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Abstract

In this paper we consider a discrete-time retrial queueing system with batch

arrivals of geometric type and general batch services. The arriving group of

customers can decide to go directly to the server expelling out of the system the

batch of customers that is currently being served, if any, or to join the orbit.

After a successful retrial all the customers in the orbit get service simultane-

ously. An extensive analysis of the model is carried out, and using a generating

functions approach some performance measures of the model, such as the first

distribution’s moments of the number of customers in the orbit and in the sys-

tem, are obtained. The generating functions of the sojourn time of a customer in

the orbit and in the system are also given. Finally, in the section of conclusions

and research results the main contributions of the paper are commented.

Keywords: Discrete-time system, retrials, expulsions, total renewal discipline,

sojourn time.

1. Introduction

There is a great potential for using the discrete-time queues in the perfor-

mance analyses of computer and communication networks. The discrete-time

queueing system has been found to be more appropriate in modeling computer
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and telecommunication systems than their continuous counterpart because the

basic unit time in the discrete case is a binary code. Indeed, much of the useful-

ness of discrete-time queues derives from the fact that they can be used in the

performance analysis of Digital Network and related computer communication

technologies wherein the continuous-time models do not adapt [1], [2].

Queueing systems with repeated attempts are characterized by the fact that

a customer finding the server busy upon arrival must leave the service area

and repeat its request for service after some random time. Between trials, the

blocked customers joins a group of unsatisfied customers called orbit. Retrial

queues have been widely used to model many practical problems in telephone

switching systems, telecommunication networks and computers competing to

gain service from a central processing unit. For a detailed review of the main

results and the literature on this topic the reader is referred to [3], [4], [5], [6],

[7] and [8].

In many real telecommunication systems, it is frequently observed that the

server processes the packets in groups. In such batch-service systems, jobs that

arrive one at a time must wait in the queue until a sufficient number of jobs

gets accumulated. A variety of batch-service queues with infinite waiting space

has been studied by many researchers e.g. [9], [10], [11], [12] and [13]. This

service discipline is closely related to other disciplines described in the queueing

literature like G-networks, clearing systems, catastrophes, etc, see for example

[14], [15], [16], [17], [18].

An interesting feature that is considered in this model is the total renewal

discipline, that is, jobs or customers are served in groups (batch queues) but

leaving the orbit empty at the moment of their batch service. Batch arrivals

have been used to describe large deliveries and batch services to model a hospi-

tal out-patient department holding a clinic once a week, a transport link with

capacity. Nowadays, home automation has greatly increased in popularity over

the past several years, which refers to the automatic and electronic control of

household features, activities, and appliances. Various control systems are uti-

lized in this residential extension of building automation. The actions in this
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type of systems can be individual or in batches with total renewal discipline, for

example, turning on the lights of a certain area at the same time when the alarm

is turned on, combined with other actions. The automation of features in one’s

home helps to promote security, comfort, energy efficiency, and convenience.

Another feature that is usually found when a message is being processed in

computers, in communications switching queues, etc, is that sometimes the in-

formation incoming to the server is more actual than the one on service. In that

case, the message is moved to another place if the contained information can be

used later on, or if the information is not any more valuable it is deleted, in both

cases the server is upgraded. The mechanism of moving messages by the arrival

of one of them is called synchronized or triggered motion. There are several

mechanisms on how and where the messages are moved, for a survey on them

refer to [14] and [19], [20, 21]. This mechanism of service interruptions was first

studied in [22] that is considered an M/M/1 pre-emptive two-priority queueing

model with exponentially distributed service interruption. An extensive study

on such models can be consulted, for example, in [23, 24], [25], [26] and for a

detailed review on queues with service interruptions the reader is referred to

[27].

The remainder of this paper is structured as follows. The assumptions of

the queueing system under study are given in the next section. In section 3

the Markov chain associated to our model is studied. The queue and system

size distribution are obtained together with several performance measures of

the system. In section 4 the busy period (BP) is analysed and in section 5 the

sojourn times distribution of a customer in the queue and in the system with

its respective means are given. Finally, a section of conclusions summarizes the

main results for the system.

2. The mathematical model

In this paper a discrete-time queueing system in which the time axis is

segmented into a sequence of equal intervals, called slots, is considered. It is
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assumed that all queueing activities (arrivals, departures and retrials) occur at

the slot boundaries, and therefore, they may occur at the same time. So we

suppose that the departures occur at the moment immediately before the slot

boundaries, but external arrivals and retrials, in this order, occur at the moment

after the slot boundaries.

Batches of customers arrive according to a geometrical arrival process with

probability a, that is, a is the probability that an arrival occurs in a slot. The

number of individual external customers arriving in each batch is k, k ≥ 1, with

probability ck, and generating function (GF) C(z) =

∞∑
k=1

ckz
k, 0 < z ≤ 1. If

an arriving batch of customers finds the server free, it begins immediately and

jointly its service, otherwise, with probability θ it expels out of the system the

group of customers that is currently being served, and starts immediately its

service, or, with complementary probability θ̄ it joins the orbit in order to try

its luck some time later.

The service times are independent and distributed with arbitrary distribu-

tion {si}∞i=1, and generating function (GF) S(x) =

∞∑
i=1

six
i, 0 < x ≤ 1. Hence,

si is the probability that a service lasts i slots. Let Sk =

∞∑
i=k

si denote the

probability that the service lasts not less than k slots.

The retrials are jointly made by all the customers of the orbit. The retrial

time (the time between two successive attempts) follows a geometrical law with

probability 1− r, where r is the probability that the group of customers in the

orbit does not make a retrial in a slot.

Once a service is finished, if no arrival occurs, and a successful retrial has

taken place, all the customers of the orbit get service jointly and simultaneously.

3. The Markov chain associated to the system

At time k+, the instant immediately after slot k, the state of the system can

be described by the process {Xk , k ∈ N} with Xk = (Ck, ξk, N
(1)
k , N

(2)
k ) where

Ck denotes the state of the server 0 or 1 according to whether the server is free
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or busy, and N
(i)
k , i = 1, 2, is the number of customers in the server and in the

orbit respectively. If Ck = 1, then ξk corresponds to the remaining service time

of the group being served.

It can be shown that {Xk , k ∈ N} is the Markov chain of the queueing

system under consideration, whose states space is

{(0, n), n ≥ 0; (i,m, n) : i,m ≥ 1, n ≥ 0}.

Our first task is to find the stationary distribution:

π0,n = lim
k→∞

P [Ck = 0, N
(2)
k = n], n ≥ 0,

πi,m,n = lim
k→∞

P [Ck = 1, ξk = i, N
(1)
k = m, N

(2)
k = n], i,m ≥ 1, n ≥ 0,

of the Markov chain {Xk , k ∈ N}.

The Kolmogorov equations for the stationary distribution are

π0,0 = āπ0,0 + ā

∞∑
m=1

π1,m,0 ⇔ aπ0,0 = ā

∞∑
m=1

π1,m,0, (1)

π0,n = ārπ0,n + ār

∞∑
m=1

π1,m,n, n ≥ 1, (2)

πi,m,0 = acmsiπ0,0 + ā(1− r)siπ0,m + acmsi

∞∑
l=1

π1,l,0 +

+ ā(1− r)si
∞∑
l=1

π1,l,m + āπi+1,m,0 +

+ aθcmsi

∞∑
j=2

∞∑
l=1

πj,l,0, i,m ≥ 1, (3)

πi,m,n = aθ̄

n−1∑
k=0

πi+1,m,kcn−k + āπi+1,m,n + acmsiπ0,n +

+ acmsi

∞∑
l=1

π1,l,n + aθcmsi

∞∑
j=2

∞∑
l=1

πj,l,n, i,m, n ≥ 1, (4)

where ā = 1− a and the normalization condition is

∞∑
n=0

π0,n +

∞∑
i=1

∞∑
m=1

∞∑
n=0

πi,m,n = 1.
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In order to solve (1)-(4) the following generating functions corresponding to the

sequences π0,n , πi,m,n and π1,m,n are introduced

ϕ0(z) =

∞∑
n=1

π0,nz
n,

P0(x, z1) =

∞∑
i=1

∞∑
m=1

πi,m,0 x
i zm1 ,

P (x, z1, z2) =

∞∑
i=1

∞∑
m=1

∞∑
n=1

πi,m,n x
i zm1 zn2 ,

Π1(z) =

∞∑
m=1

∞∑
n=1

π1,m,n z
n.

Multiplying eq. (2) by zn and summing over n, gives

ϕ0(z) =
ār

1− ār
Π1(z). (5)

Multiplying eq (3) by xi zm1 , and taking into account eqs. (1) and (5) we get

x− ā
x

P0(x, z1) =
a

ā
(1− aθ)c(z1)S(x)π0,0 + α(r)S(x)Π1(z1) +

+ aθc(z1)S(x)P0(1, 1)− ā
∞∑
m=1

π1,m,0z
m
1 , (6)

where α(r) = ā(1−r)
1−ār .

Choosing x = 1, z1 = 1 in eq. (6) yields

aθ̄P0(1, 1) =
a2

ā
θ̄π0,0 + α(r)Π1(1), (7)

and substituting (7) into (6) leads to

θ̄
x− ā
x

P0(x, z1) =
a

ā
θ̄c(z1)S(x)π0,0 + α(r)S(x)[θ̄Π1(z1) + θc(z1)Π1(1)]−

− āθ̄

∞∑
m=1

π1,m,0z
m
1 . (8)

Setting x = ā in eq. (8), we get

āθ̄

∞∑
m=1

π1,m,0z
m
1 =

a

ā
θ̄c(z1)S(ā)π0,0 + α(r)S(ā)[θ̄Π1(z1) +

+ θc(z1)Π1(1)], (9)
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by substituting the above equation into eq. (6) it is, finally, obtained

θ̄P0(x, z1) =
S(x)− S(ā)

x− ā
xk(z1), (10)

where k(z1) = a
ā θ̄c(z1)π0,0 + α(r)[θ̄Π1(z1) + θc(z1)Π1(1)].

From eq. (9), for z1 = 1, we have

Π1(1) =
ā− S(ā)

āα(r)S(ā)
aθ̄π0,0, (11)

and setting x = 1, z1 = 1 in eq. (10) gives

P0(1, 1) =
1− S(ā)

S(ā)
π0,0. (12)

By multiplying eq. (4) by xizm1 z
n
2 and summing over i,m, n, we obtain

x− (ā+ aθ̄c(z2))

x
P (x, z1, z2) =

aθ̄c(z2)

x
P0(x, z1) +

+ aθc(z1)S(x)P (1, 1, z2) +

+ ac(z1)S(x)

[
θ̄ +

ār

1− ār

]
Π1(z2)−

−
[
(ā+ aθ̄c(z2))

∞∑
m=1

∞∑
n=1

π1,m,nz
m
1 z

n
2 +

+ aθ̄c(z2)

∞∑
m=1

π1,m,0z
m
1

]
. (13)

Choosing x = 1, z1 = 1, in the above equation, and using (12), yields

P (1, 1, z2) = Π1(z2) +
c(z2)Π1(1)−Π1(z2)

aθ̄[1− c(z2)]
α(r), (14)

and substituting (14) into (13) gives

θ̄[1− c(z2)]
x− [ā+ aθ̄c(z2)]

x
P (x, z1, z2) =

=
aθ̄2c(z2)[1− c(z2)]

x
P0(x, z1) +

+ c(z1)S(x)
[
aθ̄[1− c(z2)]

1

1− ār
Π1(z2)− α(r)θ[Π1(z2 − c(z2)Π1(1))]

]
−

− θ̄[1− c(z2)]
[
[ā+ aθ̄c(z2)]

∞∑
m=1

∞∑
n=1

Π1,m,nz
m
1 z

n
2 +

+ aθ̄c(z2)

∞∑
m=1

Π1,m,0z
m
1

]
. (15)
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Setting x = ā+ aθ̄c(z2) in (15) leads to

θ̄[1− c(z2)]
[
(ā+ aθ̄c(z2))

∞∑
m=1

∞∑
n=1

π1,m,nz
m
1 z

n
2 + aθ̄c(z2)

∞∑
m=1

π1,m,0z
m
1

]
=

=
aθ̄2c(z2)[1− c(z2)]

ā+ aθ̄c(z2)
P0(ā+ aθ̄c(z2), z1) +

+ c(z1)S[ā+ aθ̄c(z2)]
[
aθ̄[1− c(z2)]

1

1− ār
Π1(z2)−

− α(r)θ[Π1(z2)− c(z2)Π1(1)]
]
, (16)

and, finally, substituting (16) into (15), one has

θ̄[1− c(z2)]P (x, z1, z2) =
aθ̄2c(z2)[1− c(z2)]

ā+ aθ̄c(z2)
×

× (ā+ aθ̄c(z2))P0(x, z1)− xP0(ā+ aθ̄c(z2), z1)

x− [ā+ aθ̄c(z2)]
+

+
S(x)− S[ā+ aθ̄c(z2)]

x− [ā+ aθ̄c(z2)]
xc(z1)

[
aθ̄[1− c(z2)]

1

1− ār
Π1(z2)−

− α(r)θ[Π1(z2)− c(z2)Π1(1)]
]
, (17)

the last formula can be written as

P (x, z1, z2) =
aθ̄c(z2)[S(x)− S(ā)]− (x− a)[S[ā+ aθ̄c(z2)]− S(ā)]

(x− ā)[x− [ā+ aθ̄c(z2)]]

x

θ̄
k(z1) +

+
S(x)− S[ā+ aθ̄c(z2)]

x− [ā+ aθ̄c(z2)]
xc(z1)×

×
[ a

1− ār
Π1(z2)− Π1(z2)− c(z2)Π1(1)

θ̄[1− c(z2)]
α(r)θ

]
. (18)

From eq. (16), with z1 = 1, we obtain

Π1(z2) =
1

DΠ(z2)

[
[1− c(z2)]

[
ā[S[ā+ aθ̄c(z2)]− S(ā)]− aθ̄c(z2)S(ā)

]
+

+ θc(z2)[ā− S(ā)]S[ā+ aθ̄c(z2)]
]
[1− ār]aθ̄π0,0,

where DΠ(z2) =
[
θ̄[1− c(z2)]

[
(1− ār)(ā+ aθ̄c(z2))− aS[ā+ aθ̄c(z2)]

]
+ āθ(1−

r)S[ā+ aθ̄c(z2)]
]
āS(ā).

In order to find the unknown constant π0,0 the normalization condition π0,0+

ϕ0(1) + P0(1, 1) + P (1, 1, 1) = 1 will be used.
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The value of P (1, 1, 1) can be found from formula (14), that for z2 = 1, takes

the form

P (1, 1, 1) = Π1(1) +
Π′(1)− c′(1)Π1(1)

aθ̄c′(1)
α(r),

where Π′(1) is given by

Π′(1) =
1

ā3θS(ā)S(ā+ aθ̄)(1− r)2

[
ā
[
aθ̄S(ā)− ā[S(ā+ aθ̄)− S(ā)](1− r)

]
+

+ (ā− S(ā))S(ā+ aθ̄)[āθ(1− r)− aθ̄] + θ̄(ā− S(ā))(1− ār)(ā+ aθ̄)
]
×

× aθ̄(1− ār)c′(1)π0,0.

Now, after some algebra, the expression of π0,0 is obtained:

π0,0 =
ā2S(ā+ aθ̄)S(ā)(1− r)

Dπ
,

where Dπ = ā2θS(ā + aθ̄)(1 − r) + θ̄(ā − S(ā))(ā + aθ̄)(1 − ār) + ā
[
aθ̄S(ā) +

ā[S(ā+ aθ̄)− S(ā)]
]
.

The above results can be summarized in the following theorem:

Theorem 1. The generating functions of the stationary distribution of the chain

of the system are given by

ϕ0(z) =
ār

1− ār
Π1(z),

θ̄P0(x, z1) =
S(x)− S(ā)

x− ā
xk(z1),

P (x, z1, z2) =
aθ̄c(z2)[S(x)− S(ā)]− (x− a)[S[ā+ aθ̄c(z2)]− S(ā)]

(x− ā)[x− [ā+ aθ̄c(z2)]]

x

θ̄
k(z1) +

+
S(x)− S[ā+ aθ̄c(z2)]

x− [ā+ aθ̄c(z2)]
xc(z1)×

×
[ a

1− ār
Π1(z2)− Π1(z2)− c(z2)Π1(1)

θ̄[1− c(z2)]
α(r)θ

]
,

where

Π1(z) =
1

DΠ(z)

[
[1− c(z)]

[
ā[S[ā+ aθ̄c(z)]− S(ā)]− aθ̄c(z)S(ā)

]
+

+ θc(z)[ā− S(ā)]S[ā+ aθ̄c(z)]
]
[1− ār]aθ̄π0,0,

k(z1) =
a

ā
θ̄c(z1)π0,0 + α(r)[θ̄Π1(z1) + θc(z1)Π1(1)],
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π0,0 =
ā2S(ā+ aθ̄)S(ā)(1− r)

Dπ
,

and DΠ = ā2θS(ā+aθ̄)(1−r)+ θ̄(ā−S(ā))(ā+aθ̄)(1− ār)+ ā
[
aθ̄S(ā)+ ā[S(ā+

aθ̄)− S(ā)]
]
, α(r) = ā(1−r)

1−ār .

Corollary 1. 1. The probability generating function of the number of cus-

tomers in the server is given by

ψ1(z) = π0,0 + ϕ0(1) + P0(1, z) + P (1, z, 1) = π0,0 +
1− S(ā+ aθ̄)

aθθ̄
×

×
[
k(z) + c(z)

aθ̄ − (1− ār)c′(1)Π1(1) + (1− ār)Π′1(1)

(1− ār)c′(1)
α(r)

]
.

2. The probability generating function of the number of customers in the orbit

is given by

ψ2(z) = π0,0 + P0(1, 1) + ϕ0(z) + P (1, 1, z) = π0,0 +
1

1− āz
Π1(z) +

+
c(z)Π1(1)−Π1(z)

aθ̄[1− c(z)]
α(r).

3. The probability generating function of the number of customers in the

system is given by

Φ(z) = ψ1(z) · ψ2(z).

Corollary 2. 1. The mean number of customers in the server is given by

E[N (1)] = ψ′1(1) =
a

ā
θ̄c′(1)π0,0 +

(1− ār)(1 + θ̄)Π′1(1) + aθc′(1)Π1(1)

1− ār
α(r),

2. The mean number of customers in the orbit is given by

E[N (2)] = ψ′2(1) = Π′1(1) +
Π′′(1)c′(1)−Π′1(1)c′′(1)

2aθ̄c′(1)2
α(r).

where

Π′′(1) =
1

āθ(1− r)S(ā+ aθ̄)

[ N ′′

āθ(1− r)S(ā+ aθ̄)
−Π1(1)D′′ − 2Π′1(1)D′

]
,
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where

N ′′ = c′′(1)
[
θ(ā− S(ā))[S(ā+ aθ̄) + aθ̄S′(ā+ aθ̄)] +

+ aθ̄S(ā)− ā[S(ā+ aθ̄)− S(ā)]
]

+

+ aθ̄c′(1)2
[
θ(ā− S(ā))[2S′(ā+ aθ̄) + aθ̄S′′(ā+ aθ̄)] +

+ 2[S(ā)− āS′(ā+ aθ̄)]
]
,

D′ = θ̄c′(1)
[
aS(ā+ aθ̄)− (1− ār)(ā+ aθ̄) + aāθ(1− r)S′(ā+ aθ̄)

]
,

D′′ = θ̄c′′(1)
[
aāθ(1− r)S′(ā+ aθ̄)− (1− ār)(ā+ aθ̄) + aS(ā+ aθ̄)

]
+

+ aθ̄c′(1)2
[
aāθθ̄(1− r)S′′(ā+ aθ̄)− 2θ[1− ār − aS′(ā+ aθ̄)]

]
.

3. The mean number of customers in the system is given by

E[N ] = E[N (1)] + E[N (2)].

4. Busy period

A busy period (BP) is defined as the period starting with the arrival of a

customer that finds the system empty and ends at the first service completion

epoch at which the system becomes empty again.

This section considers the busy period of an auxiliary system in which the

arriving customers go directly to the server, which will be useful to study the

customers delay in the original system. Specifically, we will suppose that the

probability of an arrival is aθ, and as in the original model the arriving customer

or group of customers expels out of the system the customers that are currently

being served, if any. Let’s denote by hk, k ≥ 0, the probability that the busy

period of our auxiliary system lasts exactly k slots. Then we have:

h0 = 0,

hk = (1− aθ)ksk +

k∑
i=1

(1− aθ)i−1siaθhk−i +

+

k∑
i=1

(1− aθ)i−1Si+1aθhk−i, k ≥ 1.

The above formulae can be explained in the following way:
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1. In the first k − 1 slots no new customer arrives (with probability (1 −

aθ)k−1), and in the slot k the customer, or group of customers, that opened

the BP finishes his service (with probability sk) and no new customers

arrive (with probability 1− aθ).

2. In the first i−1 slots no new customer arrives (with probability (1−aθ)i−1),

and in the slot i: the customer, or group of customers, that opened the

BP finishes his service (with probability si), a new customer, or group of

customers, arrives (with probability aθ) and the BP opened by this new

customer, or group of customers, lasts k− i slots (with probability hk−i).

3. With probability Si+1 the service of the customer, or group of customers,

that opened the BP lasts not less of i+ 1 slots, in the first i− 1 slots no

new customer arrives (with probability (1−aθ)i−1), and in the slot i a new

customer, or group of customers, arrives expelling out of the system the

customer, or group of customers, that are currently being served, (with

probability aθ) opening a new BP of length k − i slots (with probability

hk−i)

A recursive procedure of the above formula can lead to obtain numerically

the distribution {hk, k ≥ 0} but in order to find the moments of the distribution

we will use the GF h(x) =

∞∑
k=0

hkx
k, that is given by

h(x) = S[(1− aθ)x] +
aθ

1− aθ
S[(1− aθ)x]h(x) +

+
aθ

1− aθ
(1− aθ)x− S[(1− aθ)x]

1− (1− aθ)x
h(x),

that is

h(x) =
[1− (1− aθ)x]S[(1− aθ)x]

1− x+ aθxS[(1− aθ)x]
.

The mean length of a busy period is given by

h̄ = h′(1) =
1− S(1− aθ)
aθS(1− aθ)

.

In order to find the generating function of the sojourn time that a customer

spends in the orbit, the GF h(x; i) of the distribution of the busy period that

12



starts with a customer in the server to which remains i slots to finish its service

will be needed. This GF has the following expression

h(x; i) =
[(1− aθ)x]i

1− aθ
[1− aθ + aθh(x)] + aθx

1− [(1− aθ)x]i−1

1− (1− aθ)x
h(x), i ≥ 1.

Let us explain the above formula:

If after the first i− 1 slots no customer arrives to the system and in the slot

i, either a new customer does not arrive and then the BP ends with probability

1 − aθ, or another customer arrives and then with probability aθ a new BP is

opened with GF h(x). This accounts for the first term of the right hand side of

the formula.

Now, with respect to the second term, if after k − 1 slots, k = 1, . . . , i − 1,

a new customer does not arrive (with probability (1 − aθ)k−1) and in the slot

k a new customer arrives (with probability aθ), a BP is opened with GF h(x).

Summing over k from 1 to i− 1, the given formula of h(x; i) is obtained.

5. Sojourn times

5.1. Sojourn time of a customer in the server

In this section the distribution of the time that a customer spends in the

server will be obtained. With this aim let bk be the probability that the sojourn

time of a customer in the server lasts exactly k slots. The distribution {bk, k ≥

0} is given by

b0 = 0,

bk = (1− aθ)k−1sk + aθ(1− aθ)k−1Sk+1, k ≥ 1.

The corresponding GF b(x) =

∞∑
k=0

bkx
k is given by

b(x) =
aθx+ (1− x)S[(1− aθ)x]

1− (1− aθ)x
,

and the mean time that a customer spends in the server is

b̄ = b′(1) =
1− S(1− aθ)

aθ
.

13



5.2. Sojourn time of a customer in the orbit

The GF of the stationary distribution of the waiting time of a customer in

the orbit is given by

W (x) = π0,0 + ϕ0(1) + θ[P0(1, 1) + P (1, 1, 1)] +

+ (1− θ)
∞∑
i=1

∞∑
m=1

∞∑
n=0

πi,m,nω(x).

The above formula has the following explanation:

An arriving customer spends 0 slots in the orbit with probability π0,0 +

ϕ0(1)+θ[P0(1, 1)+P (1, 1, 1)] and with probability (1−θ)πi,m,n, i,m ≥ 1, n ≥ 0,

it finds m customers in the server with a remaining service time of i slots, and

n customers in the orbit. Then this customer will wait in the orbit till the

beginning of its service for a period of time with GF h(x; i)ω(x), where ω(x) is

the GF of the elapsed time in the orbit since the ending of the BP h(x; i).

The GF W (x) can be expressed in the form:

W (x) = π0,0 + ϕ0(1) + θ[P0(1, 1) + P (1, 1, 1)] +

+ (1− θ)
[ aθh(x)

1− (1− aθ)x
[P0(1, 1) + P (1, 1, 1)] +

+
1− x(1− aθ + aθh(x))

1− (1− aθ)x
[
P0[(1− aθ)x, 1] + P [(1− aθ)x, 1, 1]

]]
ω(x).

In order to find the GF ω(x), we will denote by ωk, k ≥ 0, the probability

that the sojourn time of a customer in the orbit since the end of a BP lasts

exactly k slots, then we have

ω0 = 1− r,

(19)

ωk = (ā r)k(1− r) + (1− δ1,k)a r

k−1∑
l=1

(ā r)l−1
k−l∑
i=1

hiωk−i−l, k ≥ 1,

where δa,b is Kronecker’s delta.

The GF ω(x) of the distribution {ωk, k ≥ 0} is given by

ω(x) =

∞∑
k=0

ωkx
k =

1− r
1− rx[ā+ a h(x)]

,
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with mean

ω̄ = ω′(1) =
r(1 + a h̄)

1− r
.

Let us explain the formula (19):

Consider the slot in which a BP ends, say the slot 0, the customers in the

orbit will spend there 0 slots if in the slot 0 no customer arrives to the server

(which is ensured by the fact that in the slot 0 a BP ended) and a retrial occurs

(with probability 1− r).

The customers in the orbit will wait exactly k, k ≥ 1, slots since the ending

of a BP, if: in the slot 0 no customer arrives to the server (which is insured

by the fact that the BP has ended in the slot 0) and no retrial occurs (with

probability r), and in the following k − 1 slots no new customers arrive to the

server and no retrials occur (with probability (ā r)k−1) and in the slot k no new230

customer arrives to the server and a retrial occurs (with probability ā (1− r)),

this accounts for the first term of the formula.

Now, let us explain the second term of the formula (19): before the slot

l, 1 ≤ l ≤ k − 1, no customer arrives to the system and no retrial occurs (with

probability ā l−1 rl), in the slot l a new customer, or group of customers, arrives

to the system opening a BP with length of i slots, and once this BP is finished

the customers in the orbit will wait there till the beginning of their service a

period of time of k − l − i slots (all with probability a hi ωk−l−i).

5.3. Sojourn time of a customer in the system

The GF V (x) of the stationary distribution of the sojourn time of a customer

in the system is given by

V (x) = W (x) b(x),

and the corresponding mean time is given by

V̄ = V ′(1) = W̄ + b̄.
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6. Conclusions and research results

In this paper a discrete-time retrial queueing system has been studied. Cus-

tomers arrive in batches according to a geometrical law and the service times

are general. If an arriving group of customers finds the server free, it begins

jointly and simultaneously its service, otherwise the group can opt with a certain

probability to go directly to the server expelling out of the system the customers

that are in the server or to join the orbit. The retrials from the orbit are made

jointly by all the customers in the orbit.

A thorough analysis of the model has been carried out, obtaining generating

functions for the distributions of the number of customers in the server and in

the orbit, but the main research contribution of the paper is a complete study of

the sojourn time of a customer in the orbit not only for its relevance concerning

to this system but also because it opens a new research approach to its treatment

in more general discrete-time retrial systems.

Acknowledgement

The author would like to thank the referees for valuable suggestions and

comments that helped to improve the presentation of this paper. We would also

like to thank Evgeniya Guskova, Lic. in Translation and Interpretation, for the

English proofreading.

This work was partially supported by the Spanish National Project TIN15-

70266-C2-P-1.

References

[1] H. Bruneel, B. Kim, Discrete-time models for communication systems in-

cluding ATM, Kluwer Academic Publishers, 1993.

[2] M. E. Woodward, Communication and Computer Networks: Modelling

with Discrete-Time Queues, IEEE Computer Society, 1994.

16



[3] I. Atencia, A Geo/G/1 retrial queueing system with priority services, Jour-

nal of Operational Research 256 (1) (2017) 178186.

[4] J. Artalejo, New results in retrial queueing systems with breakdown of the

servers, Statistica Neerlandica 48 (1994) 23–36.

[5] J. Artalejo, A. Gomez-Corral, Retrial queueing systems, Springer, 2008.

[6] G. Falin, J. Templeton, Retrial queues, Chapman and Hall, 1997.

[7] I. Atencia, P. Moreno, Discrete-time Geo[x]/G/1 retrial queue with

bernoulli feedback, Computers and Mathematics with Applications 47

(2004) 1273–1294.

[8] W. Xiaoyong, K. Xiaowu, Analysis of an M/Dn/1 retrial queue, Journal

of Computational and Applied Mathematics 200 (2007) 528–536.

[9] G. Chaudhry, J. Templeton, A fist course in bulk queues, John Wiley and

sons, 1983.

[10] F. Agterberg, J. Medhi, Recent Development in Bulk Queueing Models,

South Asia Books, 1984.

[11] J. Medhi, Stochastic Models in Queueing Theory: Edition 2, Academic

Press, 2002.

[12] Y. Tang, X. Yung, S. Huang, Discrete-time GeoX/G/1 queue with unreli-

able server and multiple adaptive delayed vacations, Journal of Computa-

tional and Applied Mathematics 220 (2008) 439–455.

[13] F. Chang, J. Ke, On a batch retrial model with J vacations, Journal of

Computational and Applied Mathematics 232 (2009) 402–414.

[14] J. Artalejo, G-networks: A versatile approach for work removal in queueing

networks, European Journal of Operational Research 126 (2000) 233–249.

17



[15] I. Atencia, P. Moreno, The discrete-time Geo/Geo/1 queue with negative

customers and disasters, Computers and Operations Research 31 (9) (2004)

1537–1548.

[16] P. Bocharov, I. Zaryadov, Stationary probability distribution of a queueing

system with renovation, Vestnik RUDN series Mathematics, I. Technology,

Phisics. 1 (2007) 15–25.

[17] I. Zaryadov, Stationary service characteristics in a G/M/n/r system with

generalized renovation, Vestnik RUDN series Mathematics, I. Technology,

Phisics 2 (2008) 3–10.

[18] A. Kreinin, Queueing systems with renovation, Journal of Applied Math.

Stochast. Analysis 10 (1997) 431–443.

[19] E. Gelenbe, A. Label, G-networks with multiple classes of signals and posi-

tive customers, European Journal of Operational Research 108 (1998) 293–

305.

[20] I. Atencia, I. Fortes, S. Sánchez, Discrete-time queueing system with expul-

sions, Communications in Computer and Information Science 356 (2013)

20–25.

[21] I. Atencia, A discrete-time system with service control and repairs, Interna-

tional Journal of Applied Mathematics and Computer Science 24 (3) (2014)

471–484.

[22] H. White, L. Christie, Queuing with preemptive priorities or with break-

down, Operations Research 6 (1) (1958) 79–95.

[23] A. Krishnamoorthy, B. Gopakumar, V. Viswanath Narayanan, A retrial

queue with server interruptions, resumption and restart of service, Opera-

tions Research International Journal 12 (2012) 133–149.

[24] A. Krishnamoorthy, P. Pramod, S. Chakravarthy, A note on characterizing

service interruptions with phase-type distribution, Journal of Stochastic

Analysis and Applications 31 (4) (2013) 671–683.

18



[25] D. Fiems, B. Steyaert, H. Bruneel, Randomly interrupted GI/G/1 queues:

service strategies and stability issues, Annals of Operations Research 112

(2002) 171–183.

[26] J. Walraevens, B. Steyaert, H. Bruneel, A preemptive repeat priority queue

with resampling: Performance analysis, Annals of Operations Research 146

(2006) 189–202.

[27] A. Krishnamoorthy, P. Pramod, S. Chakravarthy, A survey on queues with

interruptions, TOP 22 (2014) 290–320.

19




