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Abstract

In this paper we develop a theory of linear differential systems analogous to the classical

one for ODEs, including the obtaining of fundamental matrices, the development of a variation

of parameters formula and the expression of the Green’s functions. We also derive interest-

ing results in the case of differential equations with reflection and generalize the Hyperbolic

Phasor Addition Formula to the case of matrices.
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1 Introduction

In recent years there have been a number of works concerning the study of differential problems

with involutions. In the particular case of the reflection, starting with [5], the computation of

Green’s functions for differential equations with reflection expanded [6–10, 17, 18]. This has

motivated several applications concerning almost periodic solutions [15, 16], the obtaining of

eigenvalues and explicit solutions of different problems [13, 14] or their qualitative properties

[2,4].

On the other hand, what happens in the case of linear differential systems with reflection

and constant coefficients has drawn far less attention [1]. The authors intend, in this article,

to provide some insight on this question. To do so, in Section 2 we retake the original problem

(for differential equations with reflection), providing two interesting results. First, we give an

improvement on the general Reduction Theorem –see for instance [9, Theorem 5.1.1], here The-

orem 2.1, that reduces the order of the resulting ODE –see Theorem 2.3. Second, we provide an

explicit basis of the space of solutions of linear differential equations with reflection and constant

coefficients –see Theorem 2.5. This knowledge is fundamental if our intention is to construct a

fundamental matrix of the associated homogeneous problem.

This first part of the paper suggests that a similar attempt should be done in the case of sys-

tems of differential equations with reflections. Our approach will run in parallel to the classical

†Partially supported by Ministerio de Economía y Competitividad (Spain) project MTM2013-43014-P and Xunta

de Galicia (Spain), project EM2014/032.
‡Supported by FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain).
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theory of linear ODEs: construction of a fundamental matrix, description of the method of vari-

ation of parameters and, finally, obtaining of the associated Green’s function. Unfortunately, this

process will not be devoid of difficulties. That is why in Section 3 we will summarize some results

concerning matrix functions which will be useful latter on.

We start the study of systems of linear equations with reflection in Section 4. The first thing

we do is to define what a fundamental matrix is going to be in this setting. This is not obvious, for

there are some properties that are satisfied in the case of systems of ODEs which will not apply

here. For instance, contrary to our experience, a fundamental matrix may be singular at some

point of the real line. Once this definition is properly established, it is time to derive the most basic

results of the theory: those concerning existence and uniqueness of solution. Existence is derived

from the analogous result for systems of ODEs –Lemma 4.2, while existence is obtained through

the direct construction of a fundamental matrix. This result –Theorem 4.5, arguably one of the

main results of the paper, expresses this fundamental matrix as a series of functional matrices. It is

only under some extra assumptions that a simpler expression involving hyperbolic trigonometric

functions may be found. The rest of the Section consists of rewriting this fundamental matrix

in other ways. In order to achieve this, we have to generalize the Hyperbolic Phasor Addition

Formula [20, Lemma 1] to the algebra of matrices.

Section 5 concerns the method of variation of parameters. Again, the method differs from

the one we have in the case of ODEs. First we show that the classical approach does not work

in this setting and then, studying a complementary problem, we arrive to a general method –

Theorem 5.6.

Finally, in Section 6 we use the method of variation of parameters to obtain the Green’s func-

tion both in the initial condition and the two point boundary condition cases. This is a natural

generalization of the previous settings when concerning differential equations with reflections.

To illustrate this point we recover, as shown in Example 6.7, the known expression of the Green’s

function for a first order periodic equation with reflection.

2 Differential equations with reflection

Let us introduce some definitions and notations. To start with, consider the differential operator

D, the pullback operator of the reflection ϕ(t) = −t , denoted by ϕ∗(u)(t) := u(−t), and the

identity operator, Id (we will also denote by Id the identity matrix).

Let T ∈ (0,+∞) and I := [−T, T ]. We now consider the ring R[D] of polynomials with real

coefficients on the variable D and the algebra R[D,ϕ∗] consisting of the operators of the form

L := ϕ∗P(D) +Q(D), (2.1)

where P(D) =
∑n

k=0
bk Dk, Q(D) =
∑n

k=0
ak Dk ∈ R[D] (D0 = Id), n ∈ N, ak, bk ∈ R, k = 1, . . . , n

which act as follows:

Lu(t) =

n∑

k=0

aku(k)(t) +

n∑

k=0

bku(k)(−t), t ∈ I ,

on any function u ∈ W n,1(I). The operation in the algebra R[D,ϕ∗] is the usual composition

of operators (most of the time we will omit the composition sign). We observe that Dkϕ∗ =
(−1)kϕ∗Dk for k = 0, 1, . . . , which makes it a noncommutative algebra. Actually, we have that

P(D)ϕ∗ = ϕ∗P(−D) for any P ∈ R[D].
The following property is crucial for the obtaining of a Green’s function.
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Theorem 2.1 ([10, Theorem 2.1]). Take L as defined in (2.1) and define

L1 := ϕ∗P(D)−Q(−D) ∈ R[D,ϕ∗]. (2.2)

Then L1L = LL1 ∈ R[D].

Remark 2.2. As it is pointed out in [10], if L1 L =
∑2n

k=0
ckDk, then

ck =






0, k odd,

2

k
2−1∑

l=0

(−1)
l
(bl bk−l − al ak−l) + (−1)

k
2

�
b2

k
2

− a2
k
2

�
, k even.

If L =
∑n

i=0
(biϕ

∗+ ai)D
i with an 6= 0 or bn 6= 0, we have that c2n = (−1)n(b2

n
− a2

n
). Hence, if

an = ±bn, then c2n = 0. This shows that composing two elements of R[D,ϕ∗] we can get another

element with derivatives of less order.

We can improve Theorem 2.1 in the following way. Let

R(D) :=mcd(P(D),Q(D), P(−D),Q(−D)), P̃ = P/R and Q̃ =Q/R.

Observe that R is the polynomial constructed from the common roots, according to multiplicity, of

P(D), Q(D), P(−D) and Q(−D). R(D) = R(−D), for if λ is an root of P(D) so has to be of P(−D),

and so −λ has to be a root of P(D). An important consequence of this is that R commutes with

ϕ∗. We now have all it is needed for an improved version of Theorem 2.1.

Theorem 2.3. Take L, R, P̃ and Q̃ as previously defined and define

bL := ϕ∗ P̃(D)− Q̃(−D) ∈ R[D,ϕ∗]. (2.3)

Then bLL = LbL ∈ R[D].

Proof.

bLL = [ϕ∗ P̃(D)− Q̃(−D)][ϕ∗P(D) +Q(D)] = [ϕ∗ P̃(D)− Q̃(−D)][ϕ∗P̃(D) + Q̃(D)]R(D)

= [P̃(−D)P̃(D) +ϕ∗ P̃(D)Q̃(D)−ϕ∗Q̃(D)P̃(D)− Q̃(−D)Q̃(D)]R(D)

= [P̃(−D)P̃(D)− Q̃(−D)Q̃(D)]R(D).

On the other hand,

LbL = [ϕ∗P(D) +Q(D)][ϕ∗P̃(D)− Q̃(−D)] = [ϕ∗ P̃(D) + Q̃(D)]R(D)[ϕ∗P̃(D)− Q̃(−D)]

= [P̃(−D)P̃(D) +ϕ∗Q̃(−D)P̃(D)−ϕ∗ P̃(D)Q̃(−D)− Q̃(−D)Q̃(D)]R(D)

= [P̃(−D)P̃(D)− Q̃(−D)Q̃(D)]R(D).

�

As we said before, bLL is a usual differential operator with constant coefficients. Consider now

the following problem.

Su(t) :=

n∑

k=0

aku(k)(t) = h(t), t ∈ I , Bku :=

n−1∑

j=0

�
αk ju

j)(−T ) +βk ju
( j)(T )
�
= 0, k = 1, . . . , n.

(2.4)

Given an operatorL for some set of functions of one variable, we will define the operatorL⊢
as L⊢G(t , s) :=L (G(·, s))|t for every s and any suitable function G of two variables. We can then

state the following result, which is a new version of the one found in [10] using the operator bL
defined here. The proof is analogous.
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Theorem 2.4. Consider the problem

Lu(t) = h(t), t ∈ I , Biu= 0, k = 1, . . . , n, (2.5)

where L is defined as in (2.1), h ∈ L1(I) and

Bku :=

n−1∑

j=0

�
αk ju

( j)(−T ) +βk ju
( j)(T )
�

, k = 1, . . . , n.

Then, there exists bL ∈ R[D,ϕ∗] –as in (2.2)– such that S := bLL ∈ R[D] and the unique solution

of problem (2.5) is given by
∫ b

a
bL⊢G(t , s)h(s)d s, where G is the Green’s function associated to the

problem Su= 0, Bk
bLu = 0, Bku= 0, k = 1, . . . , n, assuming it has a unique solution.

2.1 The structure of solutions

Let us consider now the operator bLL ∈ R[D]. Observe that, by Remark 2.2, bLL has only nonzero

coefficients for even exponents of D. This means that bLL is of even degree, say 2m for m ∈ N,

and that, if z is root of bLL, so it is −z. Hence, if bLL has 2r real roots ±λ1, . . . ,±λr of multiplicities

µ1, . . . ,µr
† and 2c complex roots z1 = ±(x1+ i y1), . . . , zc = ±(xc+ i yc) of multiplicities ν1, . . . ,ν2,

the 2m-dimensional real vector space V of solutions of bLLu = 0 is generated by the basis of

solutions‡

�
eλ1 t , . . . , tµ1−1eλ1 t , e−λ1 t , . . . , tµ1−1e−λ1 t , . . . , eλr t , . . . , tµr−1eλr t , e−λr t , . . . , tµr−1e−λr t , ex1 t sin y1 t,

ex1 t cos y1 t, . . . , tν1−1ex1 t sin y1 t, tν1−1ex1 t cos y1 t, e−x1 t sin y1 t, e−x1 t cos y1 t, . . . , tν1−1e−x1 t sin y1 t,

tν1−1e−x1 t cos y1 t, exc t sin yc t, exc t cos yc t, . . . , tνc−cexc t sin yc t, tνc−cexc t cos yc t, e−xc t sin yc t,

e−xc t cos yc t, . . . , tνc−ce−xc t sin yc t, tνc−ce−xc t cos yc t
	

.

Theorem 2.5. With the previous notation,

�bL(eξ(λ1)λ1 t), . . . ,bL(tµ1−1eξ(λ1)λ1 t), . . . ,bL(eξ(λr )λr t), . . . ,bL(tµr−1eξ(λr )λr t),

bL(eξ(z1)x1 t sin y1 t),bL(eξ(z1)x1 t cos y1 t), . . . ,bL(tν1−1eξ(z1)x1 t sin y1 t),bL(tν1−1eξ(z1)x1 t cos y1 t),

bL(eξ(zc)xc t sin yc t),bL(eξ(zc)xc t cos yc t), . . . ,bL(tνc−1eξ(zc)xc t sin yc t),bL(tνc−1eξ(zc)xc t cos yc t)
	

,

(2.6)

where ξ(x) = −1 if P̃(x) = Q̃(−x) = 0 and ξ(x) = 1 otherwise, is a basis of the m-dimensional

vector space of solutions of the equation Lu= 0.

Proof. Let W be the real vector space generated by (2.6). First, by the definition of bL, we have

that, for a root λ of bLL and k ∈ N,

bL(t keλt) = [ϕ∗ P̃(D)−Q̃(−D)](t keλt) = (−1)k P̃(λ)t ke−λt−Q̃(−λ)t keλt+O(t k−1eλt)+O(t k−1e−λt),

where the notation O( f (t)) means that lim
t→∞

O( f (t))/ f (t) is a real constant. All the same,

bL(t ke−λt) = (−1)k P̃(−λ)t keλt − Q̃(λ)t ke−λt +O(t k−1e−λt) +O(t k−1eλt).

Thus, since λ cannot be a common root to P̃(λ), P̃(−λ), Q̃(λ) and Q̃(−λ), we have

bL(eξ(λ)λt) ∈


{eλt , e−λt}
�

,

†Here one of the roots can be 0, in which case has even multiplicity greater equal than 2.
‡This basis would have to be rewritten in the case 0 is a root in order to not repeat vectors.
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bL(t keξ(λ)λt) ∈


{eλt , . . . , t keλt , e−λt , . . . , t ke−λt}

�� 

{eλt , . . . , t k−1eλt , e−λt , . . . , t k−1e−λt}

�
.

This means that the vectors bL(eλ1 t), . . . ,bL(tµ1−1eλ1 t), . . . ,bL(eλr t), . . . ,bL(tµr−1eλr t) are linearly in-

dependent.

In the case of a complex root z = x + i y we just have to use the following invertible linear

transformation

〈{ezt , e−zt}〉 〈{ezt , e−zt}〉

(ezt , e−zt) 1
2

�
1 1

1 −1

�
(ezt , e−zt) = (ex t cos y t , ex t sin y t),

to deduce that the vectors (2.6) are linearly independent. Hence, W is of dimension m.

By what was previously said, we know that L|V ≡ L maps V to V . As such, for every u ∈W ⊂ V ,

u = bLv for some v ∈ V , so Lu = LbLv = bLLv = 0 because V is the space of solutions of bLL = 0,

that is, V = ker(bLL). Hence, W ⊂ ker L. Also, by construction, W ⊂ imbL, so we have that

dim ker L ≥ m and dim imbL ≥ m.

Since bbLR= L, we can repeat this process interchanging L and bL, so we deduce that dim kerbL ≥
m and dimim L ≥ dim kerbbL ≥ m. Taking into account that dim im L + dim ker L = dim imbL +
dim kerbL = 2m, we conclude that dim ker L = m, which ends the proof. �

3 Preliminaries: matrix functions

In the following section we will need some classical results concerning Matrix Theory which we

summarize here for the convenience of the reader.

Definition 3.1. Let M ∈Mn(C) and λ1, . . . ,λ j be the (different) roots of the minimal polynomial

of M †, with respective multiplicities µ1, . . . ,µ j, and f is a scalar-valued (R or C) function such

that the spectrum of M is contained in the interior of the domain of f and f is µk − 1 times

differentiable at λk for k = 1, . . . , j.

Let SJS−1 be the Jordan canonical form of M for S, J ∈Mn(C), where

J :=




Jλ1,1 0

...

0 Jλ j ,n j



 ,

and Jλ1,1, . . . , Jλ1 ,n1
, . . . , Jλ j ,1

, . . . , Jλ j ,n j
are de distinct Jordan blocks of J .

Then we define the primary matrix function f (M) associated to the stem function f as

f (M) := S




f (Jλ1,1) 0

.. .

0 f (Jλ j ,n j
)



S−1,

†There exists a unique Q ∈ C[x], called minimal polynomial of M , such that its principal coefficient is equal to

one, Q divides P(x) := |x Id−M |, Q(M) = 0 and, if R ∈ C[x], R(M) = 0 and R divides Q.
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where

f (Jλ,k) :=





f (λ) f ′(λ) 1
2

f ′′(λ) . . . 1
(m−1)!

f (m−1)(λ)

0 f (λ) f ′(λ) . . . 1
(m−2)!

f (m−2)(λ)

0 0 f (λ) . . . 1
(m−3)!

f (m−3)(λ)
...

...
...

. . .
...

0 0 0 . . . f (λ)




,

assuming Jλ,k ∈Mm(C).

Lemma 3.2 ([11, Theorem 6.2.9(b)]). Let M ∈ Mn(C). f (M) is independent of the particular

Jordan canonical form used to represent M.

Theorem 3.3 ([11, Theorem 6.2.8]). Let f be a scalar-valued analytic function with a power series

representation f (t) =
∑∞

k=0
αk t k that has radius of convergence r > 0. If M ∈ Mn(C) is such that

ρ(M) < r, then the matrix power series
∑∞

k=0
αkM k converges absolutely and is equal to f (M).

Theorem 3.4 ([11, Theorem 6.2.9]). Let M ∈ Mn(C) with minimal polynomial P ∈ C[x] and

let λ1, . . . ,λ j be the (different) roots of P with respective multiplicities µ1, . . . ,µ j. Let f and g be

scalar-valued (R or C) functions such that the spectrum of M is contained in the interior of their

domains, being f and g µk − 1 times differentiable at λk for k = 1, . . . , j. Then

1. There exists P ∈ C[x] of degree less or equal than n− 1 such that f (M) = P(M). P may be

taken to be any polynomial that interpolates f and its derivatives at the roots of the minimal

polynomial of M (according to multiplicity).

2. g(M) = f (M) if and only if g(r)(λk) = f (r)(λk) for r = 0, . . . ,µk − 1, k = 0, . . . , j.

3. The eigenvalues of f (M) are f (λ1), . . . , f (λ j), taking into account the multiplicity. The shape

of the Jordan boxes of M is preserved through f , but changing the eigenvalues to those of f (M).

The following result provides a square root of an invertible matrix with desirable commuta-

tivity properties.

Proposition 3.5. Let M , N ∈ Mn(C) such that M is invertible and M and N commute. Then, if

λ1, . . . ,λ j are roots of the minimal polynomial of M with respective multiplicities µ1, . . . ,µ j, there

exist P ∈ C[x] such that

1. P(M)N = N P(M),

2. P(M)2 = M.

Proof. 1. This is straightforward from the facts that P(M) is a polynomial on M and that M and

N commute.

2. Define h(t) =
p

t as the principal branch of the square root in C. h is differentiable in

C\{0}, so it is clear that h is well defined and µk − 1 differentiable at λk 6= 0, for k = 0, . . . , j.

Let P be the interpolating polynomial defined in Theorem 3.4.1 for the function h, that is, the

one such that h(r)(λk) = P(r)(λk) for r = 0, . . . ,µk − 1, k = 0, . . . , j. Now we apply Theorem 3.4.2

to the functions f (t) = P(t)2 and g(t) = t . We have that

f (r)(λk) = (P
2)(r)(λk) = (h

2)(r)(λk) = g(r)(λk),
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for r = 0, . . . ,µk − 1, k = 0, . . . , j, which ends the result.

�

Remark 3.6. The square root provided in Proposition 3.5 is invertible since M is invertible. This

is because |M |= |P(M)2|= |P(M)|2 6= 0.

We can prove in an analogous fashion, taking the principal branch of the logarithm in C, the

following proposition.

Proposition 3.7. Let M , N ∈ Mn(C) be such that M is invertible and M and N commute. Then,

if λ1, . . . ,λ j are the roots of the minimal polynomial of M with respective multiplicities µ1, . . . ,µ j,

there exists P ∈ C[x] such that

1. P(M)N = N P(M),

2. eP(M) = M.

Now we state some results concerning block matrices. Consider M1, . . . , M4 ∈ Mn(C) and

consider the block matrix

M =

�
M1 M2

M3 M4

�
.

Lemma 3.8.

1. If M1 and M3 commute, |M |= |M1M4 −M3M2|.

2. If M3 = −M2 and M4 = −M1, |M |= |M1 +M2||M2 −M1|.

Proof. Statement 1 appears in [19, Theorem 3]. In order to prove 2 we use the basic properties

of the determinant, namely, that if we add to some row (column) a linear combination of the rest,

the determinant does not vary. Hence, we have that

�����
M1 M2

−M2 −M1

�����=
�����
M1 +M2 M2 +M1

−M2 −M1

����� =
�����
M1 +M2 0

−M2 −M1 +M2

�����= |M1 +M2||M2 −M1|.

�

4 Systems of linear equations with reflection

In this section we will consider the homogeneous system of linear equations

Hu(t) := Fu′(t) + Gu′(−t) + Au(t) + Bu(−t) = 0, t ∈ R, (4.1)

where n ∈ N, A, B, F, G ∈ Mn(R) and u : R → Rn. We will prove that a fundamental matrix for

problem (4.1) exists.

Definition 4.1. X ∈ C (R,Mn(R)) is a fundamental matrix of problem (4.1) if it satisfies the

following properties:

(H1) X is differentiable,

7



(H2) X satisfies equation (4.1), that is

FX ′(t) + GX ′(−t) + AX (t) + BX (−t) = 0, t ∈ R,

(H3) X (0) is invertible,

(H4) the columns of X generate a basis of the space of solutions of (4.1).

In order to prove the existence of a fundamental matrix we will have to find a reduced equation

for problem (4.1) –cf. Theorem 2.3– and rewrite Theorem 2.5 in terms of a system of equations.

4.1 Reducing the system

Consider the notation u(t) := u(−t), t ∈ R for every function u : R → Rn†. This way, equa-

tion (4.1) can be expressed as Fu′ + Gu′ + Au+ Bu= 0. Also, H = F D+ Gϕ∗D+ A+ Bϕ∗.

Now Define v = u. Then, we can rewrite equation (4.1) as

Fu′ − Gv′ + Au+ Bv = 0.

Evaluating this expression in −t we get

−F v′ + Gu′ +Av + Bu = 0.

Expressing these two equations as a system, we have

�
F −G

G −F

��
u′

v′

�
+

�
A B

B A

��
u

v

�
= 0. (4.2)

Lemma 4.2. If F + G and F − G are invertible, equation (4.1) coupled with the condition u(0) = c

for some c ∈ Rn has, at most, one solution.

Proof. By Lemma 3.8.2 we have that

�����
F −G

G −F

�����= |F − G|| − G − F |= (−1)n|F + G||F − G| 6= 0,

so equation (4.2) can be rewritten as

�
u′

v′

�
= −
�

F −G

G −F

�−1�
A B

B A

��
u

v

�
. (4.3)

If u(0) = c, we have that v(0) = c. On the other hand, equation (4.3) coupled with these initial

conditions has exactly one solution due to the theory of ordinary differential systems. �

Corollary 4.3. If F + G and F − G are invertible and X , Y ∈ C (R,Mn(R)) are matrices satisfying

(H1)–(H3), then there exists an invertible matrix Λ ∈ Mn(R) such that Y = XΛ. Furthermore, X

and Y satisfy (H4).

†There will be no mention to the complex conjugate (an involution as well) in this paper, so this notation will

not cause any confusion.
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Proof. Let c ∈ Rn be any vector and define

u(t) = (Y (t)Y (0)−1 − X (t)X (0)−1)c, t ∈ R.

By construction, u is a solution of problem

Hu = 0, u(0) = 0, (4.4)

so, by Lemma 4.2, u = 0. Since v was fixed arbitrarily,

Y (t)Y (0)−1 = X (t)X (0)−1,

so the statement of the Corollary holds for Λ = X (0)−1Y (0).

Now, take a solution v of problem (4.4) and consider the problem (4.4) coupled with the

condition u(0) = v(0). By Lemma 4.2, v is the unique solution to this problem. On the other hand,

X (t)X (0)−1v(0) is a solution of the problem as well, so v(t) = X (t)X (0)−1v(0) and therefore X

generates all of the solutions of problem (4.4). The same happens for Y . �

Remark 4.4. Corollary 4.3 establishes a sufficient condition (F + G and F − G invertible) for

matrices satisfying (H1)–(H3) to be fundamental matrices of problem (4.4).

Lemma 4.2 establishes an upper bound for the number of solutions of our equation. But, is

there a solution at all? Now we try to answer this question.

4.2 Explicit computation of the fundamental matrix

In this last part of the Section we move towards a more direct approach to the fundamental

matrix of problem (4.1). Furthermore, we find a simpler explicit expression for it under certain

assumptions.

Theorem 4.5. Assume F − G and F + G are invertible. Then

X (t) :=

∞∑

k=0

Ek t2k

(2k)!
− (F + G)−1(A+ B)

∞∑

k=0

Ek t2k+1

(2k+ 1)!
, (4.5)

where E = (F−G)−1(A−B)(F+G)−1(A+B), is a fundamental matrix of problem (4.1). If we further

assume A− B and A+ B are invertible, then E is invertible and we can consider Ω to be the root of E

constructed in Proposition 3.5. Then,

X (t) = coshΩt − (F + G)−1(A+ B)Ω−1 sinhΩt . (4.6)

Proof. We observe that the series that defines X is uniformly and absolutely convergent by the

ratio test and, therefore, X is an analytic function. Furthermore, X (0) = Id is invertible.

Also, the relationship between formulas (4.5) and (4.6) is clear (assuming the complementary

hypotheses):

X (t) =

∞∑

k=0

Ek t2k

(2k)!
− (F + G)−1(A+ B)

∞∑

k=0

Ek t2k+1

(2k+ 1)!
=

∞∑

k=0

(Ωt)2k

(2k)!
− (F + G)−1(A+ B)Ω−1

∞∑

k=0

(Ωt)2k+1

(2k+ 1)!
.

Observe that, although Ω might not be a matrix with real coefficients, X is a real matrix.
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We check now that X (t) satisfies equation (4.1). Define, for convenience,

S1(t) :=

∞∑

k=0

Ek t2k

(2k)!
, S2(t) :=

∞∑

k=0

Ek t2k+1

(2k+ 1)!
.

Observe that S1 is even and S2 is odd. Then,

X (t) = S1(t)− (F + G)−1(A+ B)S2(t), X ′(t) = E S2(t)− (F + G)−1(A+ B)S1(t),

X (−t) = S1(t) + (F + G)−1(A+ B)S2(t), X ′(−t) = −E S2(t)− (F + G)−1(A+ B)S1(t).

FX ′(t) + GX ′(−t) + AX (t) + BX (−t)

=F(E S2(t)− (F + G)−1(A+ B)S1(t))+ G(−E S2(t)− (F + G)−1(A+ B)S1(t))

+A(S1(t)− (F + G)−1(A+ B)S2(t)) + B(S1(t) + (F + G)−1(A+ B)S2(t))

=[−F(F + G)−1(A+ B)− G(F + G)−1(A+ B) + A+ B]S1(t)

+ [F E − G E − A(F + G)−1(A+ B) + B(F + G)−1(A+ B)]S2(t) = 0.

Hence X satisfies (H1)–(H3) and, by Remark 4.4, X is a fundamental matrix. �

Remark 4.6. Observe an important difference between the case of systems of ordinary differential

equations and the case with reflection. While in the first case we know that fundamental matrices

are invertible for every t ∈ R, in the case of the reflection, expression (4.5) shows that, although

X is invertible in a neighborhood of 0, it might not be so for other values of t . This goes in the

line of [8, Lemma 2.4].

Remark 4.7. Observe that in the scalar case of n = 1 with F = 1, G = 0, Theorem 4.5 provides

the same expression for X as the one computed in [8, Section 2.2, Case (C2)].

Remark 4.8. In the proof of Theorem 4.5 it is not actually needed the square root to be the one

constructed in Proposition 3.5, it could be any other square root, but, as we will see in the results

to come, to choose this one is specially useful because of its commutativity properties.

EXAMPLE 4.9. Consider the system of equations

u′(t) = −v(t),

v′(−t),= −u(−t),

which expressed in matrix form is
�

1 0

0 0

��
u′(t)

v′(t)

�
+

�
0 0

0 1

��
u′(−t)

v′(−t)

�
+

�
0 1

0 0

��
u(t)

v(t)

�
+

�
0 0

1 0

��
u(−t)

v(−t)

�
= 0.

Hence,

(F − G)−1(A− B)(F + G)−1(A+ B) =

�
1 0

0−1

��
0 1

−1 0

��
1 0

0 1

��
0 1

1 0

�
= Id,

and, therefore,

X (t) =

�
cosh t 0

0 cosh t

�
−
�

0 1

1 0

��
sinh t 0

0 sinh t

�
=

�
cosh t − sinh t

− sinh t cosh t

�
.

X (t) is invertible for t ∈ R since cosh2 t − sinh2 t = 1 for every t ∈ R.

10



4.2.1 Computation of the matrix E for a differential equation

Let us consider equation Lu = 0 –where L is defined as in (2.1). We rewrite Lu = 0 in terms of

its coefficients

Lu(t) =

n∑

k=0

aku(k)(t) +

n∑

k=0

bku(k)(−t) = 0, t ∈ I ,

and now make the change of variables x0 = u, x1 = x ′
0
, . . . , xn = x ′

n−1
. We have that Lu = 0 is

equivalent to the system

x ′
k
− xk+1 = 0, k = 0, . . . , n− 2,

anx ′
n−1
+ bn x ′n−1+

n−1∑

k=0

ak xk +

n−1∑

k=0

bk xk = 0.
(4.7)

Hence, taking x = (x0, . . . , xn−1), and A, B, F, G ∈Mn(R) such that

F =

�
Id 0

0 an

�
, G =

�
0 0

0 bn

�
, A=





0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1

a0 a1 a2 · · · an−2 an−1





, B =





0 · · · 0
...

. . .
...

0 · · · 0

b0 · · · bn−1



 ,

where 0 denotes a zero matrix, we have that the system (4.7) can be expressed in the form (4.1).

Hence, if we assume a2
n
6= b2

n
,

(F − G)−1 =

�
Id 0

0 (an − bn)
−1

�
, (F + G)−1 =

�
Id 0

0 (an + bn)
−1

�
,

and (F − G)−1(A− B)(F + G)−1(A+ B) =





0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1
a0−b0

an−bn

a1−b1

an−bn

a2−b2

an−bn
· · · an−2−bn−2

an−bn

an−1−bn−1

an−bn









0 −1 0 · · · 0 0

0 0 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 0

0 0 0 · · · 0 −1
a0+b0

an+bn

a1+b1

an+bn

a2+b2

an+bn
· · · an−2+bn−2

an+bn

an−1+bn−1

an+bn





=





0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

− a0+b0

an+bn
− a1+b1

an+bn
− a2+b2

an+bn
· · · − an−1+bn−1

an+bn

(an−1−bn−1)(a0+b0)

a2
n−b2

n

(an−1−bn−1)(a1+b1)

a2
n−b2

n
− a0+b0

an+bn

(an−1−bn−1)(a2+b2)

a2
n−b2

n
− a1+b1

an+bn
· · · a2

n−1−b2
n−1

a2
n−b2

n
− an−2+bn−2

an+bn




.

This expression is too convoluted to compute the square root in a general way, but we can study

some simpler settings with further assumptions.
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EXAMPLE 4.10. Take n = 4 and assume a j = −b j, j = 1, 2; a3 = b3 = 0; γ= −(a0+b0)/(a4+b4) >

0, that is,

Lu= a4u(4)(t)+b4u(4)(−t)+a2[u
′′(t)−u′′(−t)]+a1[u

′(t)−u′(−t)]+a0u(t)+b0u(−t) = 0. (4.8)

Then

(F − G)−1(A− B)(F + G)−1(A+ B) =





0 0 1 0

0 0 0 1

γ 0 0 0

0 γ 0 0



 ,

and

Ω=





�
1
2
+ i

2

�
4
p
γ 0

1
2− i

2
4pγ 0

0
�

1
2
+ i

2

�
4
p
γ 0

1
2−

i
2

4pγ�
1

2
− i

2

�
γ3/4 0

�
1

2
+ i

2

�
4
p
γ 0

0
�

1
2
− i

2

�
γ3/4 0

�
1
2
+ i

2

�
4
p
γ




.

All the same,

X (t) =





1
2(cos(t 4pγ)+cosh(t 4pγ)) sin(t 4pγ)+sinh(t 4pγ)

2 4pγ
cosh(t 4pγ)−cos(t 4pγ)

2
p
γ

sinh(t 4pγ)−sin(t 4pγ)
2γ3/4

1
2

4pγ(sinh(t 4pγ)−sin(t 4pγ)) 1
2(cos(t 4pγ)+cosh(t 4pγ)) sin(t 4pγ)+sinh(t 4pγ)

2 4pγ
cosh(t 4pγ)−cos(t 4pγ)

2
p
γ

1
2

p
γ(cosh(t 4pγ)−cos(t 4pγ)) 1

2
4pγ(sinh(t 4pγ)−sin(t 4pγ)) 1

2(cos(t 4pγ)+cosh(t 4pγ)) sin(t 4pγ)+sinh(t 4pγ)
2 4pγ

1
2γ

3/4(sin(t 4pγ)+sinh(t 4pγ)) 1
2

p
γ(cosh(t 4pγ)−cos(t 4pγ)) 1

2
4pγ(sinh(t 4pγ)−sin(t 4pγ)) 1

2(cos(t 4pγ)+cosh(t 4pγ))



 .

Hence, any solution equation (4.8) is of the form

u(t) = c1 cos 4
p
γt + c2 sin 4

p
γt + c3 cosh 4

p
γt + c4 sinh 4

p
γt ,

where c1, . . . , c4 ∈ R are arbitrary constants.

Finally, we introduce a direct Corollary of Theorem 4.5.

Corollary 4.11. If F−G, F+G, A−B and A+B are invertible, every matrix Y satisfying (H1)–(H3)

for problem (4.1) is of the form Y = XΛ for some invertible Λ = Y (0) ∈M (Rn) where X is defined

as in (4.6).

Proof. The result is straightforward from Corollary 4.3 and Theorem 4.5. Since X (0) = Id, Y (0) =

Λ. �

4.3 Rewriting of the fundamental matrix using the PAF

The next results study those values of t for which X (t), given by expression (4.6), is singular. The

following theorem is inspired in a result of [20] called the (Hyperbolic) Phasor Addition Formula

which we state now.

Lemma 4.12 (HYPERBOLIC PHASOR ADDITION FORMULA, [20]). Let a, b, ω ∈ R. Then

a coshωt + b sinhω =






p
|a2 − b2| cosh
�

1
2

ln
�� a+b

a−b

��+ω
�

, a > |b|,
−
p
|a2 − b2| cosh
�

1
2

ln
�� a+b

a−b

��+ω
�

, −a > |b|,p
|a2 − b2| sinh
�

1
2

ln
�� a+b

a−b

��+ω
�

, b > |a|,
−
p
|a2 − b2| sinh
�

1

2
ln
�� a+b

a−b

��+ω
�

, −b > |a|,
a eω, a = b,

a e−ω, a = −b.
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Theorem 4.13 (MATRIX PHASOR ADDITION FORMULA). Let M , N , U ∈ Mn(C) such that M + N

and M − N are invertible and M, N and U commute. Then, if M0, N0 are, respectively, the square

roots of M+N and M−N, according to Proposition 3.5, and U0 is the logarithm of N−1
0

M0, according

to Proposition 3.7, the following identity holds:

M cosh U + N sinh U = M0N0 cosh(U0 + U)

=
Æ
(M + N)(M − N) cosh

�
ln
��p

M −N
�−1p

M + N
�
+ U
�

.

Proof. Since M and N commute, so do M+N and M−N . Also, since M+N and M−N commute,

and M +N and M0 and M +N and N0 commute (because they are their respective square roots),

we deduce, from Proposition 3.5, that M0 and N0 commute. Let γ= eU . U commutes with M and

N , so γ commutes with M0 and N0. Then

M cosh U + N sinh U = M
1

2

�
γ+ γ−1
�
+N

1

2

�
γ− γ−1
�
=

1

2

�
(M + N)γ+ (M − N)γ−1

�

=
1

2

�
M2

0
γ+ N 2

0
γ−1
�
=

1

2
M0

�
M0γ+M−1

0
N 2

0
γ−1
�
=

1

2
M0

�
M0γ+N0M−1

0
N0γ
−1
�

=
1

2
M0N0

�
N−1

0
M0γ+M−1

0
N0γ
−1
�
=

1

2
M0N0

�
N−1

0
M0γ+
�
N−1

0
M0γ
�−1
�
=

1

2
M0N0

�
eU0+U + e−(U0+U)

�

=M0N0 cosh(U0 + U).

�

Now we can state the following result as a direct consequence of the Phasor Addition Formula.

Lemma 4.14. If A+ B, A− B, F + G, F − G, Id+(F + G)−1(A+ B) and Id−(F + G)−1(A+ B) are

invertible, and (F + G)−1(A+ B) and Ω commute, then

X (t) = coshΩt − (F + G)−1(A+ B)Ω−1 sinhΩt

=
Æ
[Id−(F + G)−1(A+ B)] [Id+(F + G)−1(A+ B)]

· cosh
�

ln
h�Æ

Id+(F + G)−1(A+ B)
�−1Æ

Id−(F + G)−1(A+ B)

i
+Ωt

�
.

Corollary 4.15. Under the conditions of Lemma 4.14, X (t) is singular for every t satisfying
��ΛeΩt ± i Id
�� = 0,

where

Λ=
�Æ

Id+(F + G)−1(A+ B)
�−1Æ

Id−(F + G)−1(A+ B).

Proof. From Theorem 3.4.3, we know that, for any matrix M , sp(cosh M) = cosh(sp(M)) (where

sp(M) denotes the spectrum of M), so, in order to see whether M is singular or not we have to

check if the eigenvalues of M are in the set of zeros of cosh, that is Z1 = {(k+ 1/2)πi : k ∈ Z}.
Now,

cosh
�

ln
h�Æ

Id+(F + G)−1(A+ B)
�−1Æ

Id−(F + G)−1(A+ B)

i
+Ωt

�

= cosh
�

ln
h�Æ

Id+(F + G)−1(A+ B)
�−1Æ

Id−(F + G)−1(A+ B)eΩt
i�

.

Thus, in order for the logarithm of z ∈ C to be in Z1, we need z = ±i. Hence, we have to solve

the equation ��ΛeΩt ± i Id
�� = 0.

�
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EXAMPLE 4.16. Consider the system of equations

u′(t) = αu(−t) +β v(−t)

v′(t),= γu(−t) + δ v(−t),

which expressed in matrix form is

F

�
u′(t)

v′(t)

�
+ B

�
u(−t)

v(−t)

�
=

�
1 0

0 1

��
u′(t)

v′(t)

�
+

�
−α−β
−γ −δ

��
u(−t)

v(−t)

�
= 0.

Hence, Ω2 = −B2 = (iB)2, so we take Ω= iB. Using expression (4.5) we get

X (t) = cos Bt − sin Bt .

On the other hand, assuming B, Id+B and Id−B are invertible, using Lemma 4.14, we know

that

X (t) =
p

Id−B2 cosh
�

ln
h�p

Id+B
�−1p

Id−B

i
+ iBt

�
.

In order to do some explicit computations, we simplify the problem. Let us assume α = δ = 0,

β ,γ > 0. Then, using expression (4.5), we get

X (t) =

�
cos
�p
βγt
� Ç

β

γ
sin
�p
βγt
�

q
γ

β
sin
�p
βγt
�

cos
�p
βγt
�
�

.

We have that

|X (t)|= cos2
�Æ
βγt
�
− sin2
�Æ
βγt
�
= cos
�
2
Æ
βγt
�

.

Hence, X (t) is singular if and only if t ∈ {(kπ±π/4)/
p
βγ : k ∈ Z}. In particular, X is regular

in
�
−π/(4
p
βγ),π/(4
p
βγ)
�
.

5 The method of variation of parameters for the reflection

Now that we have proved the existence of a fundamental matrix of problem (4.1), we attempt

to develop an analog of the well known method of variation of parameters for the case of the

reflection.

5.1 A first attempt: the classical method

Now we have a problem of the kind

u′ = Au+ Bu+ γ, (5.1)

where A, B ∈Mn(R) and γ ∈ Rn.

We can consider, as done in the previous section, a fundamental matrix X of the associated

homogeneous problem

u′ = Au+ Bu.

That is, X satisfies

X ′ = AX + BX . (5.2)
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If we undertake the same approach as in the case of ordinary differential equations, we could

assume that a particular solution x of the nonhomogeneous problem (5.1) is of the form x = X a

where a ∈ C (I ,Rn) is a differentiable function. In that case, we have that, for problem (5.1),

X ′a+ X a′ = x ′ = Ax + Bx + γ= AX a + BX a+ γ.

In order to use the identity (5.2) to simplify this expression we have to assume that a is even,

that is, a = a. If that is so, using expression (5.2), we deduce that X a′ = γ and therefore

a(t) =

∫ t

0

X−1(s)γ(s)d s+ c. (5.3)

Where c ∈ Rn is an arbitrary constant vector (c = 0, for instance). Therefore, the general solution

to the nonhomogeneous equation (5.1) would be

u(t) = X (t)a(t) + X (t)c = X (t)

�∫ t

0

X−1(s)γ(s)d s+ c

�
,

where c ∈ Rn is an arbitrary vector.

There is a clear inconsistency in this chain of thought: the assumption of a being an even

function is gratuitous for, in general, X−1γ needs not to be an odd function –something necessary

for a to be even according to formula (5.3). This problem motivates a generalization of the

method of variation of parameters in a way that allows us to tackle this problem.

5.2 Second attempt: general method

We consider now two problems:

Fu′(t) + Gu′(−t) + Au(t) + Bu(−t) = γ, t ∈ R, (5.4)

and an associated problem

Fu′(t)− Gu′(−t) + Au(t)− Bu(−t) = γ, t ∈ R. (5.5)

Let us assume that X and Y are, respectively, fundamental matrices of the problems (5.4) and

(5.5). We will consider solutions of the form x = X a+Y b where a, b ∈ C (I ,Rn) are differentiable

functions such that a is even and b is odd. This assumptions are similar to the ones exploited

in [8, Theorem 2.1] to obtain the Green’s function. Then

γ=F x ′ + Gx ′ + Ax + Bx = FX ′a+ FX a′ + FY ′b+ FY b′ + GX ′a− GX a′

− GY ′b+ GY b′ + AX a + BX a+ AY b− BY b = FX a′ + FY b′ − GX a′ + GY b′.

That is,

(FX − GX )a′ + (FY + GY )b′ = γ.

Considering the even and odd parts of the equation, we arrive to the system of equations

(F − G)X ea
′ + (F − G)Yo b′ = γo,

(F + G)Xoa′ + (F + G)Ye b′ = γe,

that is, assuming F + G and F − G are invertible,

X ea
′ + Yo b′ = (F − G)−1γo,

Xoa′ + Ye b′ = (F + G)−1γe,
(5.6)
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In order to solve system (5.6), we have to ask for the associated matrix,

X =

�
X e Yo

Xo Ye

�
(5.7)

to be invertible.

The following results will help us to obtain sufficient criteria for X to be invertible.

Remark 5.1. Define M+ := (F + G)−1(A+ B), M− := (F − G)−1(A− B). In the case we choose X

and Y as given by Theorem 4.5, we arrive to

X (t) =

∞∑

k=0

Ek t2k

(2k)!
−M+

∞∑

k=0

Ek t2k+1

(2k+ 1)!
, E = M−M+,

Y (t) =

∞∑

k=0

eEk t2k

(2k)!
−M−

∞∑

k=0

eEk t2k+1

(2k+ 1)!
, eE = M+M−.

Hence,

X (t) =

∞∑

k=0




Ek t2k

(2k)!
−M−
eEk t2k+1

(2k+1)!

−M+
Ek t2k+1

(2k+1)!

eEk t2k

(2k)!



=
∞∑

k=0




Ek t2k

(2k)!
− Ek t2k+1

(2k+1)!
M−

− eEk t2k+1

(2k+1)!
M+
eEk t2k

(2k)!



 ,

and X (0) = Id, so X is invertible in a neighborhood of zero.

On the other hand,



 0 M−

M+ 0



X (t) =
∞∑

k=0



−E Ek t2k+1

(2k+1)!
M−
eEk t2k

(2k)!

M+
Ek t2k

(2k)!
−eE eEk t2k+1

(2k+1)!



=
∞∑

k=0



−
Ek t2k+1

(2k+1)!
M−M+

Ek t2k

(2k)!
M−

eEk t2k

(2k)!
M+ − eEk t2k+1

(2k+1)!
M+M−





=X (t)



 0 M−

M+ 0



 .

Since both matrices commute, there exists a simultaneous triangularization.

Theorem 5.2 ([12, Theorem 2.3.3]). LetF ⊂Mn(C) be a nonempty commuting family. There is

a unitary matrix U ∈Mn(C) such that U∗AU is upper triangular for every A∈ F .

Lemma 5.3. If F −G, F +G, A−B and A+B are invertible and (F −G)−1(A−B), (F +G)−1(A+B)

and X (0) commute, then X e and Xo commute and |X |= |X eYe − XoYo|.

Proof. We are under the hypotheses of Corollary 4.11, so every fundamental matrix of prob-

lem (4.1) is of the form

X (t) =
�
coshΩt − (F + G)−1(A+ B)Ω−1 sinhΩt

�
X (0).

Hence,

X e(t) = cosh (Ωt)X (0),

Xo(t) = −(F + G)−1(A+ B)Ω−1 sinh(Ωt)X (0),
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and

X e(t)Xo(t) = − cosh(Ωt)X (0)(F + G)−1(A+ B)Ω−1 sinh(Ωt)X (0),

Xo(t)X e(t) = −(F + G)−1(A+ B)Ω−1 sinh(Ωt)X (0) cosh(Ωt)X (0),

By construction, Ω (and the functions evaluated on Ω) commutes with everything (F − G)−1(A−
B)(F + G)−1(A+ B) commutes with. In particular,

(F − G)−1(A− B)(F + G)−1(A+ B)X (0) = X (0)(F − G)−1(A− B)(F + G)−1(A+ B),

(F − G)−1(A− B)(F + G)−1(A+ B)2 = (F + G)−1(A+ B)(F − G)−1(A− B)(F + G)−1(A+ B),

Thus, it is clear that X e and Xo commute.

By Lemma 3.8.1, since X e and Xo commute, |X |= |X eYe − XoYo|. �

Theorem 5.4. Assume A+B, A−B, F+G and F−G are invertible, and that X (0), (F−G)−1(A−B)

and (F + G)−1(A+ B) commute. Then, X eYe − XoYo = X (0)Y (0) and |X |= |X (0)Y (0)| 6= 0.

Proof. We know from Corollary 4.11 and Theorem 4.5 that

X (t) =
�
coshΩt − (F + G)−1(A+ B)Ω−1 sinhΩt

�
X (0),

Y (t) =
�
coshΩt − (F − G)−1(A− B)Ω−1 sinhΩt

�
Y (0).

Furthermore,

X e(t) = cosh(Ωt)X (0),

Xo(t) = −(F + G)−1(A+ B)Ω−1 sinh(Ωt)X (0),

Ye(t) = cosh(Ωt)Y (0),

Yo(t) = −(F − G)−1(A− B)Ω−1 sinh(Ωt)Y (0).

Hence,

X eYe − XoYo

= cosh(Ωt)X (0) cosh(Ωt)Y (0)− (F + G)−1(A+ B)Ω−1 sinh(Ωt)X (0)(F − G)−1(A− B)Ω−1 sinh(Ωt)Y (0)

= cosh2(Ωt)X (0)Y (0)− (F + G)−1(A+ B)Ω−1 sinh(Ωt)(F − G)−1(A− B)Ω−1 sinh(Ωt)X (0)Y (0)

=
�
cosh2(Ωt)− (F + G)−1(A+ B)Ω−1(F − G)−1(A− B)Ω−1 sinh2(Ωt)

�
X (0)Y (0).

Now, using that

Ω
2 = (F − G)−1(A− B)(F + G)−1(A+ B) = (F + G)−1(A+ B)(F − G)−1(A− B),

–because (F + G)−1(A+ B) and (F − G)−1(A− B) commute–, we have that

Ω
−1(F − G)−1(A− B)Ω−1 = Ω−1(F − G)−1(A− B)

�
(F + G)−1(A+ B)(F − G)−1(A− B)

�−1
Ω

= Ω−1(A+ B)−1(F + G)Ω= Ω−1
Ω(A+ B)−1(F + G) = (A+ B)−1(F + G),

Therefore,

(F + G)−1(A+ B)Ω−1(F − G)−1(A− B)Ω−1 = (F + G)−1(A+ B)(A+ B)−1(F + G) = Id .

Thus,

X eYe − XoYo =
�
cosh2

Ωt − sinh2
Ωt
�

X (0)Y (0) = X (0)Y (0).

�
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Remark 5.5. The commutativity of (F − G)−1(A− B) and (F + G)−1(A+ B) is necessary in the

hypotheses of Theorem 5.4. To see this, consider problem (5.4) with

F = Id, G = 0, A=

�
1
2

1

1 0

�
, B =

�
−1

2
0

0 0

�
.

Then,

(F + G)−1 = (F − G)−1 = Id, A+ B =

�
0 1

1 0

�
, A− B =

�
1 1

1 0

�
,

and

(A+ B)(A− B) =

�
1 0

1 1

�
6=
�

1 1

0 1

�
= (A− B)(A+ B).

Also,

Ω=
Æ
(A− B)(A+ B) =

�
1 1

2

0 1

�
, eΩ=
Æ
(A+ B)(A− B) =

�
1 0
1
2

1

�
.

So we have that

X (t) =





cosh(t) 1

2
t sinh(t) sinh(t) 1

2
t cosh(t)− sinh(t)

4

0 cosh(t) 0 sinh(t)

sinh(t) 0 cosh(t) 0
1
2
t cosh(t)− sinh(t)

4
sinh(t) 1

2
t sinh(t) cosh(t)



 .

Now,

|X (t)|= 1

128

�
−32t2+ 16t sinh(2t)− cosh(4t) + 129

�
.

Observe that |X (0)| = 1 but |X (2)| = −4.81408 . . . Also, in the neighbourhood [−1, 1] the

determinant |X (t)| is almost constant equal to one which suggest and expression similar to a

partial series approximation of the constant 1.

We summarize the method of variation of parameters in the following theorem.

Theorem 5.6 (Variation of Parameters Formula). Assume F +G and F −G are invertible. Let X

and Y be fundamental matrices of problems (5.4) and (5.5) respectively and X defined as in (5.7).

Then the solutions of problem (5.4), in a neighborhood of zero, are of the form

u(t) = X (t)c +
�

X (t) Y (t)
�∫ t

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s, (5.8)

where c ∈ Rn.

Proof. Expression (5.8) is obtained from direct integration of (5.6). X (0) and Y (0) are invertible

by Corollary 4.3 and Theorem 4.6. Furthermore, it is clear that Xo(0) = Yo(0) = 0 and, therefore,

X e(0) = X (0), Ye(0) = Y (0). Hence X (t) is invertible at zero and, by continuity, in a neighbor-

hood of zero, so we conclude that expression (5.8) is well posed. That is, for every c ∈ Rn, (5.8)

provides a solution of equation (5.4).

On the other hand, if v is a solution of problem (5.4), consider u to be the solution obtained

from (5.8) for c = X (0)−1v(0). We have that u(0) = v(0), which implies, by Lemma 4.2, that

u = v. �
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6 The Green’s function

6.1 The Green’s function of the initial value problem

Consider now problem (5.4) coupled with initial conditions

Fu′(t) + Gu′(−t) +Au(t) + Bu(−t) = γ, t ∈ R, (6.1)

u(0) = δ, (6.2)

where A, B, F, G ∈ Mn(R), γ ∈ C (R), and δ ∈ Rn. If F + G and F − G, are invertible, we know

there exists a fundamental matrix X of equation (6.1), so it is enough to take X as in Theorem 4.5

(X (0) = Id) and substitute c by δ in (5.8). The next Theorem establishes this solution in terms of

the Green’s function.

Theorem 6.1 (Green’s function). Assume F+G and F−G are invertible, X and Y are fundamental

matrices of problems (5.4) and (5.5) respectively andX is invertible in R. Then problem (6.1)–(6.2)

has a unique solution u : R→ Rn and it is given by

u(t) = X (t)X (0)−1δ+

∫ t

−t

G(t , s)γ(s)d s,

where

G(t , s) =






1

2

�
X (t) Y (t)
�
X (s)

−1

�
(F − G)−1

(F + G)−1

�
, 0≤ s ≤ t ,

1

2

�
X (t) Y (t)
�
X (−s)

−1

�
−(F − G)−1

(F + G)−1

�
, −t ≤ s < 0.

Proof. Following Theorem 5.6, we have that

u(t) = X (t)X (0)−1δ+
�

X (t) Y (t)
�∫ t

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s.

Hence,

u(t)− X (t)X (0)−1δ

=
�

X (t) Y (t)
�∫ t

0

X (s)
−1 1

2

��
(F − G)−1γ(s)

(F + G)−1γ(s)

�
+

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

��
d s

=
1

2

�
X (t) Y (t)
��∫ t

0

X (s)
−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s+

∫ 0

−t

X (−s)
−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s

�

Thus,

G(t , s) =






1

2

�
X (t) Y (t)
�
X (s)

−1

�
(F − G)−1

(F + G)−1

�
, 0≤ s ≤ t ,

1

2

�
X (t) Y (t)
�
X (−s)

−1

�
−(F − G)−1

(F + G)−1

�
, −t ≤ s < 0.

�
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EXAMPLE 6.2. We retake the simplified version of the problem studied in Example 4.16. That is,

we consider the system of equations

u′(t) = β2 v(−t),

v′(t),= γ2 u(−t),
(6.3)

with β ,γ > 0. We have that

X (t) =

�
cos (βγt)

β

γ sin (βγt)
γ

β
sin (βγt) cos (βγt)

�
.

Observe that the associated problem (5.5), in this case, is the same as (6.3) but substituting β2

and γ2 by −β2 and −γ2 respectively so, being careful with the signs, we can conclude that

Y (t) =

�
cos (βγt) −β

γ
sin (βγt)

− γβ sin (βγt) cos (βγt)

�
,

that is, Y (t) = X (−t). Therefore

X (t) =





cos (βγt) 0 0 −β
γ

sin (βγt)

0 cos (βγt) − γβ sin (βγt) 0

0
β

γ
sin (βγt) cos (βγt) 0

γ

β
sin (βγt) 0 0 cos (βγt)



 ,

with inverse

X (t)−1 =





cos (βγt) 0 0
β

γ
sin (βγt)

0 cos (βγt)
γ

β sin (βγt) 0

0 −β
γ

sin (βγt) cos (βγt) 0

− γ
β

sin (βγt) 0 0 cos (βγt)



 .

Observe again that X (−t) =X (t)−1. In this case,

G(t , s) =






�
cos((s− t)βγ) 0

0 cos((s− t)βγ)

�
, 0 ≤ s ≤ t ,

�
0 −β sin((s+t)βγ)

γ

−γ sin((s+t)βγ)

β
0

�
, −t ≤ s < 0.

6.2 The Green’s function of the boundary value problem

Consider now problem (5.4) in the interval I := [−T, T ] for some T ∈ R+ coupled with two-point

boundary conditions:

Fu′(t) + Gu′(−t) +Au(t) + Bu(−t) = γ, t ∈ I , (6.4)

Cu(−T ) + Ku(T ) = δ, (6.5)

where A, B, C , F, G, K ∈ Mn(R), γ ∈ C (I), and δ ∈ Rn. We proceed in a similar way as in [3,

Chapter 1].
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Theorem 6.3. Assume F+G and F−G are invertible, X and Y are fundamental matrices of problems

(5.4) and (5.5) respectively and X , defined as in (5.7), is invertible in I. Then problem (6.4)–(6.5)

has a unique solution u if and only if MX = CX (−T ) + KX (T ) is invertible.

Proof. By Theorem 4.3, there exists a fundamental matrix X of problem (6.4). By Theorem 5.6,

there exists a unique solution u defined on I given by (5.8) for some c ∈ Rn. Evaluating in −T

and T ,

u(−T ) = X (−T )c +
�

X (−T ) Y (−T )
�∫ −T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s,

u(T ) = X (T )c +
�

X (T ) Y (T )
�∫ T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s,

If we impose the boundary conditions on u, we have that

δ =Cu(−T ) + Ku(T )

=C

�
X (−T )c +
�

X (−T ) Y (−T )
�∫ −T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

�

+ K

�
X (T )c +
�

X (T ) Y (T )
�∫ T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

�

=MX c + C
�

X (−T ) Y (−T )
�∫ −T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

+ K
�

X (T ) Y (T )
�∫ T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

This linear equation has a unique solution for c if and only if MX is invertible. �

Theorem 6.4 (Green’s function). Assume F−G and F+G are invertible, X and Y are fundamental

matrices of problems (5.4) and (5.5) respectively, X is invertible in I and MX is invertible. Then

problem (6.4)–(6.5) has a unique solution u and it is given by

u(t) = X (t)M−1
X
δ+

∫ T

−T

G(t , s)γ(s)d s, (6.6)
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where G(t , s) =

1

2






�
−X (t)M−1

X
K
�

X (T ) Y (T )
�
+
�

X (t) Y (t)
��
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

+ X (t)M−1
X

C
�

X (−T ) Y (−T )
�
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

0< s < t ,

X (t)M−1
X

C
�

X (−T ) Y (−T )
�
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

�
−X (t)M−1

X
K
�

X (T ) Y (T )
�
+
�

X (t) Y (t)
��
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

0< −s < t ,

− X (t)M−1
X

K
�

X (T ) Y (T )
�
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

+
�
X (t)M−1

X
C
�

X (−T ) Y (−T )
�
−
�

X (t) Y (t)
��
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

0< s < −t ,

�
X (t)M−1

X
C
�

X (−T ) Y (−T )
�
−
�

X (t) Y (t)
��
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

− X (t)M−1
X

K
�

X (T ) Y (T )
�
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

0< −s < −t ,

− X (t)M−1
X

K
�

X (T ) Y (T )
�
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

+ X (t)M−1
X

C
�

X (−T ) Y (−T )
�
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

|t |< s,

X (t)M−1
X

C
�

X (−T ) Y (−T )
�
X (s)

−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

− X (t)M−1
X

K
�

X (T ) Y (T )
�
X (−s)

−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
,

|t |< −s.

(6.7)

Proof. Following Theorem 5.6,

u(t) = X (t)c +
�

X (t) Y (t)
�∫ t

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s,

where c is, by Theorem 6.3,

c =M−1
X

�
δ− C
�

X (−T ) Y (−T )
�∫ −T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

− K
�

X (T ) Y (T )
�∫ T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

�
.

Hence, if χ[a,b] is the indicator function of the interval [a, b], and χ b
a

is the oriented indicator

function of limits a and b, that is, if b ≥ a, χ b
a
= χ[a,b], if b < a, χ b

a
= −χ[b,a], then

u(t)− X (t)M−1
X
δ
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=− X (t)M−1
X

C
�

X (−T ) Y (−T )
�∫ −T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

− X (t)M−1
X

K
�

X (T ) Y (T )
�∫ T

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

+
�

X (t) Y (t)
�∫ t

0

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s

=

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](s)− K
�

X (T ) Y (T )
�
χ[0,T](s)
�
+
�

X (t) Y (t)
�
χ[0,t](s)
�

X (s)
−1

�
(F − G)−1γo(s)

(F + G)−1γe(s)

�
d s.

On the other hand,
�
(F − G)−1γo

(F + G)−1γe

�
=

1

2

��
(F − G)−1γ

(F + G)−1γ

�
+

�
−(F − G)−1γ

(F + G)−1γ

��
.

Therefore,

u(t)− X (t)M−1
X
δ

=
1

2

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](s)− K
�

X (T ) Y (T )
�
χ[0,T](s)
�
+
�

X (t) Y (t)
�
χ t

0
(s)
�

X (s)
−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s

+
1

2

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](s)− K
�

X (T ) Y (T )
�
χ[0,T](s)
�
+
�

X (t) Y (t)
�
χ t

0
(s)
�

X (s)
−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s

=
1

2

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](s)− K
�

X (T ) Y (T )
�
χ[0,T](s)
�
+
�

X (t) Y (t)
�
χ t

0
(s)
�

X (s)
−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s

+
1

2

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](−s)− K
�

X (T ) Y (T )
�
χ[0,T](−s)
�
+
�

X (t) Y (t)
�
χ t

0
(−s)
�

X (−s)
−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s

=
1

2

∫ T

−T

�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[−T,0](s)− K
�

X (T ) Y (T )
�
χ[0,T](s)
�
+
�

X (t) Y (t)
�
χ t

0
(s)
�

X (s)
−1

�
(F − G)−1γ(s)

(F + G)−1γ(s)

�

+
�
X (t)M−1

X

�
C
�

X (−T ) Y (−T )
�
χ[0,T](s)− K
�

X (T ) Y (T )
�
χ[−T,0](s)
�
+
�

X (t) Y (t)
�
χ0
−t
(s)
�

X (−s)
−1

�
−(F − G)−1γ(s)

(F + G)−1γ(s)

�
d s.
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That is, G is as in (6.7). �

Remark 6.5. Observe that, in expression (6.7) we are defining G in an open subset of I2. The set

in which G(t , ·) has not been defined is of zero Lebesgue measure in I , so it is irrelevant in terms

of the obtaining of the solution in equation (6.6).

EXAMPLE 6.6. We retake the problem in Example 6.2 the simplified version of the problem studied

in Example 4.16 adding the periodic boundary conditions (u, v)(−T ) = (u, v)(T ) for some fixed

T ∈ R+. We have that

MX = X (−T )− X (T ) =

�
0 −2β sin(Tβγ)

γ

−2γ sin(Tβγ)

β
0

�
,

has to be invertible, that is, we have to take T ∈ R+\{(kπ − π/2)/(βγ) : k ∈ N} in order to

compute the Green’s function. Also,

M−1
X

K
�

X (T ) Y (T )
�
=

�
1
2

β cot(Tβγ)

2γ
−1

2

β cot(Tβγ)

2γ
γ cot(Tβγ)

2β
1
2

γ cot(Tβγ)

2β
−1

2

�
.

Therefore,

2 sin(βγT )G(t , s) =






�
sin((s− t + T )βγ) −β cos((s+t−T)βγ)

γ

−γ cos((s+t−T)βγ)

β
sin((s− t + T )βγ)

�
, |s| < t ,

�
sin((s− t − T )βγ) −β cos((s+t+T)βγ)

γ

−γ cos((s+t+T)βγ)

β sin((s− t − T )βγ)

�
, |s| < −t ,

�
sin((s− t − T )βγ) −β cos((s+t−T)βγ)

γ

−γ cos((s+t−T)βγ)

β
sin((s− t − T )βγ)

�
, |t |< s,

�
sin((s− t + T )βγ) −β cos((s+t+T)βγ)

γ

−γ cos((s+t+T)βγ)

β
sin((s− t + T )βγ)

�
, |t |< −s.

EXAMPLE 6.7. The theory presented in this paper generalizes the theory of Green’s functions of

linear differential equations with reflection. Now we retake the classical problem studied in [5].

x ′(t) +mx(−t) = h(t), t ∈ I = [−T, T ], x(−T ) = x(T ), (6.8)

where m > 0. We have that, using formula (4.6), a fundamental matrix of problem (6.8) is

X (t) = cos mt − sin mt .

Correspondingly,

Y (t) = cos mt + sin mt .

Hence,

X (t) =

�
cos mt sin mt

− sin mt cos mt

�
.

Using the formula for the Green’s function provided by Theorem (6.4),

2 sin(mT )G(t , s) =






cos m(T − s− t) + sin m(T + s− t), |s|< t ,

cos m(T − s− t)− sin m(T − s+ t), |t |< s,

cos m(T + s+ t) + sin m(T + s− t), |t |< −s,

cos m(T + s+ t)− sin m(T − s+ t), |s|< −t .
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This expression coincides with the one obtained in [5] as expected.

7 Final remarks

We would like to make some last comments on the preceding discussion. The reader may be

missing the corresponding generalization of the previous results to the case of equations with

nonconstant coefficients. Although in the case of ODEs this step is straightforward and the theory

applies without any change of relevance, in the case of equations with reflection this generaliza-

tion if far from trivial. In fact, it is not possible in general. We refer the reader to [7] for more

information on this subject.

On a different matter, the reader may have realized that most of what is done here is valid

for linear differential equations with coefficients in Banach algebras with unity. Actually, matrices

form a really poorly behaved Banach algebra. Most of the trouble we went trough in this paper

originated in the facts that, on one hand, matrices do not commute in general –Theorems 4.5,

4.13 and 5.4, Lemmas 4.14 and 5.3, Remark 5.1 highlight this issue– and, on the other, that

they conform an algebra with divisors of zero –which in this case correspond to the singular

matrices. Therefore, the theory presented here may be extended to other Banach algebras of

linear endomorphisms of given vector spaces.
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