + jφk+1

hn
Im −Q

)
(vk + jvk+1) =

( s∑
j=1

t
(−1)
k,j + j

s∑
j=1

t
(−1)
k+1,j

)
Qpn−1,

k = r + 1, r + 3, . . . , s− 1 .

(22)

Once the vk, 1 ≤ k ≤ s, are known, from (6) and, by (20), z = (T ⊗ Im)v, the vector pn can be
computed using

pn = pn−1 + ((dTT)⊗ Im)v = pn−1 +

s∑
k=1

( s∑
j=1

djtj,k
)
vk . (23)

We discuss next the computation of the vectors vk, 1 ≤ k ≤ r, by solving the linear systems
(21) and the computation of the vectors vk, r + 1 ≤ k ≤ s, by solving the linear systems (22).
Let ε > 0 and consider first the computation of the vectors vk, 1 ≤ k ≤ r. By Proposition 2 with

10



χ = ρk/hn, ω = 0, and ξ = 1, it follows that the matrix V = (vi,j)1≤i,j≤m = (ρk/hn)Im −Q is
SCDD and that min1≤i≤m{|vi,i| −

∑m
j=1
j 6=i
|vj,i|} = |ρk/hn + q| − q = ρk/hn. Therefore, if the kth

linear system (21) is solved using iterative methods that produce the residual after each iteration
or after a predefined number of iterations, with stopping criterionwww( s∑

j=1

t
(−1)
k,j

)
Qpn−1 −

( ρk
hn

Im −Q
)
v
(l)
k

www
1
≤ ε∑s

l=1|
∑s
j=1 djtj,l|

ρk
hn
, l ≥ 0 , (24)

or is solved using splitting-based iterative methods defined by (3) with x = vk, M − N =

(ρk/hn)Im −Q, and u = (
∑s
j=1 t

(−1)
k,j )Qpn−1, with stopping criterion

‖v(l)
k − v

(l−1)
k ‖1 ≤

ε∑s
l=1|

∑s
j=1 djtj,l|

ρk
hn‖N‖1

, l ≥ 1 , (25)

by Theorems 1 and 2 with min1≤i≤m{|vi,i| −
∑m

j=1
j 6=i
|vj,i|} = ρk/hn and δ = ε/

∑s
l=1|

∑s
j=1 djtj,l|

we will have
‖vk − ṽk‖1 ≤

ε∑s
l=1|

∑s
j=1 djtj,l|

, 1 ≤ k ≤ r , (26)

where ṽk denotes the computed approximation for vk. Consider now the computation of the
vectors vk, r + 1 ≤ k ≤ s, by solving the linear systems (22). By Proposition 2 with χ = σk/hn,
ω = φk+1/hn, and ξ = 1, it follows that the matrix V = (vi,j)1≤i,j≤m = ((σk + jφk+1)/hn)Im −Q
is SCDD and that min1≤i≤m{|vi,i| −

∑m
j=1
j 6=i
|vj,i|} =

∣∣(σk + jφk+1)/hn + q
∣∣− q. Therefore, if the kth

linear system (22) is solved using iterative methods that produce the residual after each iteration
or after a predefined number of iterations, with stopping criterionwww( s∑

j=1

t
(−1)
k,j + j

s∑
j=1

t
(−1)
k+1,j

)
Qpn−1 −

(σk + jφk+1

hn
Im −Q

)
(v

(l)
k + jv

(l)
k+1)

www
1

≤ ε∑s
l=1|

∑s
j=1 djtj,l|

(∣∣∣σk + jφk+1

hn
+ q
∣∣∣− q), l ≥ 0 , (27)

or is solved using splitting-based iterative methods defined by (3) with x = vk + jvk+1, M−N =

((σk + jφk+1)/hn)Im −Q, and u = (
∑s
j=1 t

(−1)
k,j + j

∑s
j=1 t

(−1)
k+1,j)Qpn−1, with stopping criterionwwv

(l)
k + jv

(l)
k+1 − (v

(l−1)
k + jv

(l−1)
k+1 )

ww
1

≤ ε∑s
l=1|

∑s
j=1 djtj,l|

(∣∣∣σk + jφk+1

hn
+ q
∣∣∣− q) 1

‖N‖1
, l ≥ 1 , (28)

by Theorems 1 and 2 with min1≤i≤m{|vi,i| −
∑m

j=1
j 6=i
|vj,i|} = |(σk + jφk+1)/hn + q| − q and δ =

ε/
∑s
l=1|

∑s
j=1 djtj,l| we will have

‖vk + jvk+1 − (ṽk + jṽk+1)‖1 ≤
ε∑s

l=1|
∑s
j=1 djtj,l|

,

implying, since max{‖vk − ṽk‖1, ‖vk+1 − ṽk+1‖1} ≤ ‖vk + jvk+1 − (ṽk + jṽk+1)‖1,

‖vk − ṽk‖1 ≤
ε∑s

l=1|
∑s
j=1 djtj,l|

, k = r + 1, r + 3, . . . , s . (29)

Then, by (26), (29), the 1-norm of the step approximation error sn that will result from the
computation of pn using (23) with vk replaced by ṽk will satisfy,

‖sn‖1 ≤
s∑

k=1

∣∣ s∑
j=1

djtj,k
∣∣‖vk − ṽk‖1 ≤

s∑
k=1

∣∣ s∑
j=1

djtj,k
∣∣ ε∑s

l=1|
∑s
j=1 djtj,l|

= ε ,

yielding strict control of the 1-norm of the step approximation error.
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3.3 Class 3

This class includes s-stage LIRK ODE solvers with γi,i > 0 for all i. In that case, the matrix Θ

is invertible and θ
(−1)
i,i = γ−1i,i . Therefore, the linear system (7) can be split into a set of s coupled

linear systems of dimension m each,( 1

hnγk,k
Im −Q

)
ωk = Qpn−1 −

k−1∑
j=1

θ
(−1)
k,j

hn
ωj , k = 1, . . . , s .

These linear systems can be solved for increasing values of k starting at k = 1. This implies that
the linear systems actually dealt with will be( 1

hnγk,k
Im −Q

)
ω∗k = Qpn−1 −

k−1∑
j=1

θ
(−1)
k,j

hn
ω̃∗j , k = 1, . . . , s . (30)

where ω̃∗k, 1 ≤ k ≤ s, denotes the computed approximation for ω∗k. By Proposition 2 with χ =
1/(hnγk,k), ω = 0, and ξ = 1, it follows that the matrix V = (vi,j)1≤i,j≤m = (1/(hnγk,k))Im −Q
is SCDD and that min1≤i≤m{|vi,i| −

∑m
j=1
j 6=i
|vj,i|} = |1/(hnγk,k) + q| − q = 1/(hnγk,k). Hence, if

the kth linear system (30) is solved using iterative methods that produce the residual after each
iteration or after a predefined number of iterations, with stopping criterionwwwQpn−1 −

k−1∑
j=1

θ
(−1)
k,j

hn
ω̃∗j −

( 1

hnγk,k
Im −Q

)
ω
∗(l)
k

www
1
≤ δ 1

hnγk,k
, l ≥ 0 , (31)

for some δ > 0, or is solved using splitting-based iterative methods defined by (3) with x = ω∗k,

M−N = (1/(hnγk,k))Im −Q, and u = Qpn−1 −
∑k−1
j=1 (θ

(−1)
k,j /hn)ω̃∗j , with stopping criterion

‖ω∗(l)k − ω∗(l−1)k ‖1 ≤ δ
1

hnγk,k‖N‖1
, l ≥ 1 , (32)

for some δ > 0, by Theorems 1 and 2 with min1≤i≤m{|vi,i|−
∑m

j=1
j 6=i
|vj,i|} = 1/(hnγk,k) we will have

‖ω∗k − ω̃∗k‖1 ≤ δ. Then, by Proposition 3 with xk = ωk, χk,k = 1/(hnγk,k), ξk,k = 1, uk = Qpn−1,

ξk,j = 0, 1 ≤ j ≤ k − 1, χk,j = −θ(−1)k,j /hn, 1 ≤ j ≤ k − 1, x̃∗k = ω̃∗k, x∗k = ω∗k, and n = s, it follows
that

‖ωk − ω̃∗k‖1 ≤
k−1∑
j=1

γk,k|θ(−1)k,j |νj(δ) + δ = νk(δ), k = 1, . . . , s .

We can then compute pn using (8) with ωk replaced by the approximation ω̃∗k, incurring

a step approximation error sn that will satisfy ‖sn‖1 ≤
∑s
k=1|

∑s
j=k βjθ

(−1)
j,k |‖ωk − ω̃∗k‖1 ≤∑s

k=1|
∑s
j=k βjθ

(−1)
j,k |νk(δ). Therefore, given some ε > 0, taking for δ in (31), (32) the value of

x that satisfies
∑s
k=1|

∑s
j=k βjθ

(−1)
j,k |νk(x) = ε, we will have ‖sn‖1 ≤ ε, i.e., strict control of the

1-norm of the step approximation error. This concludes the justification of the claim.

3.4 ODE Solvers Falling in Classes 1, 2 and 3

We end this section by noting that implicit ODE solvers falling in classes 1, 2 and 3 include, among
others, those considered in [8, 10, 11, 12, 13, 14, 15, 16], i.e., TR-BDF2, which can be regarded as
a 3-stage DIRK ODE solver with a1,1 = 0, a2,2 = a3,3 = 1−

√
2/2 [35], the implicit Euler method,

which can be regarded as a 1-stage DIRK ODE solver with a1,1 = 1, the trapezoidal rule, which
can also be regarded as a 1-stage DIRK ODE solver with a1,1 = 1/2, the Radau IIA and Gauss
families of IRK ODE solvers,2 whose matrix A is invertible and the eigenvalues of A−1 are all

2This includes the implicit ODE solver IRK3 described in [10] because for the IVP (1), a step of IRK3 is
mathematically equivalent [23] to a step of the 2-stage Radau IIA implicit ODE solver.
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distinct and have positive real part, the two 2-stage DIRK ODE solvers considered in [14], which
have a1,1 = a2,2 = 1−

√
2/2 > 0 and a1,1 = a2,2 = 1/2 +

√
3/6 > 0, respectively, and the variable-

step, variable-order implicit ODE solver based on BDFs with variable coefficients (VBDF) [36],

in which each step is the solution to a linear system of the form (9) with a(n) =
∑ord
i=1 h

−1
n−i > 0,

where ord denotes the order of accuracy. Interestingly, there are two other variable-step, variable-
order implicit ODE solvers based on BDFs whose steps are the solution to a linear system of the
form (9) with a(n) > 0, n = 1, 2, . . . , and hence the steps can be computed by using iterative
methods with the modifications discussed in Section 2 with strict control of the 1-norm of the
step approximation error. Those ODE solvers are the variable-step, variable-order ODE solver
based on fixed-coefficient BDFs that is described in [37], for which a(n) is equal to h−1n times a
positive coefficient that depends on the current order of accuracy, and the variable-step, variable-
order ODE solver based on fixed leading-coefficient BDFs that is described in [38], for which

a(n) =
∑ord
i=1 1/i > 0.

4 Implementations of VBDF

This section reviews a widely used implicit ODE solver belonging to the classes identified in Sec-
tion 3, namely VBDF, and, using the results of that section, develops an implementation of that
ODE solver when applied to the IVP (1) that provides strict control of the 1-norm of the step
approximation error. For comparison purposes, it also develops a reasonable standard implemen-
tation of the method that does not provide such a strict error control

As previously mentioned, VBDF is a variable-step, variable-order implicit ODE solver based
on BDFs with variable coefficients [36]. Applied to the IVP (1), each step of the method is the
solution to a linear system of the form (9) with a(n) > 0, n ≥ 0. More precisely, the linear system
is (( ord∑

i=1

1

hn−i

)
Im −Q

)
pn =

( ord∑
i=1

1

hn−i

)
pn,0 −

1

hn
p
(1)
n,0 , (33)

where pn,0 denotes a predictor for pn, ord denotes the current order of accuracy of the method,

which for stability reasons is restricted to satisfy 1 ≤ ord ≤ 5, and p
(k)
n,0 denotes a predictor for

the approximation, p
(k)
n , produced by the method for the kth derivative of p(t) at t = tn. These

predictors are computed from pn−1 and p
(i)
n−1, 1 ≤ i ≤ ord [36].

The implementation of VBDF that provides strict control of the 1-norm of the step approxima-
tion error is essentially the one described in [36] except for the way in which the linear system (33)
is solved and the mechanism used to adjust the order and the step size. The linear system is solved
using GS and right-preconditioned Bi-CGSTAB. The GS is modified as described in Section 3 for
splitting-based iterative methods in the case of implicit ODE solvers for which pn is the solution to
a linear system of the form (9) with a(n) =

∑ord
i=1 1/hn−i > 0, n ≥ 0, and Bi-CGSTAB is modified

as described in that section for iterative methods that produce the residual after each iteration or
a predefined number of them, in the case of implicit ODE solvers for which pn is the solution to a
linear system of the form (9) with a(n) =

∑ord
i=1 1/hn−i > 0, n ≥ 0. Taking into account (9), (33),

(11), (10), and recalling that the 1-norm of the strict upper part of the left-hand side matrix in

(33) is max1≤i≤m
∑i−1
j=1 qj,i, those modifications amount to use the stopping criterion

‖p(l)
n − p(l−1)

n ‖1 ≤ ε
( ord∑
i=1

1

hn−i

) 1

max1≤i≤m
∑i−1
j=1 qj,i

, l ≥ 1 ,

for GS and the stopping criterion

www( ord∑
i=1

1

hn−i

)
pn,0 −

1

hn
p
(1)
n,0 −

(( ord∑
i=1

1

hn−i

)
Im −Q

)
p(l)
n

www
1
≤ ε

( ord∑
i=1

1

hn−i

)
, l ≥ 0 .

for Bi-CGSTAB. In all cases, we set ε = tol/10, where tol denotes a user-given local error tolerance.
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The GS is used for the first and following steps as long as the method is able to fulfill the
corresponding stopping criterion in no more than 4 × ord iterations. The starting values for

the iterations are p
{0}
n = pn,0. If in some step GS reaches the iteration limit, GS is not used

anymore and the step is repeated using right-preconditioned Bi-CGSTAB. The starting values for
the iterations and the limit on the number of iterations are the same as for GS. If Bi-CGSTAB
breaks down or reaches the iteration limit for any of the involved linear systems, the step size is
halved and the step repeated.

The right-preconditioner we use for Bi-CGSTAB is a variant of the incomplete LU factorization
with threshold ILUT(p, τ) [39] of the left-hand side matrix of the linear system being solved. In
the variant, only the dp × nl(i)e largest off-diagonal entries of the ith row of the L part of the
factorization are kept and only the dp× nu(i)e largest off-diagonal entries of the ith row of the U
part of the factorization are kept, where nl(i) and nu(i) are the number of nonzero off-diagonal
entries in the L and U parts of the ith row of the matrix, respectively, and dxe denotes the smallest
integer ≥ x. Besides, the tolerance for the dropping rule for the ith row of the factorization is
obtained as the threshold τ times the 1-norm of the ith row of the matrix divided by nl(i)+nu(i)+1.
The effectiveness of the ILUT(p, τ) factorization tends to increase with p and to decrease with τ
[39]. Consequently, we adjust dynamically these parameters so that p is increased and τ decreased
when Bi-CGSTAB encounters difficulties and, conversely, p is decreased and τ increased when Bi-
CGSTAB performs well. To be precise, we set p = 1 and τ = 1/(2×ord) the first time Bi-CGSTAB
is used. Then, when a step has to be repeated because Bi-CGSTAB broke down or reached the
iteration limit, we (possibly) enlarge p by setting it to min{p

√
ord , ord} and (possibly) reduce

τ by setting it to max{τ
√

1/20, 1/(40 × ord)}, and when Bi-CGSTAB succeeds, we (possibly)
reduce p by setting it to max{p × (1/ord)1/(ord×50), 1} and (possibly) enlarge τ by setting it to
min{τ × 201/(ord×50), 1/(2× ord)}. In this way, after at most two repetitions of a step because of
poor convergence of Bi-CGSTAB, the parameter p reaches its maximal value ord for the current
order of accuracy and the threshold τ reaches its minimal value 1/(40× ord) for the current order
of accuracy, and when Bi-CGSTAB performs well, p and τ are, respectively, reduced and enlarged
gradually until they reach the values 1 and 1/(2×ord). The ILUT(p, τ) factorizations are computed
only the first time Bi-CGSTAB is used, when a step has to be repeated, and when the current
step size hn and the step size the last time the factorizations were obtained, hn′ , are such that
|log(hn/hn′)| > log 1.5. Other than these, the last computed factorizations are used. The rationale
behind this strategy is the empirical observation that after a moderate change in the step size,
very often the factorizations can be reused with little impact on their effectiveness.

The mechanism used for the automatic selection of step size and order is a combination of
the one described in [36] with ideas taken from [40]. Let ẽn(ord) denote the estimate defined in
[36] for the local error at step n, where ord is the order with which the step has been performed.

The mechanism is as follows. We start with ord = 1, h1 = min{10−6, t}, and p
(1)
0 = Qp0. After

completing a step, say step n, at order ord , it is accepted if ‖ẽn(ord)‖1 ≤ tol .3 In that case,
the computation terminates if tn + hn = t. Otherwise, the guess for the size of the next step
at the same order, hn+1,ord , is computed as hn+1,ord = hn min{factmax , χord}, where the factor
factmax is explained later and χord = (tol/(6‖ẽn(ord))‖1)1/(ord+1); the guess for the size of the
next step at order ord − 1, hn+1,ord−1, is computed as hn+1,ord−1 = hn min{factmax , χord−1},
where χord−1 = (tol/(6‖ẽn(ord − 1))‖1)1/ord if ord > 1 and the last ord + 1 or more steps have
been performed at order ord , and χord−1 = 0 otherwise; and the guess for the size of the next step at
order ord + 1, hn+1,ord+1, is computed as hn+1,ord+1 = hn min{factmax , χord+1}, where χord+1 =
(tol/(10‖ẽn(ord +1))‖1)1/(ord+2) if ord < 5 and the last ord +1 or more steps have been performed
at order ord , and otherwise χord+1 = 0. Then, we reduce the order by one and set the size hn+1 of
the next step to min{hn+1,ord−1, t− tn} if hn+1,ord−1 ≥ max{hn+1,ord , hn+1,ord+1}, leave the order
unchanged and set hn+1 to min{hn+1,ord , t − tn} if hn+1,ord ≥ max{hn+1,ord−1, hn+1,ord+1}, and
otherwise increase the order by one and set hn+1 to min{hn+1,ord+1, t− tn}. If ‖ẽn(ord)‖1 > tol ,
the step fails. In that case, we set hn to min

{
hn min{factmax , χord}, t − tn

}
if this is the first

time the local error test fails for the step, to min
{
hn min{0.2, χord}, t − tn

}
if this is the second

3In case ‖ẽn(ord)‖1 is numerically zero, if n ≥ 2, we set ‖ẽn(ord)‖1 to ‖ẽn−1(ordn−1)‖1, where ordn−1 is the
order with which step n− 1 has been performed, and otherwise set ‖ẽn(ord)‖1 to a tiny positive value.
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time the local error test fails for the step, and to min
{
hn min{0.1, χord}, t − tn

}
after the third

and following failures of the local error test for the step. In this latter case, the order is reduced

by one if it is > 1 and otherwise the method is restarted by computing p
(1)
n as p

(1)
n = Qpn−1.

Once the size and order of the failed step have been adjusted, the step is repeated. The factor
factmax is mainly intended as a safeguard against poor convergence of Bi-CGSTAB and is set
as follows. After solving the first step, we set factmax to 10 000 if the step has been repeated
at most once and otherwise set factmax to 1, and after solving any step different from the first
one, we set factmax to min{101/(50×ord)factmax , 10} if the step has not been repeated or it has
been repeated once because GS reached the iteration limit and otherwise set factmax to 1. In
this way, if Bi-CGSTAB encounters difficulties the step size is not allowed to increase and when
Bi-CGSTAB performs well, the limit on the rate of growth of the step size is increased gradually
until 10. The rationale behind this strategy is the empirical observation that when p(tn) is far
away from the steady-state probability distribution of X, the larger the step size, which reduces the
degree of diagonal dominance of the left-hand side matrices of the linear system (33), the larger
is the number of iterations required by Bi-CGSTAB. Finally, to avoid the step size to become
unacceptably small, the computation is aborted if for 10 times in succession, hn ≤ 25 × EPS × t,
where EPS denotes the machine epsilon.

The reasonable standard implementation of VBDF is identical to the implementation just
described except for changes in the stopping criteria for GS and Bi-CGSTAB. The new stopping
criteria are

‖p(l)
n − p(l−1)

n ‖1 ≤
tol

10
× 1

100
, l ≥ 1 ,

for GS andwww( ord∑
i=1

1

hn−i

)
pn,0 −

1

hn
p
(1)
n,0 −

(( ord∑
i=1

1

hn−i

)
Im −Q

)
p(l)
n

www
1
≤ tol

10
× 1

1 000
, l ≥ 0 ,

for Bi-CGSTAB. With these changes, it is apparent that the standard implementation does not
provide strict control of the 1-norm of the step approximation error.

5 Numerical Experiments

This section compares, using two examples, the performance of the implementation of VBDF with
strict control of the 1-norm of the step approximation error with the performance of the standard
implementation. The examples have been chosen so as to cover two representative scenarios: One
in which the spectrum of Q includes real and complex eigenvalues and another in which all the
eigenvalues of Q are real.

All computations were performed on a workstation equipped with a four-core Intel i7-2630QM
2.00 GHz processor with 4 GB of RAM memory, using only one core. The implementations were
coded using the C programming language and were compiled using the standard GNU compiler
collection C-compiler [41], which supports complex arithmetic, with the O2 optimization option.
All floating-point computations were carried out using the IEEE 754 [42] double format.

The first example is the CTMC model of a system made up of five identical, independent
components. The state of each component is modeled by the CTMC with the state diagram shown
in Figure 1, left. For this example, Q is a matrix of dimension 32 768 with 299 008 nonnull entries
and q = 7.505× 101 h−1. The eigenvalues of the infinitesimal generator of each component are, up
to the sixth digit, 0 h−1, (−6.91983 ± j 9.53004) × 10−7 h−1, (−1.81301 ± j 0.589268) × 10−6 h−1,
−6.65780× 10−6 h−1, −1.01000 h−1, and −1.50200× 101 h−1. Consequently, the two smallest (in
absolute value) eigenvalues of Q are 0 h−1 and (−6.91983± j 9.53004)× 10−7 h−1 and the largest
one is 5 × (−1.50200 × 101) h−1. The initial probability distribution vector is one for the state
in which each component is in state 3 and zero for the remaining states. To illustrate how p(t)
varies with t, in Figure 1, right we plot the evolution of the entry of p(t) that corresponds to
each component being in state i, denoted p[i](t), for 1 ≤ i ≤ 8. For this example, we target the
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Figure 1: Left: State diagram of the CTMC model of one component of the first example (λ =
2 × 10−6 h−1, µ = 1 h−1, ξ = 10−2 h−1, ω = 10 h−1, ψ = 5 h−1, ϕ = 10−6 h−1, σ = 10−8 h−1);
right: Probabilities p[i](t), 1 ≤ i ≤ 8, as a function of t in double logarithmic scale for the first
example.

computation of p(t) for t ∈ T = {10−3, 10−2, . . . , 108} h. Therefore, for the largest value of t we
consider, we have qt = 7.505× 109.

The second example is the CTMC model of a system consisting of six identical, independent
components whose infinitesimal generator has real eigenvalues only. The state of each component
is modeled by the CTMC with the state diagram shown in Figure 2, left. For this example, Q is a
matrix of dimension 15 625 with 390 625 nonnull entries and q = 6.0012 h−1. The eigenvalues of the
infinitesimal generator of each component are, up to the sixth digit, 0 h−1, −1.04000 × 10−4 h−1

−2.03000 × 10−4 h−1, −5.00210 × 10−1 h−1, and −1.00021 h−1. Consequently, the two smallest
(in absolute value) eigenvalues of Q are 0 h−1 and −1.04000 × 10−4 h−1 and the largest one is
6 × (−1.00021) h−1. The initial probability distribution vector is one for the state in which each
component is in state 5 and zero for the remaining states. To illustrate how p(t) varies with t,
in Figure 2, right we plot the evolution of p[i](t), for 1 ≤ i ≤ 5. For this example, we target
the computation of p(t) for t ∈ T . Therefore, for the largest value of t we consider, we have
qt = 6.0012× 108, so this example is less stiff than the first one.

To compare the implementation with strict control of the 1-norm of the step approximation
error with the standard implementation, for each example we obtained p(t), t ∈ T , by computing
with high accuracy using the Maple (TM) software [43] the probability vector, pcomp(t), of the
CTMC of one component and using the well-known fact that for a CTMC model of a system made
up of c identical, independent components, we have p(t) =

⊗c
i=1 pcomp(t). Next, we computed the

approximate solution pn, tn = t ∈ T , with tol = 10−4, 10−5, . . . , 10−12, using the implementations
and measured, for each value of tol , the accuracy, defined as maxt∈T ,tn=t ‖p(t) − pn‖1, and the
corresponding cumulative computing time to obtain pn, tn = t ∈ T . The results are given in
Figures 3 and 4. As we can see, the implementation of VBDF with strict control of the 1-norm of
the step approximation error is more efficient than the standard implementation, in the sense of
being able to achieve the same accuracy in less computing time. That reduction in computing time
is more noticeable for not too tight local error tolerances. We also observe that the implementation
of VBDF with strict control of the 1-norm of the step approximation error provides a better control
of the global error, in the sense of yielding an accuracy maxt∈T ,tn=t ‖p(t)− pn‖1 that is closer to
tol . To better appreciate this fact, in Figures 5 and 6 we give, for each example, the accuracy as a
function of tol . As it can be seen, the accuracy yielded by the implementation of VBDF with strict
control of the 1-norm of the step approximation error is never worse than that of the standard
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Figure 2: Left: State diagram of the CTMC model of one component of the second example
(λ = 1 × 10−6 h−1, µ = 1 × 10−4 h−1, ω = 5 × 10−6 h−1, ξ = 5 × 10−1 h−1); right: Probabilities
p[i](t), 1 ≤ i ≤ 5, as a function of t in double logarithmic scale for the second example.
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Figure 3: First example: Cumulative computing time to obtain pn, tn = t ∈ T , as a function
of the accuracy maxt∈T ,tn=t ‖p(t) − pn‖1 for the implementation of VBDF with strict control of
the 1-norm of the step approximation error (strict) and the standard implementation (standard).
(Next to each point it is given, between parenthesis, the corresponding value of the local error
tolerance tol .)
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Figure 4: Second example: Cumulative computing time to obtain pn, tn = t ∈ T , as a function
of the accuracy maxt∈T ,tn=t ‖p(t) − pn‖1 for the implementation of VBDF with strict control of
the 1-norm of the step approximation error (strict) and the standard implementation (standard).
(Next to each point it is given, between parenthesis, the corresponding value of the local error
tolerance tol .)

10−1210−1110−1010−910−810−710−610−510−4

tol

10−10

10−8

10−6

10−4

10−2

m
ax

t∈
T
,t
n
=
t
‖p

(t
)
−
p
n
‖ 1

strict

standard

Figure 5: First example: Accuracy maxt∈T ,tn=t ‖p(t) − pn‖1 as a function of the local error
tolerance tol for the implementation of VBDF with strict control of the 1-norm of the step approx-
imation error (strict) and the standard implementation (standard). (The dashed line corresponds
to maxt∈T ,tn=t ‖p(t)− pn‖1 = tol .)

18



10−1210−1110−1010−910−810−710−610−510−4

tol

10−12

10−10

10−8

10−6

10−4

m
ax

t∈
T
,t
n
=
t
‖p

(t
)
−
p
n
‖ 1

strict

standard

Figure 6: Second example: Accuracy maxt∈T ,tn=t ‖p(t) − pn‖1 as a function of the local error
tolerance tol for the implementation of VBDF with strict control of the 1-norm of the step approx-
imation error (strict) and the standard implementation (standard). (The dashed line corresponds
to maxt∈T ,tn=t ‖p(t)− pn‖1 = tol .)

implementation and can be noticeably better for not too tight local error tolerances.

6 Conclusions

This paper has identified three classes of implicit ODE solvers such that when applied to the tran-
sient analysis of CTMCs, each step can be computed using iterative methods to solve the involved
linear systems with strict control of the 1-norm of the step approximation error. Based on these
results, an implementation of VBDF with strict control of the 1-norm of the step approximation
error has been developed. Using two examples covering two representative scenarios (one in which
the spectrum of Q includes real and complex eigenvalues and another in which all the eigenvalues
of Q are real), it has been shown that the implementation with strict control of the 1-norm of
the step approximation error can be more efficient and more accurate than a reasonable standard
implementation.
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1 Proof of Proposition 1

Case 1 follows from [1, 2]. If the matrix V is SCDD, the matrix VT is SRDD and, then, from
case 1,

‖V−1‖1 = ‖(V−1)
T‖∞ = ‖(VT)−1‖∞ ≤

1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

,

which is case 2. For case 3, using case 1,

‖x− y‖∞ = ‖V−1u−V−1Vy‖∞
= ‖V−1(u−Vy)‖∞
≤ ‖V−1‖∞‖u−Vy‖∞

≤ ‖u−Vy‖∞
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vi,j |}

.

Finally, for case 4, using case 2,

‖x− y‖1 = ‖V−1u−V−1Vy‖1
= ‖V−1(u−Vy)‖1
≤ ‖V−1‖1‖u−Vy‖1

≤ ‖u−Vy‖1
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vj,i|}

.

2 Proof of Theorem 1

If the matrix V is SRDD, by case 3 of Proposition 1 with y = x(l),

‖x− x(l)‖∞ ≤
‖u−Vx(l)‖∞

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

≤
δmin1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vi,j |}

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j}|

= δ ,

and, if the matrix V is SCDD, by case 4 of Proposition 1 with y = x(l),

‖x− x(l)‖1 ≤
‖u−Vx(l)‖1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

≤
δmin1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vj,i|}

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

= δ .

1



3 Proof of Theorem 2

Assume l ≥ 1. Using V = M−N and (3) x(l) = M−1Nx(l−1) + M−1u, we obtain

u−Vx(l) = u− (M−N)x(l)

= u−Mx(l) + Nx(l)

= u−M(M−1Nx(l−1) + M−1u) + Nx(l)

= u−Nx(l−1) − u + Nx(l)

= N(x(l) − x(l−1)) . (34)

Then, if the matrix V is SRDD, when the method is stopped we have, using (34) and case 3 of
Proposition 1 with y = x(l),

‖x− x(l)‖∞ ≤
‖u−Vx(l)‖∞

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

=
‖N(x(l) − x(l−1))‖∞

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

≤ ‖N‖∞‖x(l) − x(l−1)‖∞
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vi,j |}

≤
‖N‖∞ δ min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vi,j |}/‖N‖∞

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vi,j |}

= δ ,

and, if the matrix V is SCDD, when the method is stopped we have, using (34) and case 4 of
Proposition 1 with y = x(l),

‖x− x(l)‖1 ≤
‖u−Vx(l)‖1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

=
‖N(x(l) − x(l−1))‖1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

≤ ‖N‖1‖x(l) − x(l−1)‖1
min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vj,i|}

≤
‖N‖1 δ min1≤i≤n{|vi,i| −

∑n
j=1
j 6=i
|vj,i|}/‖N‖1

min1≤i≤n{|vi,i| −
∑n

j=1
j 6=i
|vj,i|}

= δ .

4 Proof of Proposition 2

Clearly, vi,i = χ + jω − ξqi,i = χ + jω + ξ|qi,i| and vi,j = −ξqi,j , i 6= j. Then, using the fact that
|qi,i| =

∑m
j=1
j 6=i

qj,i and that, as assumed, χ ξ > 0, or χ = 0, ω 6= 0,

|vi,i| =
∣∣χ+ jω + ξ|qi,i|

∣∣ > |ξ||qi,i| = |ξ| m∑
j=1
j 6=i

qj,i =

m∑
j=1
j 6=i

|vj,i| , (35)
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implying that the matrix is SCDD. The equality asserted by the proposition can be justified as
follows. Since (35) |vi,i| −

∑m
j=1
j 6=i
|vj,i| = |χ+ jω + ξ|qi,i|| − |ξ||qi,i|,

min
1≤i≤m

(
|vi,i| −

m∑
j=1
j 6=i

|vj,i|
)

= min
1≤i≤m

(
|χ+ jω + ξ|qi,i|| − |ξ||qi,i|

)
.

Therefore, if ξ > 0,

min
1≤i≤m

(
|vi,i| −

m∑
j=1
j 6=i

|vj,i|
)

= min
1≤i≤m

(|χ+ jω + ξ|qi,i|| − ξ|qi,i|) = |χ+ jω + ξq| − ξq , (36)

because, for x real, the function |χ + jω + x| − x is (non-strictly) decreasing on x and, for ξ > 0,
max1≤i≤m ξ|qi,i| = ξq. Similarly, if ξ ≤ 0,

min
1≤i≤m

(
|vi,i| −

m∑
j=1
j 6=i

|vj,i|
)

= min
1≤i≤m

(|χ+ jω + ξ|qi,i||+ ξ|qi,i|) = |χ+ jω + ξq|+ ξq (37)

because, for x real, the function |χ + jω + x| + x is (non-strictly) increasing on x and, for ξ ≤ 0,
min1≤i≤m ξ|qi,i| = ξq. Finally, combining (36), (37),

min
1≤i≤m

(
|vi,i| −

m∑
j=1
j 6=i

|vj,i|
)

= |χ+ jω + ξq| − |ξ|q .

5 Proof of Proposition 3

Assume 1 ≤ k ≤ n. We start by noting that the vectors xk and x∗k are well-defined because, from
Proposition 2 with χ = χk,k, ω = 0, and ξ = ξk,k, it follows that the matrix Vk = χk,kIm − ξk,kQ
is SCDD and, consequently, nonsingular. Besides, also from that proposition, min1≤i≤m{|vi,i| −∑m

j=1
j 6=i
|vj,i|} = |χk,k + ξk,kq| − |ξk,k|q = |χk,k|. Therefore, by case 2 of Proposition 1,

‖V−1k ‖1 ≤
1

|χk,k|
. (38)

We can now prove the inequality asserted by the proposition. We have

Vkxk = uk +

k−1∑
j=1

(ξk,jQ + χk,jIm)xj ,

Vkx
∗
k = uk +

k−1∑
j=1

(ξk,jQ + χk,jIm)x̃∗j .

Therefore,

xk − x∗k = V−1k

(
uk +

k−1∑
j=1

(ξk,jQ + χk,jIm)xj

)
−V−1k

(
uk +

k−1∑
j=1

(ξk,jQ + χk,jIm)x̃∗j

)

= V−1k Q

k−1∑
j=1

ξk,j(xj − x̃∗j ) + V−1k

k−1∑
j=1

χk,j(xj − x̃∗j ) ,

which implies

‖xk − x̃∗k‖1 = ‖xk − x∗k + x∗k − x̃∗k‖1

3



≤ ‖xk − x∗k‖1 + ‖x∗k − x̃∗k‖1

≤ ‖V−1k Q‖1
k−1∑
j=1

|ξk,j |‖xj − x̃∗j‖1 + ‖V−1k ‖1
k−1∑
j=1

|χk,j |‖xj − x̃∗j‖1

+ ‖x∗k − x̃∗k‖1 . (39)

Then, using ‖Q‖1 = 2q, the fact that

V−1k Q = V−1k (χk,kIm −Vk)
1

ξk,k
=
χk,k

ξk,k
V−1k −

1

ξk,k
Im ,

and (38),

‖V−1k Q‖1 ≤ min
{
‖V−1k ‖1‖Q‖1,

∣∣χk,k

ξk,k

∣∣‖V−1k ‖1 +
1

|ξk,k|
}
≤ 2 min

{ q

|χk,k|
,

1

|ξk,k|

}
. (40)

Finally, combining (39), (40), (38),

‖xk − x̃∗k‖1 ≤ 2 min
{ q

|χk,k|
,

1

|ξk,k|

} k−1∑
j=1

|ξk,j |‖xj − x̃∗j‖1 +
1

|χk,k|

k−1∑
j=1

|χk,j |‖xj − x̃∗j‖1

+ ‖x∗k − x̃∗k‖1

=

k−1∑
j=1

(
2|ξk,j |min

{ q

|χk,k|
,

1

|ξk,k|

}
+
|χk,j |
|χk,k|

)
‖xj − x̃∗j‖1 + ‖x∗k − x̃∗k‖1 .
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