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Enumeration of spanning trees of middle digraphs
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Abstract

Let D be a connected weighted digraph. The relation between the vertex
weighted complexity (with a fixed root) of the line digraph of D and the
edge weighted complexity (with a fixed root) of D has been given in (L.
Levine, Sandpile groups and spanning trees of directed line graphs, J. Com-
bin. Theory Ser. A 118 (2011) 350-364) and, independently, in (S. Sato, New
proofs for Levine’s theorems, Linear Algebra Appl. 435 (2011) 943-952). In
this paper, we obtain a relation between the vertex weighted complexity of
the middle digraph of D and the edge weighted complexity of D. Particu-
larly, when the weight of each arc and each vertex of D is 1, the enumerative
formula of spanning trees of the middle digraph of a general digraph is ob-
tained.
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1. Introduction

Graphs and digraphs considered in this paper are all simple and finite,
if not specified. Let D = (V (D), A(D), χ) be a connected weighted digraph
with vertex set V (D), arc set A(D) and weight function χ : V (D)∪A(D) →
(0,∞). Set χi = χvi = χ(vi) for vi ∈ V (D), and χij = χe = χ(e) for
e = (vi, vj) ∈ A(D).

For any arc e = (u, v) ∈ A(D), we set u = t(e), the tail of e, and v = h(e),
the head of e. For any vertex v ∈ V (D), we set

d+(v) = |{e ∈ A(D)|t(e) = v}|, d−(v) = |{e ∈ A(D)|h(e) = v}|.

A spanning tree of D is a connected subdigraph containing all vertices
of D, having no cycles, in which one vertex u (the root) has outdegree 0
(i.e., d+(u) = 0), and every other vertex has outdegree 1. Let T (D) be the
set of all spanning trees of D and T (D, v) be the set of spanning trees of
D with root v. Define the edge weighted complexity and the vertex weighted
complexity of the digraph D as follows:

κedge(D,χ) =
∑

T∈T (D)

∏

e∈A(T )

χe,

κvertex(D,χ) =
∑

T∈T (D)

∏

e∈A(T )

χh(e).

For a fixed vertex v ∈ V (D), define two polynomials as follows:

κedge(D, v, χ) =
∑

T∈T (D,v)

∏

e∈A(T )

χe,

κvertex(D, v, χ) =
∑

T∈T (D,v)

∏

e∈A(T )

χh(e).

Let D be a weighted digraph. The edge-weighted Laplacian matrix ∆edge

and vertex-weighted Laplacian matrix ∆vertex are defined as follows:

∆edge =

















∑

j 6=1

χ1j −χ12 · · · −χ1n

−χ21

∑

j 6=2

χ2j · · · −χ2n

...
...

. . .
...

−χn1 −χn2 · · ·
∑

j 6=n

χnj

















,
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∆vertex = (duv)u,v∈V (D), where

duv =











∑

t(e)=u χ(h(e)) u = v,

−χ(v) (u, v) ∈ A(D),

0 (u, v) 6∈ A(D).

In case that (vi, vj) is not an arc, χij = 0.
The problem related to the enumeration of spanning trees is one of basic

problems not only in the field of algebraic graph theory but also in electric
circuit theory, which has been investigated for more than 160 years. There
are many methods to enumerate spanning trees of graphs and digraphs. For
example, we can use the matrix tree theorem (see [1, 2, 3]) to enumerate span-
ning trees of the general graphs and the general digraphs. For the weighted
digraph D, we can use the following generalized matrix tree theorem:

Theorem 1. (Generalized Matrix Tree Theorem)
Let D be a finite digraph. Then

κedge(D, v, χ) = det((∆edge)vv),

κvertex(D, v, χ) = det((∆vertex)vv),

where (∆edge)vv and (∆vertex)vv are two matrices obtained from ∆edge and
∆vertex by deleting row v and column v of ∆edge and ∆vertex, respectively.

Furthermore,

κedge(D,χ) = tr(adj∆edge) =
∑

v∈V (D)

κedge(D, v, χ),

κvertex(D,χ) = tr(adj∆vertex) =
∑

v∈V (D)

κvertex(D, v, χ),

where adjA is the cofactor matrix of a square matrix A.

For the proof of the generalized matrix tree theorem, see for example
Section 5 in [8] for the edge-weighted version, and Theorems 1 and 2 in [4]
for the vertex-weighted version.

The (vertex-)weighted line digraph of a weighted digraph D with vertex
set V (D), arc set A(D), and the weight function is χ, denoted by L(D), has
vertex set A(D), and for any two arcs e1 = (u1, v1), e2 = (u2, v2) ∈ A(D),
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there exists an arc (e1, e2) in L(D) if and only if v1 = u2, and the weight
of each vertex e of L(D) equals the weight of the edge e in D. For the
weighted line digraph L(D) of the digraph D, the relationship between the
vertex weighted complexity of the weighted line graph L(D) and the edge
weighted complexity of the original digraph D has been given by Levine [6].
Independently, Sato [9] presented a new proof for two Levine’s Theorems by
using the generalized matrix tree theorem.

Theorem 2. [6] Let D be a finite weighted digraph. Then

κvertex(L(D), χ) = κedge(D,χ)

n
∏

i=1

dri−1
i . (1)

where L(D) is the line digraph of D, n = |V (D)|, m = |A(D)| and ri =
d−(vi), di =

∑

t(e)=vi

χe.

Theorem 3. [6] Let D be a finite weighted digraph, and e∗ = (w∗, v∗) be an
arc of D. Suppose d−(v) ≥ 1 for all vertices v ∈ V (D). Then

κvertex(L(D), e∗, χ) = χe∗κ
edge(D,w∗, χ)d

rv∗−2
v∗

∏

v 6=v∗

drv−1
v . (2)

For a weighted digraph D, the (vertex-)weighted middle digraphM(D) of
D is the weighted digraph obtained from D by replacing each arc e = (u, v)
with a directed path u → e → v, and adding a new arc from e to f if the arcs
e and f in D satisfy h(e) = t(f). For each vertex of M(D), if v ∈ V (D), its
weight is the weight of vertex v of original digraph D, otherwise, its weight
is the weight of corresponding arc of D. We define two other sets as follows:

EE(D) = {(e, f) ∈ A(D)×A(D) | h(e) = t(f)},

EV (D) = {(v, e) ∈ V (D)×A(D) | t(e) = v} ∪ {(e, v) ∈ A(D)× V (D) | h(e) = v}.

Then we can write the weighted middle digraph M(D) of D as follows:

M(D) = (V (D) ∪A(D), EE(D) ∪ EV (D), χ).

The middle graph and the middle digraph have extensively been stud-
ied. See, for example, the enumerative problem of spanning trees of the
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middle graph of the semiregular bipartite graph [10], the regular graph [5],
the general graph [11] and the weighted graph [14]. Zamfirescu [12] obtained
the local and global characterizations of middle digraphs; Liu, Zhang and
Meng [7] studied super-arc-connected and super-connected middle digraphs
and the spectra of middle digraphs; In 2016, Zamfirescu [13] proved that if
a digraph D contains no loops, the intersection number of M(D) is equal to
the number of vertices of D that are not sources, added to the number of
vertices of D that are not sinks.

The main purpose of this paper is to consider the relation between the
vertex weighted complexity of M(D) and the edge weighted complexity of a
digraph D. Particularly, we derive an enumerative formula on the number
of spanning trees of the middle digraph M(D) of a digraph D.

2. Main results

Let f(A, λ) = det(λIn − A) be the characteristic polynomial of a matrix
A of order n, where In is the unit matrix of order n. Firstly, we express the
characteristic polynomial of ∆vertex(M(D)) in terms of ∆edge(D).

Lemma 4. Suppose D is a weighted digraph and M(D) is the middle digraph
of D. Then the characteristic polynomial of ∆vertex(M(D)) can be expressed
by

f(∆vertex(M(D)), λ) = f(∆edge(D), λ)
n
∏

i=1

(λ− χi − di)
ri, (3)

where n = |V (D)|, ri = d−(vi), di =
∑

t(e)=vi

χe (1 ≤ i ≤ n).

Proof. Let D be a digraph with n vertices and m arcs, and a weight func-
tion χ : V (D) ∪ A(D) → (0,∞). Let W = (avw)n×n, F = (fvw)n×n,W

ι =
(cef)m×m, F

ι = (hef )m×m,M = (Mve)n×m, L = (Lev)m×n, Q = (Qvw)n×n, B =
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(Bef)m×m which are defined as follows.

W : avw =

{

χe e = (v, w) ∈ A(D)

0 e = (v, w) 6∈ A(D).
F : fvw =







∑

t(e)=v

χe v = w

0 v 6= w.

W ι : cef =

{

χf h(e) = t(f)

0 h(e) 6= t(f).
F ι : hef =







∑

h(e)=t(g)

χg e = f

0 e 6= f.

M : Mve :=

{

χe t(e) = v

0 t(e) 6= v.
L : Lev :=

{

1 h(e) = v

0 h(e) 6= v.

Q : Qvw :=

{

χv v = w

0 v 6= w.
B : Bef :=

{

χh(e) e = f

0 e 6= f.

It is not difficult to prove that ∆edge(D) = F −W , W ι = LM , W = ML,
and

∆vertex(M(D)) =

(

F −M

−LQ B + F ι −W ι

)

.

Thus,

f(∆vertex(M(D)), λ)

= det(λIm+n −∆vertex(M(D)))

= det

(

λIn − F M

LQ λIm − B − F ι +W ι

)

= det

(

λIn − F M

0 (λIm − B − F ι +W ι)− LQ(λIn − F )−1M

)

= det(λIn − F ) det(λIm − B − F ι − L[Q(λIn − F )−1 − In]M)

= det(λIn − F ) det(Im − L[Q(λIn − F )−1 − In]×

M(λIm − B − F ι)−1) det(λIm − B − F ι).

If X is an m× n matrix and Y is an n×m matrix, then

det(Im −XY ) = det(In − Y X).
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Thus,

det(λIm+n −∆vertex(M(D)))

= det(λIn − F ) det(λIm − B − F ι)×

det(In − [Q(λIn − F )−1 − In]M(λIm − B − F ι)−1L).

Obviously, det(λIm −B − F ι) =

n
∏

i=1

(λ− χi − di)
ri.

By a suitable labelling vertices of L(D), we have

(λIm − B − F ι)−1 =





(λ−χ1−d1)−1Ir1
(λ−χ2−d2)−1Ir2

...
(λ−χn−dn)−1Irn



 .

For each arc e = (v, w) ∈ A(D),

(M(λIm − B − F ι)−1L)vw = χvw · (λ− χw − dw)
−1,

and

Q(λIn − F )−1 − In =





χ1(λ−d1)−1−1

χ2(λ−d2)−1−1

...
χn(λ−dn)−1−1



 .

Thus,

det(In − [Q(λIn − F )−1 − In]M(λIm − B − F ι)−1L)

= det













1 −[χ1(λ−d1)−1−1]·χ12

λ−χ2−d2
· · · −[χ1(λ−d1)−1−1]·χ1n

λ−χn−dn
−[χ2(λ−d2)−1−1]·χ21

λ−χ1−d1
1 · · · −[χ2(λ−d2)−1−1]·χ2n

λ−χn−dn
...

...
. . .

...
−[χn(λ−dn)−1−1]·χn1

λ−χ1−d1

−[χn(λ−dn)−1−1]·χn2

λ−χ2−d2
· · · 1













=

n
∏

i=1

(λ− χi − di)
−1[χi(λ− di)

−1 − 1](−1)n det(λIn − F +W ).

Therefore,

det(λIm+n −∆vertex(M(D)) =

n
∏

i=1

(λ− χi − di)
ri det(λIn −∆edge(D)).
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By Lemma 4, we can obtain the relation between the complexities of
M(D) and D as follows.

Theorem 5. Suppose D is a weighted digraph and M(D) is the middle di-
graph of D. Then,

κvertex(M(D), χ) = κedge(D,χ)

n
∏

i=1

(χi + di)
ri, (4)

where n = |V (D)|, m = |A(D)|, ri = d−(vi), di =
∑

t(e)=vi

χe (1 ≤ i ≤ n).

Proof. For the characteristic polynomial f(λ) =| λIn−A |= λn+an−1λ
n−1+

...... + a1λ+ a0, the coefficient of λ is (−1)n−1 × tr(adjA).
Therefore, by Theorem 1, we have

f
′

(∆vertex(M(D)), 0) = (−1)m+n−1κvertex(M(D), χ),

f
′

(∆edge(D), 0) = (−1)n−1κedge(D,χ).

By Lemma 4 (i.e., Eq. (3)),

f
′

(∆vertex(M(D)), 0) = f
′

(∆edge(D), 0)

n
∏

i=1

(χi + di)
ri(−1)m.

Therefore,

κvertex(M(D), χ) = κedge(D,χ)
n
∏

i=1

(χi + di)
ri .

When the weight of each arc and each vertex of D is 1, the enumerative
formula of spanning trees of the middle digraph of a digraph can be obtained
as follows.
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Corollary 6. Suppose D is a digraph and M(D) is the middle digraph of D.
Then,

t(M(D)) = t(D)

n
∏

i=1

(1 + di)
ri. (5)

where t(M(D)) is the number of the spanning trees of M(D), di = d+(vi),
ri = d−(vi).

If the edge e∗ = (w∗, v∗) is fixed, then the relation between the vertex
weighted complexity of the middle digraph M(D) with root e∗ and the edge
weighted complexity of D with root w∗ can be obtained as follows:

Proposition 7. Suppose D is a weighted digraph and M(D) is the middle
digraph of D. For any fixed arc e∗ = (w∗, v∗) of D, then

κvertex(M(D), e∗, χ) = χe∗κ
edge(D,w∗, χ)(χv∗ + dv∗)

rv∗−1
∏

v 6=v∗

(χv + dv)
rv . (6)

Proof. LetW = (avw)n×n, F = (fvw)n×n,W
ι = (cef)m×m, F

ι = (hef)m×m,M =
(Mve)n×m, L = (Lev)m×n, Q = (Qvw)n×n, B = (Bef)m×m be the eight matri-
ces defined in the proof of Lemma 4. Suppose that e∗ = (w∗, v∗) is a fixed
arc in D. Let M0, L0, B0,W

ι
0, F

ι
0 be the matrices obtained from the matrix

M,L,B,W ι and Fι by deleting the column e∗ of M , the row e∗ of L, the row
e∗ and the column e∗ of B, W ι, F ι, respectively. Then, by Theorem 1 , we
have

κvertex(M(D), e∗, χ)

= det

(

F −M0

−L0Q B0 +Dι
0 −W ι

0

)

= det

(

F −M0

0 B0 + F ι
0 −W ι

0 − L0QF−1M0

)

= det(F ) det(B0 + F ι
0 −W ι

0 − L0QF−1M0)

= det(F ) det(In − (In +QF−1)M0(B0 + F ι
0)

−1L0) det(B0 + F ι
0).

But, we have det(B0 + F ι
0) = (χv∗ + dv∗)

rv∗−1
∏

v 6=v∗

(χv + dv)
rv .
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Furthermore, we have

(B0 + F ι
0)

−1 =











(χ1+d1)−1·Ir1

...
(χv∗+dv∗ )

−1·Irv∗−1

...
(χn+dn)−1·Irn











.

Thus, for an arc e = (v, w) ∈ A(D),

(M0(B0 + F ι
0)

−1L0)wv = χvw · (χw + dw)
−1.

Therefore, it follows that

det(In − (In +QF−1)M0(B0 + F ι
0)

−1L0)

=

n
∏

i=1

(1 + χid
−1
i )

1

(χi + di)
det











d1 −χ12 ··· −χ1v∗
··· −χ1n

−χ21 d2 ··· −χ2v∗
··· −χ2n

...
...

...
...

−χw∗1
−χw∗2

··· 0 ··· −χw∗n

...
...

...
...

−χn1 −χn2 ··· −χnv∗ ··· dn











.

Let gw∗
= d

w∗
− χe∗ , then

=

n
∏

i=1

(1 + χid
−1
i )

1

(χi + di)
det











d1 −χ12 ··· −χ1w∗
··· −χ1v∗

··· −χ1n

−χ21 d2 ··· −χ2w∗
··· −χ2v∗

··· −χ2n

...
...

...
...

...
−χw∗1

−χw∗2
··· gw∗

··· 0 ··· −χnw∗

...
...

...
...

...
−χn1 −χn2 ··· −χnw∗

··· −χnv∗ ··· dn











+
n
∏

i=1

(1 + χid
−1
i )

1

(χi + di)
det











d1 −χ12 ··· −χ1w∗
··· −χ1v∗

··· −χ1n

−χ12 d2 ··· −χ2w∗
··· −χ2v∗

··· −χ2n

...
...

...
...

...
0 0 ··· χe∗ ··· 0 ··· 0

...
...

...
...

...
−χn1 −χ2n ··· −χnw∗

··· −χnv∗ ··· dn











=
n
∏

i=1

(1 + χid
−1
i )

1

(χi + di)
χe∗κ

edge(D,w∗, χ).
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Therefore,

κvertex(M(D), e∗, χ)

= det(F ) det(B0 + F ι
0)

n
∏

i=1

(1 + χid
−1
i )

1

(χi + di)
χe∗κ

edge(D,w∗, χ)

=

n
∏

i=1

di(1 + χid
−1
i )

1

(χi + di)
(χv∗ + dv∗)

rv∗−1
∏

v 6=v∗

(χv + dv)
rvχe∗κ

edge(D,w∗, χ)

= χe∗κ
edge(D,w∗, χ)(χv∗ + dv∗)

rv∗−1
∏

v 6=v∗

(χv + dv)
rv .
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