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Abstract

The balanced hypercube, BHn, is a variant of hypercube Qn. Hao et al. [Appl. Math. Comput.
244 (2014) 447-456] showed that there exists a fault-free Hamiltonian path between any two adjacent
vertices in BHn with (2n− 2) faulty edges. Cheng et al. [Inform. Sci. 297 (2015) 140-153] proved
that BHn is 6-edge-bipancyclic after (2n − 3) faulty edges occur for all n ≥ 2. In this paper, we
improve these two results by demonstrating that BHn is 6-edge-bipancyclic even when there exist
(2n− 2) faulty edges for all n ≥ 2. Our result is optimal with respect to the maximum number of
tolerated edge faults.
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1 Introduction

In the field of parallel and distributed systems, interconnection networks are an important research

area. Typically, the topology of a network can be represented as a graph in which the vertices represent

processors and the edges represent communication links.

The hypercube network has been proved to be one of the most popular interconnection networks

as it possesses many excellent properties such as a recursive structure, regularity, and symmetry. It

is well known that no network typically meets all the aspects of a given set of requirements. Thus, a

number of hypercube variants have been proposed, such as folded hypercubes [6], crossed cubes [5],

Möbius cubes [4], twisted cubes [8], and shuffle cubes [10] and so on(see [14]).

The balanced hypercube, proposed by Huang and Wu [9], is also a hypercube variant. Similar

to hypercubes, balanced hypercubes are bipartite graphs [9] that are vertex-transitive [13] and edge-

transitive [19]. Balanced hypercubes are superior to hypercubes in that they have a smaller diameter

as compared to hypercubes.

Studies on balanced hypercubes can be found in [2, 3, 7, 9, 11–13, 15–19].

For graph definitions and notations, we follow [1]. A graph G consists of a vertex set V (G) and

an edge set E(G), where an edge is an unordered pair of distinct vertices of G. A graph G is called

bipartite if its vertex set can be partitioned into two parts V1, V2 such that every edge has one endpoint

in V1 and one in V2. A vertex v is a neighbor of u if (u, v) is an edge of G, and NG(u) denotes the set of

all the neighbors of u in G. A path P of length ` from x to y, denoted by `-path P , is a finite sequence

of distinct vertices 〈v0, v1, · · · , v`〉 such that x = v0, y = v`, and (vi, vi+1) ∈ E for 0 ≤ i ≤ ` − 1. We

also denote the path P as 〈v0, v1, · · · , vi, Q, vj , vj+1, · · · , v`〉, where Q is the path 〈vi, vi+1, · · · , vj〉. A

cycle C of length ` + 1 is a closed path〈v0, v1, · · · , v`, v0〉, denoted by (` + 1)-cycle C.

In an interconnection network, the problem of simulating one network by another is modeled as a

graph embedding problem. In all embedding problems, the cycle embedding problem is one of the most

common problem; it refers to finding a cycle of a given length in a graph. A graph G of order |V (G)|
is m-pancyclic, if it contains every `-cycle for m ≤ ` ≤ |V (G)|. A bipartite graph G is m-bipancyclic,

if it contains every even `-cycle for m ≤ ` ≤ |V (G)|. A graph G is pancyclic (resp. bipancyclic) if it
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is g-pancyclic (g-bipancyclic), where g = g(G) is the girth of G. A graph G is vertex-pancyclic (resp.

edge-pancylic) if every vertex (resp. edge) lies on various `-cycles for all g ≤ ` ≤ V (G). A path is

called a Hamiltonian path if it contains all the vertices of G. A graph G is said to be Hamiltonian

connected if there exists a Hamiltonian path between any two vertices of G. A bipartite graph is

Hamiltonian laceable if there is a Hamiltonian path between any two vertices in different bipartite

sets.

A bipartite graph G is k-fault-tolerant hamiltonian laceable (resp. bipancyclic, vertex-bipancyclic,

and edge-bipancyclic ) if G− F remains Hamiltonian laceable (resp. bipancyclic, vertex-bipancyclic,

and edge-bipancyclic ) for F ⊆ V (G) ∪ E(G), |F | ≤ k. A bipartite graph G is k-edge-fault-tolerant

Hamiltonian laceable (resp. bipancyclic, vertex-bipancyclic, and edge-bipancyclic ) if G − F re-

mains Hamiltonian lacelabe (resp. bipancyclic, vertex-bipancyclic, and edge-bipancyclic ) for F ⊆
E(G), |F | ≤ k.

The balanced hypercube, BHn, has been studied by many researchers. Xu et al. [15] proved that

BHn is edge-bipancyclic and Hamiltonian laceable. Yang [16] proved that BHn is bipanconnected.

Yang [17] also demonstrated that the super connectivity of BHn is (4n − 4) and the super edge-

connectivity of BHn is (4n − 2) for n ≥ 2. Lü et al. [12] proved that BHn is hyper-Hamiltonian

laceable. Cheng et al. [2] proved that BHn is (n−1)-vertex-fault-tolerant edge-bipancyclic. Hao et al.

[7] showed that there exists a fault-free Hamiltonian path between any two adjacent vertices in BHn

with (2n−2) faulty edges. Zhou et al. [18] proved that BHn is (2n−2)-edge-fault-tolerant Hamiltonian

laceable. Cheng et al. [3] proved that BHn is (2n − 3) edge-fault-tolerant 6-edge-bipancyclic for all

n ≥ 2. In this paper, we improve the results of Hao et al. [7] and Cheng et al. [3] by demonstrating

that BHn is (2n − 2) edge-fault-tolerant 6-edge-bipancyclic for all n ≥ 2. Our result is optimal with

respect to the maximum number of tolerated edge faults.

The rest of this paper is organized as follows. In Section 2, we introduce two equivalent definitions of

balanced hypercubes and discuss some of their properties. In Section 3, we investigate edge-bipancyclic

of BHn with faulty edges. Finally, we conclude this paper in Section 4.

2 Balanced hypercubes

Wu and Huang [9] presented two equivalent definitions of BHn as follows:

Definition 2.1 An n-dimensional balanced hypercube BHn has 22n vertices, each labeled by an n-

bit string (a0, a1, · · · , an−1), where ai ∈ {0, 1, 2, 3} for all 0 ≤ i ≤ n − 1. A arbitrary vertex

(a0, a1, · · · , ai−1, ai, ai+1, · · · , an−1) is adjacent to the following 2n vertices:

(1) ((a0 ± 1) mod 4, a1, · · · , ai−1, ai, ai+1, · · · , an−1) where 1 ≤ i ≤ n− 1,

(2) ((a0 ± 1) mod 4, a1, · · · , ai−1, (ai + (−1)a0) mod 4, ai+1, · · · , an−1) where 1 ≤ i ≤ n− 1.

In BHn, the first coordinate a0 of vertex (a0, a1, · · · , an−1) is called the inner index, and the second

coordinate ai(1 ≤ i ≤ n − 1) is called the i-dimension index. From the definition, we have that

NBHn((a0, a1, · · · , an−1)) = NBHn((a0 + 2, a1, · · · , an−1)). Figure 1 shows two balanced hypercubes of

dimensional one and two.

Briefly, we assume that ‘+,−’ for the coordinate of a vertex is an operation with mod 4 in the

remainder of the paper. Let Xj,i = {(a0, a1, · · · , aj−1, aj , aj+1, · · · , an−1) | ak ∈ {0, 1, 2, 3}, 0 ≤ k ≤
n − 1, aj = i} for 1 ≤ j ≤ n − 1 and i ∈ {0, 1, 2, 3} and let BHj,i

n−1 = BHn[Xj,i]. Then, BHn can be

divided into four copies: BHj,0
n−1, BHj,1

n−1, BHj,2
n−1, BHj,3

n−1 where BHj,i
n−1
∼= BHn−1 for i = 0, 1, 2, 3 [2].

We use BH i
n−1 to denote BHn−1,i

n−1 for i = 0, 1, 2, 3 .

Definition 2.2 The balanced hypercube BHn can be constructed recursively as follows:

1. BH1 is a 4-cycle with vertex-set {0, 1, 2, 3}.
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Figure 1: Illustration of BH1 and BH2

2. BHn is a construct from four copies of BHn−1 : BH0
n−1, BH1

n−1, BH2
n−1, BH3

n−1. Each vertex

(a0, a1, · · · , an−2, i) has two extra adjacent vertices:

(1) In BH i+1
n−1 : (a0 ± 1, a1, · · · , an−2, i + 1) if a0 is even.

(2) In BH i−1
n−1 : (a0 ± 1, a1, · · · , an−2, i− 1) if a0 is odd.

Since BHn is a bipartite graph, then V (BHn) can be divided into two disjoint parts. Obvi-

ously, the vertex-set V1 = {a = (a0, a1, · · · , an−1) | a ∈ V (BHn) and a0 is odd} and V2 = {a =

(a0, a1, · · · , an−1) | a ∈ V (BHn) and a0 is even} form the desired partition. We use black nodes to

denote the vertices in V1 and white nodes to denote the vertices in V2.

Let (u, v) be an edge of BHn, if u and v differ only with regard to the inner index, then (u, v) is said

to be a 0-dimensional edge. If u and v differ not only in terms of the inner index but also with regard

to the i-dimension index, then (u, v) is called the i-dimensional edge. We use ∂Dd(0 ≤ d ≤ n− 1) to

denote the set of all d-dimensional edges.

There are some known properties about BHn.

Lemma 2.3 ([13, 19]) The balanced hypercube BHn is vertex-transitive and edge-transitive.

Lemma 2.4 ([18]) The balanced hypercube BHn is (2n − 2)-edge-fault-tolerant Hamiltonian laceable

for n ≥ 2.

Lemma 2.5 ([15]) The balanced hypercube BHn is edge-bipancyclic for n ≥ 2.

Lemma 2.6 ([2]) Let e = (x, y) be an arbitrary edge in BHj,0
n−1. Then, there exist two inter-

nal vertex-disjoint paths 〈x, x1, y1, x2, y2, x3, y3, y〉 and 〈x, x′1, y′1, x′2, y′2, x′3, y′3, y〉 in BHn such that

(xi, yi), (x
′
i, y
′
i)∈ E(BHj,i

n−1) where 1 ≤ j ≤ n− 1 and i = 1, 2, 3.

Lemma 2.7 ([11]) Let n ≥ 2 be an integer. Then, BHn − ∂D0 has four components, and each

component is isomorphic to BHn−1.

Remark. The above Lemma shows that one can divide BHn into four BHns by deleting ∂Dd for any

d ∈ {0, 1, · · · , n− 1}. The four components of BHn through the deletion of ∂Dj are BHj,0
n−1, BHj,1

n−1,

BHj,2
n−1, and BHj,3

n−1 for 1 ≤ j ≤ n − 1. For convenience, we use BH0,0
n−1, BH0,1

n−1, BH0,2
n−1, andBH0,3

n−1
to denote the components of BHn − ∂D0 throughout this paper.

A graph G is hyper-Hamiltonian laceable if it is Hamiltonian laceable and, for an arbitrary vertex

v in Vi where i ∈ {0, 1}, there exists a Hamiltonian path in G− v joining any two different vertices in

V1−i. Lü et al. obtained the following result.
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Lemma 2.8 ([12]) The balanced hypercube BHn is hyper-Hamiltonian laceable for n ≥ 1.

In the following, we discuss some properties that are used in the proof of our main results.

Lemma 2.9 For an arbitrary vertex u in BHj,i
n−1 where 0 ≤ j ≤ n − 1, 0 ≤ i ≤ 3. Suppose that

F ⊆ E(BHn), |F | ≤ 2n−2 and |F ∩BHj,i
n−1| ≤ 2n−3. Then, there exists a 2-path 〈u, v, w〉 ⊆ BHn \F

where u, v ∈ BHj,i
n−1, w ∈ BHn \BHj,i

n−1.

Proof: Without loss of generality, we can assume that u = (0, 0, · · · , 0) ∈ BH0
n−1. Note that

NBH0
n−1

(u) = 2n− 2 and u is a white vertex, there exist 2(2n− 2) different edges from NBH0
n−1

(u) to

BH3
n−1. Suppose that |F ∩BH0

n−1| = k, |F ∩ (BHn \BH0
n−1)| = t. We have{

k + t ≤ 2n− 2;

k ≤ 2n− 3.

Hence, there exists at least one 2-path 〈u, v, w〉 ⊆ BHn \F where u, v ∈ BH0
n−1, w ∈ BH3

n−1 owing

to 2((2n− 2)− k)− t ≥ 2(2n− 2)− (k + t)− k ≥ 2n− 2− k ≥ 1. See figure 2 for illustration.

Figure 2: The fault-free path 〈u, v, w〉 of Lemma 2.9

Lemma 2.10 Suppose that e = (u, v) is an edge between BHj,i
n−1 and BHj,i+1

n−1 where 0 ≤ j ≤ n−1, 0 ≤
i ≤ 3 for n ≥ 2. Then, there exists a cycle C of length 8 in BHn \F where F ⊆ E(BHn), |F | ≤ 2n−2

and |F ∩ ∂Dj | ≥ 1 such that |E(C) ∩BHj,i
n−1| = 1.

Proof: By Lemma 2.3, BHn is edge-transitive, Without loss of generality, let j = n − 1 and u =

(0, 0, · · · , 0), v = (1, 0, · · · , 0, 1). There exist 4(n− 1) edge disjoint paths of length 5 from NBH0
n−1

(u)

to NBH1
n−1

(v) such that each path has an edge in BH2
n−1 and BH3

n−1. We list them as follows (see

figure 3):

P0,1 = 〈(1, 0, · · · , 0), (2, 0, · · · , 0, 3), (3, 0, · · · , 0, 3), (0, 0, · · · , 0, 2), (1, 0, · · · , 2), (2, 0, · · · , 1)〉;
P0,2 = 〈(1, 0, · · · , 0), (0, 0, · · · , 0, 3), (1, 0, · · · , 0, 3), (2, 0, · · · , 0, 2), (3, 0, · · · , 2), (0, 0, · · · , 1)〉;
P0,3 = 〈(3, 0, · · · , 0), (2, 0, · · · , 0, 3), (1, 0, · · · , 0, 3), (0, 0, · · · , 0, 2), (3, 0, · · · , 2), (2, 0, · · · , 1)〉;
P0,4 = 〈(3, 0, · · · , 0), (0, 0, · · · , 0, 3), (3, 0, · · · , 0, 3), (2, 0, · · · , 0, 2), (1, 0, · · · , 2), (0, 0, · · · , 1)〉;

Pk,1 = 〈(1,
k−1︷ ︸︸ ︷

0, · · · , 0, 1,
n−k−1︷ ︸︸ ︷

0, · · · , 0, 0), (2, 0, · · · , 0, 1, 0, · · · , 0, 3), (3, 0, · · · , 0, 2, 0, · · · , 0, 3),

(0, 0, · · · , 0, 2, 0, · · · , 0, 2), (1, 0, · · · , 0, 3, 0, · · · , 0, 2), (2, 0, · · · , 0, 3, 0, · · · , 0, 1)〉;

Pk,2 = 〈(1,
k−1︷ ︸︸ ︷

0, · · · , 0, 1,
n−k−1︷ ︸︸ ︷

0, · · · , 0, 0), (0, 0, · · · , 0, 1, 0, · · · , 0, 3), (1, 0, · · · , 0, 2, 0, · · · , 0, 3),

(2, 0, · · · , 0, 2, 0, · · · , 0, 2), (3, 0, · · · , 0, 3, 0, · · · , 0, 2), (0, 0, · · · , 0, 3, 0, · · · , 0, 1)〉;
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Pk,3 = 〈(3,
k−1︷ ︸︸ ︷

0, · · · , 0, 1,
n−k−1︷ ︸︸ ︷

0, · · · , 0, 0), (2, 0, · · · , 0, 1, 0, · · · , 0, 3), (1, 0, · · · , 0, 2, 0, · · · , 0, 3),

(0, 0, · · · , 0, 2, 0, · · · , 0, 2), (3, 0, · · · , 0, 3, 0, · · · , 0, 2), (2, 0, · · · , 0, 3, 0, · · · , 0, 1)〉;

Pk,4 = 〈(3,
k−1︷ ︸︸ ︷

0, · · · , 0, 1,
n−k−1︷ ︸︸ ︷

0, · · · , 0, 0), (0, 0, · · · , 0, 1, 0, · · · , 0, 3), (3, 0, · · · , 0, 2, 0, · · · , 0, 3),

(2, 0, · · · , 0, 2, 0, · · · , 0, 2), (1, 0, · · · , 0, 3, 0, · · · , 0, 2), (0, 0, · · · , 0, 3, 0, · · · , 0, 1)〉
where 1 ≤ k ≤ n− 1.

Figure 3: The 5-paths in Lemma 2.10

Suppose that |F∩(BHn−∂Dn−1)| = k, |F∩∂Dn−1| = t, then k+t ≤ 2n−2 and t ≥ 1. Hence, there

exists at least one desired 8-cycle owing to 2((2n−2)−k)− t ≥ 2(2n−2)−(k+ t)−k ≥ 2n−2−k ≥ 1.

2

3 Edge-bipancyclicity of BHn under edge faults

In this section, we consider the edge-bipancyclicity of BHn for at most (2n− 2) faulty edges.

Let e = (x, y) be an edge between BH0
n−1 and BH1

n−1 and suppose that x′, y′ ∈ BHn such that

NBHn(x) = NBHn(x′) and NBHn(y) = NBHn(y′). Let F = {(x, y′), (x′, y)}. From the concluding

remarks of [3], we have that there does not exists a cycle of length 4 in BHn \F that contains e. Thus,

in the following, we prove that BHn is (2n− 2) edge-fault-tolerant 6-bipancyclic.

Lemma 3.1 The balanced hypercube BH2 is 2-edge-fault-tolerant 6-bipancyclic.

Proof: The proof is rather long, and we therefore provide it in Appendix A.

Theorem 3.2 The balanced hypercube BHn is (2n− 2)-edge-fault-tolerant edge 6-bipancyclic for n ≥
2.

Proof: We prove this theorem by induction on n. By Lemma 3.1, the theorem holds for n = 2.

Assume that it is true for 2 ≤ k < n. Let F be any subset of E(BHn) with |F | ≤ 2n − 2 and

Fi = ∂Di ∩ F for 0 ≤ i ≤ n− 1. We get |F | =
∑n−1

i=0 |Fi|. Accordingly, without loss of generality, we

can assume that |Fn−1| ≥ |Fn−2| ≥ · · · ≥ |F0|. Let F i = F ∩ E(BH i
n−1) for 0 ≤ i ≤ 3. We obtain

F = F 0 ∪ F 1 ∪ F 2 ∪ F 3 ∪ Fn−1 and |F 0 ∪ F 1 ∪ F 2 ∪ F 3| ≤ 2n− 4. Let e be any edge in BHn \ F and

` be any even integer with 6 ≤ ` ≤ 22n. We need to construct an `-cycle in BHn \ F containing e.

Case 1: e = (u, v) /∈ ∂Dn−1.

Without loss of generality, we can assume that e ∈ BH0
n−1.

Subcase 1.1: 6 ≤ ` ≤ 22n−2.
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Since |F 0| ≤ |F 0 ∪ F 1 ∪ F 2 ∪ F 3| ≤ 2n− 4, by induction hypothesis, it holds.

Subcase 1.2: 22n−2 + 2 ≤ ` ≤ 22n−1 + 6.

By induction hypothesis, there exists a fault-free Hamiltonian cycle C in BH0
n−1 containing e, say

〈c1, c2, · · · , c22n−2
, c1〉 where c1 = u, c2

2n−2
= v. We can observe that C \ {e} is a (22n−2 − 1)-path.

Then, M = {(c1, c22n−3+6), · · · , (ci, c2
2n−3+i+5), · · · , (c2

2n−3−5, c2
2n−2

)} is a set with 2(2n−3) − 5 pairs

of distinct vertices of BH0
n−1 such that dC\{e}(c

i, c2
2n−3+i+5) = 22n−3 + 5 for all 1 ≤ i ≤ 22n−3 − 5.

Thus, ci and c2
2n−3+i+5 are in different partite sets. There exists at least one pair (ct, c2

2n−3+t+5) in

M such that
|F ∩ {e1, e2 | e1, e2 are two (n− 1)-dimensional edges incident with ct}| ≤ 1 and

|F ∩ {e3, e4 | e3, e4 are two (n− 1)-dimensional edges incident with c2
2n−3+t+5}| ≤ 1

owing to 2 · (22n−3 − 5) > 2n − 2 for all n ≥ 3. Without loss of generality, let ct be a white

vertex and c2
2n−3+t+5 be a black vertex. Then, there exist two fault-free (n − 1)-dimensional edges

(ct, v1), (c2
2n−3+t+5, u3) where v1 ∈ BH1

n−1 and u3 ∈ BH3
n−1. Let P0 = 〈c22n−3+t+5, c2

2n−3+t+6, · · · ,
c2

2n−2−1, v, u, c2, · · · , ct〉. Thus, P0 is a (22n−3 − 5)-path that contains (u, v). By Lemma 2.9, there

exists a fault-free 2-path 〈u3, v3, u2〉 and a fault-free 2-path 〈v1, u1, v2〉 where ui, vi ∈ BH i
n−1 for

1 ≤ i ≤ 3. Since |F 2| ≤ 2n − 4, by induction hypothesis, there exists a Hamiltonian cycle C2 in

BH2
n−1 \ F . Thus, there exist two fault-free path P ′2, P

′′
2 in BH2

n−1 joining u2 and v2 with length

|V (P ′2)| and 22n−2 − |(V (P ′2))|, respectively, where 1 ≤ |V (P ′2)| ≤ 22n−3 − 1.

Subcase 1.2.1: |V (P ′2)| = 22n−3 − 1 .

We can represent ` = `0 + `1 + `2 + `3 + 4, where `i satisfies one of the following conditions for

i = 0, 1, 2, 3.

`0 = 22n−3 − 5, `1 = 1, `2 = 22n−3 + 1, `3 = 1 or
`0 = 22n−3 − 5, 5 ≤ `1 ≤ 22n−2 − 1, `2 = 22n−3 − 1, `3 = 1 or
`0 = 22n−3 − 5, 5 ≤ `1 ≤ 22n−2 − 1, `2 = 22n−3 − 1, 5 ≤ `3 ≤ 22n−2 − 1.

Since |F i| ≤ 2n − 4 for i = 1, 3, by the induction hypothesis, there exists an (`i + 1)-cycle Ci in

BH i
n−1 \ F containing (ui, vi) if 5 ≤ `i ≤ 22n−2 − 1 for i = 1, 3. Let

P0 = 〈c22n−3+t+5, c2
2n−3+t+6, · · · , c22n−2−1, v, u, c2, · · · , ct〉 with length `0,

P1 =

{
(v1, u1) if `1 = 1,

C1 − (v1, u1) if 5 ≤ `1 ≤ 22n−2 − 1,

P2 =

{
P ′2 if `2 = 22n−3 − 1,

P ′′2 if `2 = 22n−3 + 1,

P3 =

{
(v3, u3) if `3 = 1,

C3 − (v3, u3) if 5 ≤ `3 ≤ 22n−2 − 1,

Then, C = 〈ct, v1, P1, u
1, v2, P2, u

2, v3, P3, u
3, c2

2n−3+t+5, P0, c
t〉 ( see figure 4) is the desired cycle.

Subcase 1.2.2: 1 ≤ |V (P ′2)| ≤ 22n−3 − 3 .

We can represent ` = `0 + `1 + `2 + `3 + 4, where `i satisfies one of the following conditions for

i = 0, 1, 2, 3.

`0 = 22n−3 − 5, 5 ≤ `1 ≤ 22n−2 − 1, `2 = |V (P ′2)|, `3 = 1 or
`0 = 22n−3 − 5, 5 ≤ `1 ≤ 22n−2 − 1, `2 = |V (P ′2)|, 5 ≤ `3 ≤ 22n−2 − 1.

Since |F i| ≤ 2n − 4 for i = 1, 3, by the induction hypothesis, there exists an (`i + 1)-cycle Ci in

BH i
n−1 \ F containing (ui, vi) if 5 ≤ `i ≤ 22n−2 − 1 for i = 1, 3. Let
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Figure 4: Illustration for the cycle C of subcase 1.2.1 and subcase 1.2.2 in theorem 3.2.

P0 = 〈c22n−3+t+5, c2
2n−3+t+6, · · · , c22n−2−1, v, u, c2, · · · , ct〉 with length `0,

P1 =

{
(v1, u1) if `1 = 1,

C1 − (v1, u1) if 5 ≤ `1 ≤ 22n−2 − 1,

P2 = P ′2,

P3 =

{
(v3, u3) if `3 = 1,

C3 − (v3, u3) if 5 ≤ `3 ≤ 22n−2 − 1,

Then, C = 〈ct, v1, P1, u
1, v2, P2, u

2, v3, P3, u
3, c2

2n−3+t+5, P0, c
t〉 ( see figure 4) is the desired cycle.

Subcase 1.3: 22n−1 + 8 ≤ ` ≤ 22n.

We can represent ` = `0 + `1 + `2 + `3 + 4, where `i satisfies one of the following conditions for

i = 0, 1, 2, 3.

`0 = 22n−2 − 1, 5 ≤ `1 ≤ 22n−2 − 1, `2 = 22n−2 − 1, `3 = 1 or
`0 = 22n−2 − 1, 5 ≤ `1 ≤ 22n−2 − 1, `2 = 22n−2 − 1, 5 ≤ `3 ≤ 22n−2 − 1.

By the induction hypothesis, there exists a fault-free Hamiltonian cycle C0 in BH0
n−1 contain-

ing e, say 〈c1, c2, · · · , c22n−2
, c1〉 with c1 = u, c2

2n−2
= v. Let M = {(c1, c2), · · · , (c2i−1, c2i), · · · ,

(c2
2n−2−1, c2

2n−2
)}, then M is a set with 22n−3 mutually disjoint edges. There exists an edge (c2t−1, c2t)

in M such that

|F ∩ {e1, e2 | e1, e2 are two (n− 1)-dimensional edges incident with c2t−1}| ≤ 1 and

|F ∩ {e3, e4 | e3, e4 are two (n− 1)-dimensional edges incident with c2t}| ≤ 1

since 2 · (22n−3) > 2n− 2 for all n ≥ 3. Let (c2t−1, v1), (c2t, u3) be two fault-free (n− 1)-dimensional

edges where v1 ∈ BH1
n−1, u

3 ∈ BH3
n−1. By Lemma 2.9, there exists a fault-free 2-path 〈u3, v3, u2〉

and a fault-free 2-path 〈v1, u1, v2〉 where vi, ui ∈ BH i
n−1 for i = 1, 2, 3. By Lemma 2.4, there exists

a Hamiltonian path P2 in BH2
n−1 \ F joining v2 to u2. Note that |F i| ≤ 2n − 4, by the induction

hypothesis, there exists an (`i + 1)-cycle Ci in BH i
n−1 \F containing (ui, vi) where 5 ≤ `i ≤ 22n−2− 1

for i = 1, 3. Let

P0 = C0 − (c2t−1, c2t),

P1 =

{
(v1, u1) if `1 = 1,

C1 − (v1, u1) if 5 ≤ `1 ≤ 22n−2 − 1,

P2 be the Hamiltonian path of BH2
n−1 joining v2 to u2,

P3 =

{
(v3, u3) if `3 = 1,

C3 − (v3, u3) if 5 ≤ `3 ≤ 22n−2 − 1,
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Then, C = 〈c2t−1, v1, P1, u
1, v2, P2, u

2, v3, P3, u
3, c2t, P0, c

2t−1〉 (see figure 5) is the desired cycle.

Figure 5: Illustration for the cycle C of subcase 1.3 in theorem 3.2.

Case 2: e = (u, v) ∈ ∂Dn−1.

Subcase 2.1: |Fn−1| ≤ 2n− 3.

We divide BHn into four parts, BHn−2,0
n−1 , BHn−2,1

n−1 , BHn−2,2
n−1 , andBHn−2,3

n−1 . If |F | ≤ 2n− 3, then,

|F ∩ (∪3i=0BHn−2,i
n−1 )| ≤ 2n−3. If |F | = 2n−2, note that |Fn−1| ≥ |Fn−2| ≥ · · · ≥ |F0|, |Fn−1| ≤ 2n−3,

we have |Fn−2| = 1. As a result, |F ∩ (∪3i=0BHn−2,i
n−1 )| ≤ 2n− 3.

Subcase 2.1.1: |F ∩BHn−2,i
n−1 | ≤ 2n− 4 for all i = 0, 1, 2, 3.

By a similar discussion as case 1, we obtain the result.

Subcase 2.1.2: There exists an i ∈ {0, 1, 2, 3} such that |F ∩BHn−2,i
n−1 | = 2n− 3.

Without loss of generality, we can assume that |F ∩ BHn−2,0
n−1 | = 2n − 3. Thus, |F ∩ (BHn \

BHn−2,0
n−1 )| ≤ 1 and |F ∩BHn−2,i

n−1 | = 0 for i = 1, 2, 3.

Subcase 2.1.2.1: e ∈ BHn−2,0
n−1 .

Subcase 2.1.2.1.1: ` = 6.

Note that e is a fault-free edge and there are (4n − 6) different 2-paths in BHn−2,0
n−1 containing e.

Since 4n−6−(2n−3) = 2n−3 ≥ 1, there exists at least one fault-free 2-path in BHn−2,0
n−1 containing e,

say 〈u, v, w〉. Without loss of generality, let v be a black vertex and u,w be two white vertices. Notice

that |Fn−2| ≤ 1, we obtain that there exists two fault-free (n − 2)-dimensional edges (u, u1), (w,w1)

where u1, w1 ∈ BHn−2,1
n−1 . It is easy to verify that d(u1, w1) = 2. Suppose that v1 is the vertex that is

adjacent to both w1 and u1. Since |F ∩BHn−2,1
n−1 | = 0, then C = 〈u, v, w,w1, v1, u1, u〉(see figure 6) is

the desired cycle.

Subcase 2.1.2.1.2: ` = 8.

By Lemma 2.6, there are two 8-cycles C1, C2 in BHn containing e such that E(C1)∩E(C2) = e and

|E(Ci) ∩ BHn−2,j
n−1 | = 1 for i = 1, 2, j = 0, 1, 2, 3. Note that |F ∩ (BHn \ BHn−2,0

n−1 )| ≤ 1. There exists

at least one fault-free 8-cycle that contains e, say 〈u, v1, u1, v2, u2, v3, u3, v, u〉 where ui, vi ∈ BHn−2,i
n−1

for 1 ≤ i ≤ 3.

Subcase 2.1.2.1.3: 10 ≤ ` ≤ 3 · 22n−2 + 2.

We can represent ` = `0 + `1 + `2 + `3 + 4, where `i satisfies one of the following conditions for

i = 0, 1, 2, 3.

`0 = 1, 3 ≤ `1 ≤ 22n−2 − 1, `2 = 1, `3 = 1 or
`0 = 1, 3 ≤ `1 ≤ 22n−2 − 1, 3 ≤ `2 ≤ 22n−2 − 1, `3 = 1 or
`0 = 1, 3 ≤ `1 ≤ 22n−2 − 1, 3 ≤ `2 ≤ 22n−2 − 1, 3 ≤ `3 ≤ 22n−2 − 1.
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Figure 6: Illustration for the cycle C of subcase 2.1.2.1.1 in theorem 3.2

Let 〈u, v1, u1, v2, u2, v3, u3, v, u〉 be a fault-free 8-cycle where ui, vi ∈ BHn−2,i
n−1 for 1 ≤ i ≤ 3. Since

|F ∩BHn−2,i
n−1 | = 0 for i = 1, 2, 3. By Lemma 2.5, there exists an (`i+1)-cycle Ci in BHn−2,i

n−1 containing

(ui, vi) where 3 ≤ `i ≤ 22n−2 − 1 for 1 ≤ i ≤ 3. Let

P1 =

{
(v1, u1) if `1 = 1,

C1 − (v1, u1) if 3 ≤ `1 ≤ 22n−2 − 1,

P2 =

{
(v2, u2) if `2 = 1,

C2 − (v2, u2) if 3 ≤ `2 ≤ 22n−2 − 1,

P3 =

{
(v3, u3) if `3 = 1,

C3 − (v3, u3) if 3 ≤ `3 ≤ 22n−2 − 1,

Then, C = 〈u, v1, P1, u
1, v2, P2, u

2, v3, P3, u
3, v, u〉 (see figure 7) forms the desired cycle.

Figure 7: Illustration for the cycle C of subcase 2.1.2.1.3 in theorem 3.2

Subcase 2.1.2.1.4: 3 · 22n−2 + 4 ≤ ` ≤ 22n.

We can represent ` = `0 + `1 + `2 + `3 + 4, where `0 = 22n−2 − 1, 3 ≤ `i ≤ 22n−2 − 1 for i = 1, 2, 3.

Let ē = (u0, v0) be any faulty edge in BHn−2,0
n−1 . By the induction hypothesis, there exists a

Hamiltonian cycle C0 in BHn−2,0
n−1 −F+{ē} containing e. Obviously, |F∩E(C0)| ≤ 1. If |F∩E(C0)| = 1,

then ē ∈ E(C0), we can assume that (a0, b0) = ē. If |F ∩ E(C0)| = 0, let (a0, b0) be any edge

in E(C0) \ {e}. Note that |F ∩ (BHn \ BHn−2,0
n−1 )| ≤ 1, by Lemma 2.6, there exists a fault-free
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8-cycle 〈a0, b1, a1, b2, a2, b3, a3, b0, a0〉 in BHn where ai, bi ∈ BHn−2,i
n−1 for i = 0, 1, 2, 3. Note that

|F ∩BHn−2,i
n−1 | = 0 for 1 ≤ i ≤ 3, by Lemma 2.5, there exists an (`i +1)-cycle Ci in BHn−2,i

n−1 containing

(ai, bi) where 3 ≤ `i ≤ 22n−2 − 1 for 1 ≤ i ≤ 3.

Let Pi = Ci − (bi, ai) for i = 0, 1, 2, 3, then C = 〈a0, b1, P1, a
1, b2, P2, a

2, b3, P3, a
3, b0, P0, a

0〉 (see

figure 8) forms the desired cycle.

Figure 8: Illustration for the cycle C of subcase 2.1.2.1.4 in theorem 3.2

Subcase 2.1.2.2: e ∈ BHn−2,i
n−1 where i = 1, 2, 3.

Without loss of generality, we assume that e ∈ BHn−2,1
n−1 .

Subcase 2.1.2.2.1: 6 ≤ ` ≤ 22n−2.

Since |F ∩BHn−2,1
n−1 | = 0, by the induction hypothesis, it holds.

Subcase 2.1.2.2.2: 22n−2 + 2 ≤ ` ≤ 22n−1 − 2.

We can represent ` = `1 + `2 + 2, where 2 ≤ `1 ≤ 22n−2 − 2, `2 = 22n−2 − 2.

Since |F ∩BHn−2,1
n−1 | = 0, by Lemma 2.5, there exists a Hamiltonian cycle C1 in BHn−2,1

n−1 containing

e, say 〈c0, c1, · · · , c22n−2−1, c0〉, where c0 = u, c1 = v. Let `1 be an even integer. Then, c`1 is a white

vertex and 〈u, c1, c2, · · · , c`1〉 is an `1-path in BHn−2,1
n−1 containing e where 2 ≤ `1 ≤ 22n−2 − 2. Notice

that |Fn−2| ≤ 1. We can assume that (c`1 , u2), (u, v2) are two fault-free (n − 2)-dimensional edges

where u2, v2 ∈ BHn−2,2
n−1 since every vertex has two extra neighbors. By Lemma 2.8, there exists a

(22n−2 − 2)-path in BHn−2,2
n−1 joining u2 to v2. Let

P1 = 〈u, v, c2, c3, · · · , c`1〉,
P2 be the path of length 22n−2 − 2 in BHn−2,2

n−1 joining u2 and v2.

Then, the cycle C = 〈u, P1, c
`1 , u2, P2, v

2, u〉 (see figure 9 )forms the desired cycles.

Subcase 2.1.2.2.3: 22n−1 ≤ ` ≤ 22n−1 + 8.

We can represent ` = `0 + `1 + `2 + `3 + 4, where `0 = 1, `1 = 5, `2 = 22n−2 − 1, 22n−2 − 9 ≤ `3 ≤
22n−2 − 1.

Let 〈u, v, w1, x1, y1, z1〉 be a fault-free 5-path of BHn−2,1
n−1 and (z1, u0), (u, v2) be two fault-free

(n− 2)-dimensional edges where u0 ∈ BHn−2,0
n−1 , v2 ∈ BHn−2,2

n−1 . By Lemma 2.10, there exists a 2-path

〈u0, v0, u3〉 and a 2-path 〈u3, v3, u2〉 where ui, vi ∈ BHn−2,i
n−1 . By Lemma 2.5, there exists a (`3+1)-cycle

of BHn−2,3
n−1 containing (u3, v3) where 22n−2 − 5 ≤ `3 ≤ 22n−2 − 1.

By Lemma 2.4, there exists a Hamiltonian path P2 in BHn−2,2
n−1 joining u2 and v2. Let P1 =

〈u, v, w1, x1, y1, z1〉, P3 = C3 − (u3, v3). Then, C = 〈u, P1, z
1, u0, v0, u3, P3, v

3, u2, P2, v
2, u〉(see figure

10) is the desired cycle.

Subcase 2.1.2.2.4: 22n−1 + 10 ≤ ` ≤ 22n.
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Figure 9: Illustration for the cycle C of subcase 2.1.2.2.2 in theorem 3.2

Figure 10: Illustration for the cycle C of subcase 2.1.2.2.3 in theorem 3.2
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We can represent ` = `0+`1+`2+`3+4 where 5 ≤ `0 ≤ 22n−2−1, `1 = 22n−2−1, `2 = 22n−2−1, 3 ≤
`3 ≤ 22n−2 − 1.

Let (a0, b0) be a faulty edge in BHn−2,0
n−1 , where a0 is a white vertex. Assume that (a0, b1), (b0, a3),

(a3, b3), and (b3, a2) are fault-free edges where ai, bi ∈ BHn−2,i
n−1 for i = 0, 1, 2, 3. Note that |F ∩

BHn−2,1
n−1 | = 0, by Lemma 2.5, there exits a Hamiltonian cycle C1 in BHn−2,1

n−1 containing e. Suppose

that NC1(b1) = {a1, c1}. Thus, (b1, a1) 6= e or (b1, c1) 6= e. Without loss of generality, assume that

(b1, a1) 6= e. Note that |N
BHn−2,2

n−1
(a1)| = 2 and |Fn−2| ≤ 1. Suppose that (a1, b2) is a fault-free edge

where b2 ∈ BHn−2,2
n−1 . By Lemma 2.4, there exists a fault-free Hamiltonian path P2 in BHn−2,2

n−1 joining

a2 and b2. By the induction hypothesis, there exists an (`0 + 1)-cycle C0 in BHn−2,0
n−1 − F + (a0, b0)

containing (a0, b0) where 5 ≤ `0 ≤ 22n−2 − 1. By Lemma 2.5, there exists an (`3 + 1)-cycle C3 in

BHn−2,3
n−1 containing a3, b3 where 3 ≤ `3 ≤ 22n−2 − 1. Let

P0 = C0 − (a0, b0),
P1 = C1 − (b1, a1),
P2 be the Hamiltonian path joining a2 and b2,
P3 = C3 − (a3, b3).

Then, C = 〈a0, P0, b
0, a3, P3, b

3, a2, P2, b
2, a1, P1, b

1, a0〉 (see figure 11) is the desired cycle.

Figure 11: Illustration for the cycle C of subcase 2.1.2.2.4 in theorem 3.2

Subcase 2.2: |Fn−1| = 2n− 2 .

Subcase 2.2.1: ` = 6.

Without loss of generality, we can assume that e ∈ BHn−2,0
n−1 . If |F ∩ BHn−2,0

n−1 | ≤ 2n − 4, by the

induction hypothesis, there exists a 6-cycle in BHn−2,0
n−1 . Thus, we assume that |F ∩BHn−2,0

n−1 | = 2n−3

or 2n−2. Note that e is a fault-free edge and there are (4n−6) different 2-paths in BHn−2,0
n−1 containing

e. Since 4n−6−(2n−2) = 2n−4 ≥ 1, there exists at least one fault-free 2-path in BHn−2,0
n−1 containing

e, say 〈u, v, w〉. Without loss of generality, let v be a black vertex and u,w be two white vertices.

Notice that |Fn−2| = 0, we can assume that (u, u1), (w,w1) are two fault-free (n − 2)-dimensional

edges where u1, w1 ∈ BHn−2,1
n−1 . It is easy to check that d(u1, w1) = 2. Suppose that v1 is the vertex

that is adjacent to both w1 and u1. Let v̄1 be the vertex such that v1 and v̄1 differ in only the inner

index. Then, (w1, v̄1), (u1, v̄1) ∈ E(BHn). Since |F ∩ BHn−2,1
n−1 | ≤ 1, then 〈u, v, w,w1, v1, u1, u〉 or

〈u, v, w,w1, v̄1, u1, u〉 is the desired cycle.

Subcase 2.2.2: ` = 8.

By Lemma 2.10, there exists a fault-free 8-cycle 〈u = u0, v = v1, u1, v2, u2, v3, u3, v0, u〉.
Subcase 2.2.3: 10 ≤ ` ≤ 22n.

We can represent ` = `0 + `1 + `2 + `3 + 4, where `i satisfies one of the following conditions for
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Figure 12: Illustration for the cycle C of subcase 2.2.3 in theorem 3.2

i = 0, 1, 2, 3.

3 ≤ `0 ≤ 22n−2 − 1, `1 = 1, `2 = 1, `3 = 1 or
3 ≤ `0 ≤ 22n−2 − 1, 3 ≤ `1 ≤ 22n−2 − 1, `2 = 1, `3 = 1 or
3 ≤ `0 ≤ 22n−2 − 1, 3 ≤ `1 ≤ 22n−2 − 1, 3 ≤ `2 ≤ 22n−2 − 1, `3 = 1 or
3 ≤ `0 ≤ 22n−2 − 1, 3 ≤ `1 ≤ 22n−2 − 1, 3 ≤ `2 ≤ 22n−2 − 1, 3 ≤ `3 ≤ 22n−2 − 1.

Note that Fn−1 = 2n− 2, we have F ∩BH i
n−1 = 0 for all i = 0, 1, 2, 3. By Lemma 2.5, there exists

an (`i + 1)-cycle Ci in BH i
n−1 containing (ui, vi) where 3 ≤ `i ≤ 22n−2 − 1 for i = 0, 1, 2, 3.

Let

P0 =

{
(v0, u0) if `0 = 1,

C0 − (v0, u0) if 3 ≤ `0 ≤ 22n−2 − 1,

P1 =

{
(v1, u1) if `1 = 1,

C1 − (v1, u1) if 3 ≤ `1 ≤ 22n−2 − 1,

P2 =

{
(v2, u2) if `2 = 1,

C2 − (v2, u2) if 3 ≤ `2 ≤ 22n−2 − 1,

P3 =

{
(v3, u3) if `3 = 1,

C3 − (v3, u3) if 3 ≤ `3 ≤ 22n−2 − 1,

Then, C = 〈v0, P0, u
0, v1, P1, u

1, v2, P2, u
2, v3, P3, u

3, v0〉 (see figure 12) forms the desired cycle. 2

Appendix A. Proof of Lemma 3.1

Lemma 3.1 The balanced hypercube BH2 is 2-edge-fault-tolerant 6-bipancyclic.

By Lemma 2.4, for an arbitrary fault-free edge (u, v), there exists a fault-free Hamiltonian path

P that joins u and v, then 〈u, P, v, u〉 is the fault-free 16-cycle. Hence, we only need to construct a

fault-free `-cycle in BH2 containing (u, v) where 6 ≤ ` ≤ 14. Suppose that |F | = 2, without loss of

generality, we can assume that |F ∩ ∂D1| ≥ |F ∩ ∂D0|.
Case 1: |F ∩ ∂D1| = 2, |F ∩ ∂D0| = 0.

Subcase 1.1: e = (u, v) ∈ ∂D0.

Without loss of generality, we can assume that e = (u, v) ∈ BH0
1 . Suppose that u = (a0, 0) is a

white vertex, v = (b0, 0) is a black vertex.

Subcase 1.1.1: 6 ≤ ` ≤ 14.
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There are three `-cycles C1, C2, C3 in BHn containing e where 6 ≤ ` ≤ 14, such that (Ci ∩ ∂D1)∩
(Cj ∩ ∂D1) = ∅ for all 1 ≤ i 6= j ≤ 3. We list them as follows:

Three 6-cycles:
〈(a0, 0), (b0, 0), (a0, 3), (b0 + 2, 3), (a0 + 2, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 3), (b0, 3), (a0, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 0), (b0, 1), (a0, 1), (b0 + 2, 1), (a0, 0)〉.
Three 8-cycles:
〈(a0, 0), (b0, 0), (a0, 3), (b0, 3), (a0, 2), (b0 + 2, 3), (a0 + 2, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 3), (b0, 3), (a0 + 2, 2), (b0 + 2, 3), (a0, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 0), (b0, 1), (a0 + 2, 1), (b0, 2), (a0, 1), (b0 + 2, 1), (a0, 0)〉.
Three 10-cycles:
〈(a0, 0), (b0, 0), (a0, 3), (b0, 3), (a0, 2), (b0, 2), (a0 + 2, 2), (b0 + 2, 3), (a0 + 2, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 3), (b0, 3), (a0 + 2, 2), (b0, 2), (a0, 2), (b0 + 2, 3), (a0, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 0), (b0, 1), (a0 + 2, 1), (b0 + 2, 2), (a0 + 2, 2), (b0, 2), (a0, 1), (b0 + 2, 1), (a0, 0)〉.
Three 12-cycles:

〈(a0, 0), (b0, 0), (a0, 3), (b0, 3), (a0 + 2, 3), (b0 + 2, 3), (a0 + 2, 2), (b0, 2), (a0, 2), (b0 + 2, 2), (a0, 1),

(b0, 1), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 3), (b0 + 2, 3), (a0, 3), (b0, 3), (a0, 2), (b0 + 2, 2), (a0 + 2, 2), (b0, 2), (a0 + 2, 1),

(b0 + 2, 1), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 0), (b0, 1), (a0 + 2, 1), (b0 + 2, 2), (a0 + 2, 2), (b0, 2), (a0, 2), (b0 + 2, 3), (a0, 3),

(b0 + 2, 0), (a0, 0)〉.
Three 14-cycles:

〈(a0, 0), (b0, 0), (a0, 3), (b0, 3), (a0 + 2, 3), (b0 + 2, 3), (a0 + 2, 2), (b0, 2), (a0, 2), (b0 + 2, 2), (a0 + 2, 1),

(b0, 1), (a0, 1), (b0 + 2, 1), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 3), (b0 + 2, 3), (a0, 3), (b0, 3), (a0 + 2, 2), (b0 + 2, 2), (a0, 2), (b0, 2), (a0 + 2, 1),

(b0 + 2, 1), (a0, 1), (b0, 1), (a0, 0)〉;
〈(a0, 0), (b0, 0), (a0 + 2, 0), (b0, 1), (a0, 1), (b0 + 2, 2), (a0 + 2, 2), (b0, 2), (a0, 2), (b0 + 2, 3), (a0, 3),

(b0, 3), (a0 + 2, 3), (b0 + 2, 0), (a0, 0)〉.
Notice that |F ∩ ∂D1| = 2, |F ∩ ∂D0| = 0, there exists at least one fault-free `-cycle in BH2

containing e where 6 ≤ ` ≤ 14.

Subcase 1.2: e = (u, v) ∈ ∂D1.

Without loss of generality, we can assume that e = (u, v) = (u0, v1) is an edge between BH0
1 and

BH1
1 where u0 = (a0, 0), v1 = (b0, 1).

Subcase 1.2.1: ` = 6, 8.

There exist three `-cycles C1, C2, C3 in BH2 containing e where ` = 6 or 8, such that (Ci ∩ ∂D1)∩
(Cj ∩ ∂D1) = {e} for 1 ≤ i 6= j ≤ 3. We list them as follows:

Three 6-cycles:
〈(a0, 0), (b0, 1), (a0, 1), (b0 + 2, 1), (a0 + 2, 0), (b0, 0), (a0, 0)〉;
〈(a0, 0), (b0, 1), (a0, 1), (b0 + 2, 2), (a0 + 2, 1), (b0 + 2, 1), (a0, 0)〉;
〈(a0, 0), (b0, 1), (a0 + 2, 0), (b0 + 2, 0), (a0, 3), (b0, 0), (a0, 0)〉.

Three 8-cycles:
〈(a0, 0), (b0, 1), (a0, 1), (b0, 2), (a0, 2), (b0, 3), (a0, 3), (b0, 0), (a0, 0)〉;
〈(a0, 0), (b0, 1), (a0 + 2, 1), (b0 + 2, 2), (a0 + 2, 2), (b0 + 2, 3), (a0 + 2, 3), (b0 + 2, 0), (a0, 0)〉;
〈(a0, 0), (b0, 1), (a0, 1), (b0 + 2, 2), (a0, 2), (b0 + 2, 3), (a0, 3), (b0 + 2, 0), (a0, 0)〉.

Since |F ∩ ∂D1| = 2, |F ∩ ∂D0| = 0, and e is a fault-free edge, then there exists at least one

fault-free 6-cycle and one fault-free 8-cycle in BH2 containing e.
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Subcase 1.2.2: 10 ≤ ` ≤ 14.

By the proof of subcase 1.2.1, there exists a fault-free 8-cycle C that contains e such that |C ∩
BH i

1| = 1 for 0 ≤ i ≤ 3, say 〈u0, v0, u3, v3, u2, v2, u1, v1, u0〉 where ui, vi ∈ BH i
n−1 for i = 0, 1, 2, 3.

Since |F ∩ ∂D0| = 0. It is easy to check that there exists an `i-path Pi in BH i
1 joining ui to vi

where `i = 1 or 3 for i = 1, 2, 3. Then, the cycle 〈u0, v0, u3, P3, v
3, u2, P2, v

2, u1, P1, v
1, u0〉 with length

` = 5 + `1 + `2 + `3 forms the desired cycle.

Case 2: |F ∩ ∂D1| = 1, |F ∩ ∂D0| = 1.

Subcase 2.1: e = (u, v) ∈ ∂D1.

Without loss of generality, we can assume that e = (u, v) = (u0, v1) is an edge between BH0
1 and

BH1
1 where u0 = (a0, 0), v = (b0, 1).

Subcase 2.1.1: ` = 6.

If ((a0 + 2, 0), (b0 + 2, 1)) is a fault-free edge. Let

C1 = 〈u0, v1, (a0, 1), (b0 + 2, 1), (a0 + 2, 0), (b0, 0), u0〉;
C2 = 〈u0, v1, (a0 + 2, 1), (b0 + 2, 1), (a0 + 2, 0), (b0 + 2, 0), u0〉.

Then, C1, C2 are two cycles in BH2 containing e and C1 ∩ C2 = {e, ((a0 + 2, 0), (b0 + 2, 1))} is the

fault-free edge set. Thus, C1 or C2 is a fault-free 6-cycle.

If ((a0 + 2, 0), (b0 + 2, 1)) is a faulty edge. Then, (u0, (b0 + 2, 1)) is a fault-free edge. Let

C3 = 〈u0, v1, (a0, 1), (b0, 2), (a0 + 2, 1), (b0 + 2, 1), u0〉;
C4 = 〈u0, v1, (a0 + 2, 1), (b0 + 2, 2), (a0, 1), (b0 + 2, 1), u0〉.

Then, C3, C4 are two cycles in BH2 containing e and C3 ∩ C4 = {e, (u0, (b0 + 2, 1))} is the fault-free

edge set. Thus, C3 or C4 is a fault-free 6-cycle.

Subcase 2.1.2: ` = 8.

By Lemma 2.10, it holds.

Subcase 2.1.3: 10 ≤ ` ≤ 14.

By the proof of subcase 2.1.2, there exists a fault-free 8-cycle C that contains e such that |C ∩
BH i

1| = 1 for 0 ≤ i ≤ 3, say 〈u0, v0, u3, v3, u2, v2, u1, v1, u0〉 where ui, vi ∈ BH i
n−1 for i = 0, 1, 2, 3.

Note that |F ∩ ∂D0| = 1. Without loss of generality, let |F ∩ BH0
1 | = 1. It is easy to check

that there exists an `i-path in BH i
1 joining ui to vi where `i = 1 or 3 for i = 1, 2, 3. Then,

〈u, v0, u3, P3, v
3, u2, P2, v

2, u1, P1, v, u〉 with length ` = 5 + `1 + `2 + `3 forms the desired cycle.

Subcase 2.2: e = (u, v) ∈ ∂D0.

We divide BH2 into four BH1s, denoted by BH0
1 , BH1

1 , BH2
1 , andBH3

1 , by deleting all 1-dimensional

edges. Then, e is an edge between BH i
1 and BH i+1

1 for 0 ≤ i ≤ 3. By a similar discussion for subcase

2.1, we obtain the result. 2

4 Conclusion

In this paper, we consider the edge-bipancyclicity of BHn for at most (2n − 2) faulty edges and

prove that each fault-free edge lies on a fault-free cycle of any even length from 6 to 22n. Our result

improves the results of Hao et al. [7] and Cheng et al. [3] and it is optimal with respect to the

maximum number of tolerated edge faults. In addition, it is of interest to consider the problem of

fault-tolerant embedding cycles with each vertex incident to at least two non-faulty edges.
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