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Abstract. In this work, we propose two prismatic piezoeliecsolid—shell elements based on
fully three-dimensional kinematics. For this purpose perform electromechanical coupling,
which consists in adding an electrical degree @edom to each node of the purely
mechanics-based versions of these elements. Teaserefficiency, these geometrically
three-dimensional elements are provided with soesrable shell features, such as a special
direction, designated as the thickness, along wttiehintegration points are located, while
adopting a reduced integration rule in the otheedfions. To assess the performance of the
proposed piezoelectric solid—shell elements, aetaf benchmark tests, both in static and
vibration analysis, have been performed on mukitastructures ranging from simple beams
to more complex structures involving geometric nogdrities. Compared to conventional
finite elements with the same kinematics, the eatada results allow highlighting the higher
performance of the newly developed solid—shellnebigy.

Keywords: Finite elements, Solid—shell, Prismatic geomeRwzoelectric effect, Vibration
analysis.

1. Introduction

In recent years, the so-called smart materials laavesed much interest in various fields
and industrial applications. These smart mateaald the associated devices are nowadays
used in vibration controll}3], shape control4-6], noise and acoustic control-L(d as well
as in health monitoring of civil infrastructured1f13. Predicting the behavior of such
materials and structures is therefore crucial hefrtproper implementation. For this purpose,
the numerical simulation represents a very converaad powerful approach, especially due
to its very reasonable cost and its flexibilityn& the early work of Allik and Hughe$4],
several tools have been proposed in the literdturaodel piezoelectric structures. Reviews
on mechanical models and finite elements formutetiovhich can be found in1%$-13, reveal
that a significant number of 2D and 3D piezoelectmite elements have actually been
developed.



Robbins and Reddylp] proposed an analysis of piezoelectrically actiideams using a
layer-wise displacement theory. Their work has bedanded by Han and Le2(] as well as
by Hwang and Park2[l], in order to analyze composite plates with piézcteic actuators
using 2D finite elements based on Kirchhoff's asgtioms. Several other authors used First-
order Shear Deformation Theory (FSDT) and Higheleor Shear Deformation Theory
(HSDT), such as in2-24 and in p5-29, respectively. To enrich the kinematics with resp
to the above-discussed works, Kapuria et aB-373 introduced the well-known zigzag
theory. Interesting contributions to the field wemtso made by Boudaoud et aB3],
Belouettar et al.g] and Azrar et al.34], among others, with applications to vibration &woh
of multilayer structures. From a fundamental pecsipe, it is important to mention the major
theoretical contributions of Weller and Licl®5 36], who studied the asymptotic behavior of
thin piezoelectric plates (with or without electfield gradient). All of the above formulations
are able to efficiently model beam and plate stmes with piezoelectric materials. However,
in real-life applications, it is common that relaly thin components coexist with thick
structures, such as very thin piezoelectric pawhsasrs used for the monitoring of civil
infrastructures. Consequently, the accurate andiefit modeling of such structures has
motivated the development of new finite elemenht@togies, among which the solid—shell
concept. In this context also, several finite eletmaodels of this type have been proposed in
the literature 37-43. In particular, Sze et al.3], 38] proposed hybrid finite element
modeling of smart structures. In their work, theiatoon of electric potential was assumed to
be linear along the thickness. Their formulationswater extended to the refined hybrid
element by Zheng et al42]. Alternatively, Klinkel and Wagner4D, 41] assumed in their
contributions a quadratic distribution for the @flec potential across the thickness. The
geometric non-linearities were taken into accoumif application of their model was
restricted to structures combining elastic and gedéectric layers. Tan and Vu-Quadg9 also
successfully modeled piezoelectric beam and platectsires under static and vibration
conditions. More recently, Kulikov and Plotnikow3[ 44] have developed solid—shell finite
elements, which are like most of those developedhen literature, namely having a 2D
geometry, while allowing a 3D constitutive law te tonsidered.

For the motivations described above, and for otvedl-known technological and practical
requirements that have been widely discussed ifitdrature, the development of solid—shell
elements based on three-dimensional kinematicggldyhdesirable. In this regard, we have
recently contributed to this field by proposingear and quadratic hexahedral piezoelectric
solid—shell finite elements, denoted as SHB8PSESHIB20E, respectively (see KpeldH]).
These successful formulations of hexahedral piextet solid—shell elements makes
necessary the development of prismatic solid—sk&iments, in order to easily and
automatically model arbitrarily complex structutessng free mesh generation tools.

In the current work, we propose to extend the paisenlinear and quadratic solid—shell
elements SHB6 and SHB15, formulated #6,[47], respectively, on the basis of purely
mechanical degrees of freedom, to the modeling tafciires that contain piezoelectric
materials. The remainder of the paper is organaedollows. In Sectior?, the coupled
electromechanical constitutive equations are ptegeas well as the discretized problem to



be solved by the finite element method. Sec8atetails the formulation of the SHB6E and
SHB15E prismatic piezoelectric solid—shell elememsich are based on linear and quadratic
interpolation, respectively. To assess the perfogeaof the proposed piezoelectric solid—
shell elements, a set of selective and represeathgnchmark tests are conducted in Section
4, both in static and vibration analysis. Finalljietmain conclusions are summarized in
Sectionb.

2. Constitutive equations and discretization of the poblem

2.1. Electromechanical constitutive equations

Piezoelectric materials have the capability of getweg electricity when subjected to
mechanical loading (sensors). Conversely, they #&awve the ability to deform under
electrical charging (actuators). These properties @gescribed by the following coupled
electromechanical equations:

{a=CDs—eTEE )

D=elE+K[E

wheres ande represent, respectively, the vector form of thesst and strain tensor®; and
E denote the electric displacement and electrid fuglctor, respectively; whil€, e andk
stand for the elastic, piezoelectric and dielegigomittivity matrix, respectively.

The discretized form¢e} and{E} for the strain tensor and the electric field veetoe

related, respectively, to the discretized displaa®n{u} and to the discretized electric
potential{¢} , using the discrete gradient operatpB$ | and| B, as follows:

{g} =B [u}

(€} =-[6"]{g @

In the current contribution, the discrete gradiepérators[B“] and [B“’] are obtained by

finite element discretization for each of the pregd prismatic piezoelectric solid—shell
formulations SHB6E and SHB15E, as will be detaile&ections.

2.2. Discretized problem

The variational principle pertaining to piezoelectmaterials, which provides the
governing equations for the associated boundanyevatoblem, is described by the Hamilton
principle [14]. In this weak form of equations of motion, thegtangian and the virtual work



are appropriately adapted to include the electramaitributions, in addition to the more
classical mechanical fields

_vau mudv—fva@edwfv f, (DU dszfsum ds f (Bu

= —J'V D OEdv+ J'V q, [O@ dv+ J'qu (D dst q [o@ )

where p is the material densityg,, g, and g, denote volume, surface and point charge,

respectively; whilef,, f; and f  represent volume, surface and point force, resmdyt

The finite element discretization of the boundagiue problem governed by E®)(
generally leads to the following system of dis@ed equations:

(M {0} [k {u} +[k (g} ={F)
[k* fuh+[k* g ={}

where all matrices and vectors involved in E.dre explicitly defined in Tal..

(4)

Table 1. Explicit forms for the matrices and vestmsulting from the electromechanical

coupling.
(M ]= IV Jdv Mass matrix
[K uu] IV [C] Stiffness matrix
(K7 ]= I K] B ]dv Dielectric matrix
[K uw:I = IV [e] B"’] dv; [ W} = [K w] " Piezoelectric coupling matrix
{F :jv[ i { f.} dV+I { fddstf,  Force vector

N
IV[N ] {a} dV‘_[S Nw {qs} ds-d, Electrical charge vector

3. Formulation of the prismatic piezoelectric solid—skll finite elements

The proposed prismatic piezoelectric solid—sheilitéi elements SHB6E and SHB15E are
extensions of the linear and quadratic prismatikdsshell elements SHB6 and SHB15,
which were developed based on purely mechanicakhmad For the detailed formulations of
the SHB6 and SHB15 elements, the interested readgrrefer to referenced§ and @7],
respectively. The starting point for these piezceie extensions is the addition of one
piezoelectric degree of freedom to each node of thechanical finite element counterparts.
The outline of these formulations is given in tb#dwing sections.
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Figure 1. Schematic representation for the referg@ometry of the SHB6E and SHB15E
elements as well as for the location of their indign points in the case when the number of
through-thickness integration pointsns, =5.

3.1. Kinematics and interpolation

The piezoelectric solid—shell finite elements SHB&&d SHB15E denote a six-node
prismatic element and a fifteen-node one, respelgtihese elements have at each of their
nodes three displacement degrees of freedom asasetine electric degree of freedom.
Similar to their mechanical counterparts SHB6 amtBE5, a special direction is chosen,
designated as theHicknes$ normal to the mean plane of these elements.,Adean-plane

reduced-integration rule is adopted, witkn  integration points for the SHB6E element and

int

3xn,, forthe SHB15E (see, e.g., Fig.in the particular case of , =5).

int

For the SHB6E and SHB15E elements, the spatialdooates x, are related to the nodal

coordinatesx, using linear and quadratic shape functions, résdyg, as follows:

x =% N (£17.4) (5)

wherei represents the spatial directions and ranges fran3; while | stands for the node
number, which ranges from 1 to 6, for the SHB6Enelet, and from 1 to 15 for the SHB15E.

Likewise, the displacement field, and potential field @ are related to the nodal

displacements, and nodal potentialg , respectively, using the shape functions

{ui =y N, (5,’715) ©)

¢ZQN¢I (5;’71()

Note that in Egs.5) and ) above, the convention of implied summation over tepeated
index | has been adopted.



3.2. Discrete gradient operators

For both elements SHB6E and SHB15E, the correspgngiiadient operatorEB“] and

[ BY] can be written in the following compact form:

b +h, ) 0 0
0 by +h, .7, 0 . T
0 0 bl +h, o7 EGE
e N R R L A 2 ™)
2 a2 a 1 Ma T T
b; +h, »,
T +h o7 0 y +h, 2, |
b +h e i b# Pa
i 0 b, +h, 7, b, +ha,27a_

where ', h,, and 7, are given in full details in reference$6] 47]. Note again that, in Eq.

(7) and in what follows, the convention of impliedrsmation over the repeated index is
adopted, witha ranging from 1 to 2, for the SHB6E element, anohfrl to 11 for the
SHBI15E.

Similar to the purely mechanics-based solid—shieinent SHB15 (see, e.g47), the
benchmark tests performed with the piezoelectricdsshell counterpart SHB15E did not
reveal any particular locking and, accordingly, specific enhanced assumed strain
techniques have been applied to this quadratic-ssiiell element. By contrast, the linear
solid—shell version SHB6E suffers from various logkphenomena and, to alleviate these
numerical pathologies, projection of its discretadient operator is undertaken following the
assumed strain method. Note that the projectiathefdisplacement-related discrete gradient

operatorB" is performed in the same way as for the SHB6 eferfsee 46]), which leads to

a similar form for the stiffness matriK". Hence, in the current work, special attention is
paid to the effect of the assumed-strain projectiorthe piezoelectric and dielectric matrices

K*“ andK%.

3.3. Assumed-strain projection for the SHB6E

Let us first recall that in Eq7), vectorsh are defined by the following Hallquist form:
bFNU,i(O):_ i=12,: (8)

The assumed strain method proposed by Belytschit®ardeman 48] is used here to reduce
the above-mentioned locking phenomena. This priojedechnique starts by decomposing

the discrete gradient operatBt' into two partsB", andB", as follows:

B*=B", +B, 9)



where

_blT + hmy; 0 0 i
0 b, +h, ., 0
B = 0 0 b + hmy;
"l +hpy bi+h ps 0
0 0 0
o 0 0
0 0 0 | 4o
0 0 0
0 0 0
BY, =
0 0 0
by +h, g7 0 b +h, 7,
0 b +h, 9, bl +h, ]

The first partB", contains the gradients in the mid-plane of thenel& (membrane terms of

the deformation) as well as the normal strains, rede the second paB", incorporates the
gradients associated with the transverse sheanstrahen, using the Hu—Washizu mixed
variational principle,B", is projected onto a new operatBt,, where B", = £B",, with &
being a shear scaling factor. The stiffness masrfinally computed as follows:

Kuue :K uul +K uu2 (11)
where

KU :jVeB“lTE: B " dv

- _ _ _ (12)
K, =] B4 CBYdv+] BB \dv+ | B CE av

The first term K™, above, which is not affected by projection, is leated using the

integration points of the SHB6E element. With relgén the second ternK™,, which

embodies all the projection, the particular chatadditive decompositiort] along with the
associated projection leads to a simplified fornthid stiffness matrix component. Indeed, the

cross-terms in the right-hand side of Etp)(vanish, andK ™, simply reduces to

K™, = IVEEUZT [C B “dv (13)

For the complete details on the computation of shiness matrix and the associated
projection, the interested reader may refer toregfee §16].



For the derivation of the piezoelectric and diefectatrices K" and K%, a similar
procedure is followed. However, the potential-redhtiscrete gradient operat®’ is not

projected, as it involves no shear components. Aliegly, the piezoelectric and dielectric
matrices are computed as follows:
K% =K Y% +K *, (14)

where

K =[ B4 7B dv
) (15)

K, = jve|§“; @7 B’dv
and

KWe:—jVBWDdev (16)

Let us also recall that an improved plane-streps gonstitutive law is adopted here for the
SHB6E element, in order to enhance its immunity welgard to thickness locking. The

elasticity matrix associated with this particulawlis given by

for isotropt materials

A+24 A 0 0 O O
A A+2u 0 0 O O
o 0 0 E 0 0 O . = Ev2 and =
0 0O O u 0 O 1-v 2(1+v)
0 0 0 0 ku O
0 0 0 0 0 kuj
(17)
andfor orthotropic materials
_C11 C, Cs; O 0 0]
C, Cp» Cy O 0 0
co|Cs Cs Gy O 0 0
o o o¢c¢c, 0 O
0O 0 0O 0 C, O
0 0 0 0 0 Cg4]

where E is the Young modulug; denotes the Poisson ratio, ake5/6.



4. Numerical tests and discussions

To evaluate the performance of the proposed pieeted solid—shell formulations, a
selection of representative benchmark tests is wded in static and vibration analysis, for
multilayer beam, plate and shell structures. Fbofalhe simulations, the mesh nomenclature

adopted for prismatic elements is as follosl, x N, x N;)x2 elements, whereN, denotes
the number of elements in the length directidt, is the number of elements in the width
direction, and N, is the number of elements in the thickness diectiNote that the
multiplication by 2 of the number of in-plane elerlmse(Nl X N2) is due to the subdivision of

each original hexahedron into two prisms. Note dlsat, for the proposed solid—shell
elements SHB6E and SHB15E, two integration pointsa@ the thickness direction are
sufficient for the following computations, as therresponding benchmark tests do not
involve material nonlinearities. However, it must hoted that, when nonlinear material
behavior models enter into play, more through-théds integration points are required (for
instance, five through-thickness integration poiate recommended when elasto-plastic
constitutive models are used, see, e.g., refergrt}e

4.1. Static benchmarks

In the case of static analysis, the system of dism@d equations}f reduces to

K“ K¥|[U]l_[F 18

K* K#|le/ |Q (18)
A set of three benchmark tests taken from thedlitee is investigated in the following
sections. The first test is devoted to beams (pmand sandwich in extension and shear
deformation mechanism, respectively), the secostisededicated to the shape control of a

plate with piezoelectric patches, and the thirdblwgs geometric nonlinearities through large
deflection analysis of a shallow cylindrical sandiwblade.

4.1.1. Extension and shear piezoelectric actuation medmsi

In this first benchmark test, we consider two cguafations of cantilever sandwich beams,
as illustrated in Fig2, which are actuatable in extension (a) and in sli@ga respectively.
These tests represent excellent benchmark problemtheir selectivity, and have become
popular, as commonly studied in a number of literatworks, including those of Zhang et
Sun B0, 51] and Benjeddou et al5f).
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Figure 2. Cantilever sandwich beam, extensionrid)shear (b) actuation mechanisms.

The materials are polarized in thalirection for the extension mechanism, and inxhe
direction for the shear mechanism. In order to bt beam, voltages are applied to the
upper and lower surfaces of the piezoelectric lyeducing electric bending forces. Thus,
for the shear actuation mechanism, a voltagA@E 20V is applied to the piezoelectric core,
while for the extension actuation mechanism, vasagf Ag=+10V are applied to the
surface of the actuators. The material propert@sesponding to this first benchmark test,
which are taken from referencB(], are reported in Tal2. The numerical results obtained
with the proposed SHB6E and SHB15E piezoelectriiclsshell elements are compared, on
the one hand, with those taken from the literai6®57 and, on the other hand, with those
given by state-of-the-art ABAQUS elements that hageivalent geometry and kinematics,
namely the C3D6E and C3D15E piezoelectric solidhelats.

Table 2. Material properties used in the extensiwth shear mechanism modd§|[

p = 7730 Kg.n®

C,=C,,= 126 GPa; § =117 GPa

C,=795GPa ; L =L =84.1GPa
PZT-5H Cu= Cys= G = 23.0 GPa

e.=e, =17 C/r

e,=e,=— 65C/M ;g =23.3Cm

K= K,,= 1.5036 F/m x,, =1.30eF/m

= 32 Kg.m®
Foam P g
E=353MPa v =0.;
) = 2690 Kg.m®
Aluminum P g

E=70.3GPa ¥y =0.3
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Two cases with regard to the piezoelectric layesragement are considered. The first case
corresponds to the situation when the piezoelelzyiers cover the entire length of the beam;
while in the second case, the position of the d@otuaaries in the 10-90 mm range.

First of all, a convergence analysis is conductedafl of the finite elements used in this
study, in order to identify the mesh refinementuiegd to achieve convergence. Figshows
the sensitivity of the results to mesh refinemdat, all elements in the case of extension
actuation mechanism. From these figures, it casdem that, on the one hand, the proposed
solid—shell elements SHB6E and SHBI15E require mesk degrees of freedom (dof) to
converge towards the reference solution, as cordptoetheir counterparts C3D6E and
C3D15E, respectively. On the other hand, the prepalid—shell elements are much less
sensitive to mesh refinement in the thickness toec

= 11 . . € 1.05
g g —&— C3D15E - one element per layer
o o —e— SHB15E - one element per layer
o A o - A~ C3DI15E - several elements per layer
8 10 G S L S s < SHBA15E - several elements per layer
5 o 5
S e S @\\
Q. - Q.
= 0.9 '«A = 1 Ko A
3 3 '
N ." |—=— C3D15E - one element per layer N ~ ’
T 0.8 ."|—e—SHBI15E - one element per layer T
e : - A C3D15E - several elements per layer e
- several elements per layer

) SHB15E lel | )
z \b‘ L zZ

0.7 : : 0.95 : :

107 10° 10 10° 10° 10° 10 10°
Number of dof Number of dof

Figure 3. Convergence analysis in the case oflearti sandwich beam with extension
piezoelectric actuation mechanism.

After the above convergence study achieved, wegadtere with the analysis of the first
case of piezoelectric layer arrangement (i.e.,qabxctric layers covering the entire length of
the beam). The corresponding simulation resultsgperted in Fig4. Note that, in this first
case and for the shear actuation mechanism, tleneoirigid foam and, instead, the
piezoelectric actuator covers the entire core lajteappears from Fig4 that the results
obtained with the proposed SHB6E and SHB15E elesnard in excellent agreement with
those given by ABAQUS elements. However, the litg®results, which are obtained by 2D
modeling, seem to overestimate the transverse dfiefte in the case when the beam is
actuated by piezoelectric extension (see #aj.
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Figure 4. Transverse displacement of the beamxi@nsion (a) and shear (b) mechanisms.

In the second case, where the actuator positioresran the 10-90 mm range, the
deflection at the free edge is investigated foheaasition of the piezoelectric patches. Here
again, the simulation results are compared witlsehtaken from the literature (Benjeddou et
al. [52] and Piefort $3], where only shear mechanism results are avajladewell as with
those given by the ABAQUS linear and quadratic paectric solid elements C3D6E and
C3D15E. From Fig5, it is observed that the results obtained with 3HB6E and SHB15E
elements are in good agreement with those of tleeature as well as those yielded by
ABAQUS elements, for both actuation mechanisms. élew, it is worth noting that the
results obtained with the proposed solid—shell eletsiconverge faster than those of existing
conventional elements (i.e., relatively fewer elatseare required with the SHB6E and
SHB15E formulations to achieve convergence, as showig.5).

. (@) ; (b)
. 6>< 10 : c 9.,.>< 10
= For Aluminum layer 1S
sl |- C3DB6E - (40x8x5)x2, ~ 9
=5 4, C3D15E - (20x4x3)X} s 9
5 N 4 SHBGE - (20x4x3)x2]] Z g
€ al N SHB15E - (10x2x1)x{ g8y
] " <
% ZL*A\ - 8
o 3t ‘A\ [}
B ™y 0 7.81——Piefort [53]
Q 7| T, Q ——Benjeddou et al.§2]
e T e ™ e
C gl C3DISE- (2xaxlxp Eud g C3DISE - (20x4x5)xp
F || » SHB6E - (2x4x1)x2  6.3] 2 SHB6E - (20x4x5)x2)
SHB15E - (1x2x1)x2 |l < SHBI15E - (10x2x3)xp
% 20 40 60 80 100 0 20 40 60 80 100
Actuator position (mm) Actuator position (mm)

Figure 5. Tip displacement at the free edge obiem for extension (a) and shear (b)
mechanisms with different positions of piezoelecpatches.
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4.1.2. Square plate with piezoelectric patch models

One important advantage taken from the piezoeteb&havior is in the application to the
shape control of structures. In order to show tterest of solid—shell finite elements in this
type of modeling, we consider a square aluminurte&200x200 mMwith a thickness of 8
mm. This plate is covered on both sides with foairp of localized PZT-5H patches in
various configurations, as shown in Fi§. The material properties corresponding to the
current benchmark test as well as all subsequstd &ge reported in TaB. Each patch has
dimensions of 40x40 mmwith a thickness of 1 mm. The objective of thisttés to
investigate the optimal location of piezoelectriatghes for shape control. With regard to
loading conditions, the plate is subjected to daunily distributed load of 100 N.fhover its
entire surface. A constant voltage is then suppliectementally to the piezoceramic
actuators, which are polarized in opposite dirextjauntil the plate is flattened. Fig.shows
the centerline deflection of the composite platengl thex-direction under different input
voltages. The results provided by the solid—sHelhents SHB6E and SHB15E are compared
with those given by the ABAQUS solid elements C3D&ktl C3D15E. On the whole, it
appears that fewer degrees of freedom are reqtoretthe proposed solid—shell elements to
achieve convergence, as compared to ABAQUS elemAstgxpected, the linear prismatic
elements are generally stiffer due to locking d@de&lowever, although stiffer, the SHB6E
solid—shell element provides much better results)gared to the C3D6E, thanks to the
applied assumed-strain projection.

Table 3. Material properties used for all benchntasts (except the first test concerning the
cantilever sandwich beam with extension and shieaoplectric actuation mechanisms).

p = 7500 Kg.n®
C,=C,= 127.2GPa ; § =117.44 GPa
C,=80.21GPa ; L =G =84.1GPa
PZT-5H C,,= C= Gy = 22.99 GPa
€= 6, =17.0345 C/Mm
e,=e,= 6.6228C/f ;g =23.2403 C/m
Ky, = K= 1.50% 10° F/m ; K,, = 1.26% 18 Fh
p = 2690 Kg.nv"
E=703GPa v =0.3

Aluminum

13



Figure 6. Square plate with piezoelectric patches.

14



£ T
E £
c c
g S
© ©
Q Q
© ©
© o
() [$)
= £
g g 0000992
c c
[0 ()
O (@)
-10 ' : : : :
0 50 100 150 200 100 150 20C
Position along x—direction (mm)
(d)
1 10"
€ €
E E
c c
iel o
3] i3]
Q Q
© o)
o ©
Q Q
= £
[ [
< <
Q Q
@) @)
0 50 100 150 20¢
Position along x—direction (mm) Position along x—direction (mm)
For Aluminum layer —— C3DG6E - (4640x1)x2 o o o C3D15E - (2020x1)x2
----- SHBG6E - (26:20x1)x2 = = » SHB15E - (1810x1)x2
For PZT-5H layers  ____ c3DG6E - (88x1)x2 o o o C3DI15E - (44x1)x2
----- SHBG6E - (&4x1)x2 x x x SHB15E - (22x1)x2

Figure 7. Central line displacement for the squeaée under uniform load and various values
of voltage, for four different patch layouts.

In addition, the analysis of the plots in Figshows that the (a) and (d) configurations are
more effective in terms of shape control (platetniéss recovery). Note however that
configuration (a) requires up te20 V by pair of patches to recover the initial shayh the
plate, whereas only 2 V are sufficient for configtion (d).

4.1.3. Shallow cylindrical sandwich blade

In order to assess the capabilities of the propasaditl-shell elements in geometric
nonlinear analysis, a cantilever shallow cylindrgsandwich shell with 300 mm for both of its
straight and curved edges, as depicted in 8igs considered. A similar model has been
proposed by Kioua and Mirza54], but no comparison with available finite element
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technologies was attempted. Here again, the hadt gh made in aluminum and has a
thickness of 2.50 mm. This shell is entirely coxkoa both sides with a thin PZT-5H layer of
0.25 mm thickness polarized across the thicknessoltage of 50 V is applied to each
piezoelectric layer (the internal faces are coretkd¢d ground, while 50 V is applied to the
external faces) to induce bending actuation. Thre¢ios R/b are considered (

R/b={ 1, 10,oo} ). The considered layup configuration for the laatéd shell causes high

stiffness coupling and, consequently, also gengratewisting deformation. The deflections
along paths A, B and C, as depicted in Bigare investigated.

Figure 8. Cantilever curved sandwich shell.
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Figure 9. Deflection along paths A, B and C for ¢theemped curved sandwich shell, for
different curvature® / h

Here again, the results provided by the solid—diretke elements SHB6E and SHB15E are
compared to those given by the ABAQUS solid elem&8D6E and C3D15E (see F8). It
appears, once again, that a good agreement isvadhigith respect to the reference results,
which highlights the benefit of using the proposéeiments SHB6E and SHB15E in this kind
of analysis. However, a phenomenon that is quiteraon with triangular-based elements, the
linear prismatic formulations SHB6E and C3D6E exhsliffer behavior due to locking. As
previously revealed, despite its relative stiffpetbe solid—shell element SHB6E provides
better results than its counterpart C3D6E, duetsotieatment against locking via the
assumed-strain method.

With these preliminary set of static tests perfaiméocus is placed in the following
sections on free vibration modeling of sandwicligtires that contain piezoelectric layers, in
order to evaluate the performance of the proposkd-shell formulations.

4.2. Vibration test problems

In the case of free vibration analysis, the sysbéuliscretized equationg) becomes
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In the following sections, a set of free vibratitasts both in open-circuit and short-circuit
configurations will be carried out on beam, platd ahell structures.

4.2.1. Sandwich plate

In this first example of this category of benchmanroblems, we investigate the free
vibration response of a simply supported sandwitiitep The plate consists of two
piezoelectric faces, in PZT-5H material polarizéohg the thickness, covering a core made
of aluminum with a varying thickness. The piezogiecfaces have a thickness of 1 mm,
while the other geometric dimensions are shown ig EO. Different thicknesses for the
aluminum core are considered, according to a ga@mnettio r, in order to analyze the
sensitivity to thickness reduction of the resuligeg by the proposed solid—shell elements.
The first three free vibration frequencies are stigated in both short-circuit and open-circuit
configurations and are reported in T4b.

| hp=1mm
M hy=1 mm

Figure 10. Simply supported rectangular sandwielepl

According to Tab4, the results obtained with the solid—shell firslements SHB6E and
SHBI15E are in good agreement with those of thaeate element C3D15E. Here again, the
linear prismatic elements are stiffer, which is muatrprising for linear triangular-based
elements that are known to be more sensitive tkirlgc It should be noted, however, that
fewer degrees of freedom are required for the pegaolid—shell elements, as compared to
their counterparts with the same kinematics.
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Table 4. First three natural frequencies for tletaregular sandwich plate.

C3D6E SHB6E C3D15E SHB15E
(48x40x3)x2 (24x20x3)x2 (24x20x3)x2 (12x10x3)x2

Short circuit

209.95 182.96 180.73 181.09
r=1 389.70 338.22 329.04 331.56
461.53 401.14 387.52 391.42
551.75 526.53 506.01 510.77
r=>5 1009.4 960.78 918.04 929.64
1192.3 1138.5 1082.1 1096.0
1879.6 1593.9 1679.4 1737.4
r=20 3302.8 2778.4 2961.8 3034.0
3800.8 3214.9 3387.1 3483.2
Open circuit
236.40 211.24 210.95 211.38
r=1 433.75 385.32 381.13 383.74
513.55 457.68 448.87 453.82
601.43 575.04 560.77 565.87
r=>5 1100.5 1048.1 1019.1 1030.5
1300.7 1243.5 1201.9 1217.6
1941.9 1639.6 1756.6 1806.4
r=20 3406.8 2847.5 3085.8 3152.3
3920.1 3295.8 3527.9 3622.0

In the following sections, free vibration analysi$ shell structures provided with
piezoelectric materials will be conducted. The @&no assess the performance and reliability
of the proposed solid—shell elements in the model sandwich structures involving
geometric nonlinearities.

4.2.2. Hemispherical sandwich shell with a hole

The last benchmark test in this category is corememiith a doubly curved sandwich shell
structure. This consists of a hemispherical shéth an 18° hole and a mean radius of 200
mm, as depicted in Figll. The host structure is made of aluminum matenal has a
thickness of 1.50 mm. This hemispherical shellrisrely covered on both sides with a thin
PZT-5H layer, which is polarized across its thicksief 0.25 mm. The shell structure is
clamped over the entire holed face. The currenlyaisaconsists in investigating the first five
modes in both short-circuit and open-circuit coafggions, which are illustrated in Fig2.
The results in terms of the corresponding natuedudencies (first five natural frequencies)
are summarized in Tab.

As previously done, the results obtained with theppsed solid—shell formulations are
compared in Takb with their ABAQUS counterparts, which are basedium same geometry
and kinematics. From Tab, it appears that the results provided by the agpeal solid—shell
elements are in good agreement with the refereolcgian given by the C3D15E ABAQUS
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guadratic piezoelectric element. In the same wayeagaled before, the linear prismatic
elements exhibit some excessive stiffness in tlegee benchmark test. However, as
discussed previously, the results given by the gsed linear prismatic solid—shell element
SHB6E are much better than those yielded by its BBIS counterpart C3D6E. This

enhanced behavior for the SHB6E element with retmidcking is made possible thanks to
the implementation of an assumed-strain projedhdts formulation.

Clamped edge

Free edge

Figure 11. Hemispherical sandwich shell with a hole

Mode 1 Mode 2 Mode 3

Mode 5

) ®

Figure 12. First five vibration modes for the hephisrical sandwich shell with a hole.
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Table 5. First five natural frequencies for the fsherical sandwich shell with a hole.

C3D6E SHB6E C3D15E SHB15E
(200x50x3)x2 (100x25x3)x2 (80x20x3)x2 (40x20%3)x2

Short circuit

135.82 99.329 74.953 75.422
297.31 186.32 114.32 116.25
321.54 247.72 215.84 214.79
606.47 458.40 287.09 288.61
926.92 660.67 344.76 344.53
Open circuit
137.09 100.98 76.354 76.817
300.36 188.36 115.01 119.94
324.34 248.77 217.62 222.17
612.80 461.90 290.80 297.02
938.55 661.42 348.56 346.42

5. Conclusions

In the current contribution, two new prismatic mielectric solid—shell finite elements
have been developed. These finite element techieslagpnsist of a six-node prism, denoted
as SHB6E, and a fifteen-node prism, designated#s1SE. These formulations are based on
purely three-dimensional kinematics and, accordingie resulting finite elements have at
each of their nodes three translational degreéeetiom and one electric degree of freedom.
To provide these elements with some desirable $batiires, and to alleviate locking effects,
an in-plane reduced-integration scheme is adoptéld,a user-defined number of integration
points along the thickness direction. The constitutaw is also expressed in a local physical
coordinate system, which is attached to the elemmédiplane, in order to enhance immunity
with regard to thickness locking.

The performances as well as the benefits of these element formulations have been
assessed through a set of selective and repraserbd@nchmark problems both in static and
vibration analysis. The simulation results obtaibgdhe newly devised solid—shell elements
have been compared with reference solutions tal@n the literature and also with state-of-
the-art finite elements available in ABAQUS. Amotig latter, the quadratic piezoelectric
element C3D15E is often taken as reference. lrofathe benchmark tests, the quadratic
solid—shell element SHB15E has shown better pediage than its C3D15E counterpart from
ABAQUS, while systematically requiring less degreédreedom for the same accuracy. In
the same way, the linear solid—shell element SHBSBvided better results than its
conventional counterpart C3D6E, although both ehip some over-stiffness due to locking
in situations of severe nonlinearities. In futurerky it would be interesting to further improve
the performance of the SHB6E element, by usingrfstance other advanced enhanced strain
methods.
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