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Optimal estimation of direction in regression models

with large number of parameters
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Abstract

We consider the problem of estimating the optimal direction in regression
by maximizing the probability that the scalar product between the vector
of unknown parameters and the chosen direction is positive. The estimator
maximizing this probability is simple in form, and is especially useful for
situations where the number of parameters is much larger than the number
of observations. We provide examples which show that this estimator is
superior to state-of-the-art methods such as the LASSO for estimating the
optimal direction.

Keywords: Random balance, Screening experiments, Box–Wilson
methodology, LASSO, Ridge regression

1. Introduction

In this paper, we are mainly interested in the problem of choosing the
optimal direction in regression by maximizing the probability that the scalar
product between the vector of unknown parameters and the chosen direction
is positive. The results obtained are very general and could be applied to
models where the number of parameters m exceeds the number of observa-
tions N . It turns out that the optimal directional vector has a very simple
form, see (3), and can be easily computed even if the number of parameters
m is extremely large. There are two very important practical areas where our
directional statistic, denoted θ̂∗, can be used; see also Sections 5.1 and 5.2.

Email addresses: gillardjw@cardiff.ac.uk (Jonathan Gillard),
zhigljavskyaa@cardiff.ac.uk (Anatoly Zhigljavsky)

Preprint submitted to Applied Mathematics and Computation May 2, 2017



• The Box–Wilson response surface methodology, see [1, 2] and [3, Ch.8A],
where an unknown response function can be observed with random er-
ror and the aim of the experimentation is in reaching the experimental
conditions where the response function achieves its maximum. The
main step (applied many times) in this methodology is the construc-
tion of a local linear model of the response function and the estimation
of the coefficients of this linear model for finding the direction of as-
cent. The standard advice is to use the LSE (least square estimator)
for estimating the coefficients. As shown in this paper, this standard
procedure can be much improved as the LSE does not provide the op-
timal direction. Also, the use of θ̂∗ in place of the LSE can expand
the use of the Box–Wilson methodology to problems with very large
number of input variables.

• The so-called ‘sure independence screening’ procedure for regression
models with huge number of parameters, see [4] as a classical refer-
ence. This procedure consists of two stages. At the first stage, a
computationally efficient method is used for screening out the most
important variables quickly, thus reducing the dimensionality. At the
second stage, a proper regression analysis is applied to the remaining
variables. Our arguments show that θ̂∗ is not only computationally
simple but also provides an optimal screening procedure to be applied
at the first stage of the sure independence screening approach.

Assume we have N observations in the linear regression model

yj = θ1xj1 + . . .+ θmxjm + εj, j = 1, . . . , N . (1)

In a standard way (see e.g. [5, Ch. 4]), we write the matrix version of this
observation scheme as

Y = Xθ + ε (2)

where Y = (y1, . . . , yN)
T is the observation vector (response variable), X =

(xji)
N,m
j,i=1 is the design matrix, θ = (θ1, . . . , θm)

T is the vector of unknown
parameters and ε = (ε1, . . . , εN)

T is a vector of noise. As usual in regression
models we assume Eε = 0 and the covariance matrix of errors is Dε = σ2W ,
where σ2 is generally unknown andW is some positive definite N×N matrix.
In Section 2 we assume thatW is the identityN×N matrix (that is, W = IN)
and extend the main results to the general W > 0 in Section 2.2.
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The main result of the paper is Theorem 2.1 which states that if Y ∼
N(0, σ2IN) then the statistic

θ̂∗ = XTY (3)

maximizes the probability

Pr{vT θtrue > 0} (4)

over all vectors v ∈ R
m, where θtrue is the true value of the unknown param-

eters θ.
Let us make two important remarks.

Remark 1. For any vector v, the probability (4) is the same for all vectors

γv with γ > 0. This means that our focus is solely on the directions gen-

erated by vectors v ∈ R
m rather than on the estimation of θ = θtrue in the

regression model (2). Moreover, Theorem 2.1 implies that under appropriate

assumptions all estimators of the form γXTY with γ > 0 are optimal with

respect to the criterion (4).

Remark 2. Careful examination of the proof of Theorem 2.1 shows that

for given θ = θtrue there could be other directions optimal for the criterion

(4). A remarkable property of the direction defined by θ̂∗ is the fact that this

direction is optimal for any θtrue. We can state this property by saying that

θ̂∗ is universally optimal with respect to the criterion (4).

The rest of the paper is organised as follows. In Section 2 we prove our
main result, Theorem 2.1, and show how this result can be further generalized
and used. In Section 3 we give two analytic examples which show that the
direction created by θ̂∗ could be much superior to the direction generated by
the BLUE and other linear estimators of θ. In Section 4 we provide results
of several numerical studies which further confirm the superiority of θ̂∗. As a
by-product of the numerical study of Section 4 we show that the celebrated
LASSO can perform very poorly in terms of the criterion (4). We make
further discussions in Section 5, where we also formulate conclusions.

2. Optimality of the directional statistic

2.1. The main result

In a general linear regression model (2), consider a family of linear statis-
tics of the form

θ̂C = CY , (5)
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where C is some m×N matrix. Define the scalar product in R
m by

⟨a, b⟩ = aTSb , a, b ∈ R
m ,

where S is an arbitrary positive definite m×m matrix. For given θ, define

Cθ = ArgmaxCPr{⟨θ̂C , θ⟩ > 0} ; (6)

that is, Cθ = {C⋆} is the set of m×N matrices C⋆ such that

Pr{⟨θ̂C⋆
, θ⟩ > 0} = max

C
Pr{⟨θ̂C , θ⟩ > 0} . (7)

For given θ, we say that a statistic θ̂C is optimal if C ∈ Cθ. The theorem
below shows that if we assume normality of errors then the matrix C∗ =
S−1XT ∈ Cθ for all θ. This matrix does not depend on θ and, if S = Im, the
corresponding optimal statistic θ̂C⋆

coincides with θ̂⋆ defined in (3).

Theorem 2.1. Consider the model (2) where ε ∼ N(0, σ2IN), σ
2 > 0, and

let S be any positive definite m ×m matrix. Then for any θ, C⋆ = S−1XT

belongs to the set Cθ defined in (6).

Proof If θ = 0 then the statement of the theorem is trivial. Assume θ ̸= 0.
For simplicity of notation, denote t(C, θ) = ⟨θ̂C , θ⟩ = θTSCY . Straightfor-
ward calculations give

Et(C, θ) = θTSCXθ, var[t(C, θ)] = σ2θTSCCTSθ .

Note that var[t(C, θ)] = 0 if and only if the vector a = CTSθ ∈ R
N is

equal to 0. Assume a = 0. Then Y Ta = 0 and hence t(C, θ) = aTY = 0.
This yields that if a = 0 then Pr{⟨θ̂C , θ⟩ > 0} = 0. Therefore if a = 0,
then C cannot be optimal for (7). We can then assume that a = CTSθ ̸= 0.
This assumption implies var[t(C, θ)] > 0 and we can thus define the random
variable

v(C, θ) =
σ[t(C, θ)− Et(C, θ)]
√

var[t(C, θ)]
=

t(C, θ)− θTSCXθ√
θTSCCTSθ

, (8)

which is normally distributed with mean 0 and variance σ2.
For any C,

Pr{⟨θ̂C , θ⟩ > 0} = Pr{v(C, θ) > −ϕ(C, θ)} , (9)
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where

ϕ(C, θ) =
θTSCXθ√
θTSCCTSθ

. (10)

Therefore, the probability Pr{⟨θ̂C , θ⟩ > 0} is large when ϕ(C, θ) is large.
Hence any matrix C⋆ defined by (7) is also

C⋆ = argmax
C

ϕ(C, θ) (11)

where ϕ(C, θ) is defined in (10) and the maximum in (11) is taken over the
set of m×N matrices C.

By the Cauchy-Schwartz inequality, recall that for two non-zero vectors a
and b,

√
aTa

√
bT b ≥ aT b with equality if and only if a = αb for some non-zero

constant α ∈ R. Set a = CTSθ and b = Xθ. Then

√
θTWCCTSθ

√
θTXTXθ ≥ θTSCXθ,

and it follows that

ϕ(S−1XT , θ) =
θTXTXθ√
θTXTXθ

≥ θTSCXθ√
θTWCCTSθ

= ϕ(C, θ) ,

for all θ and any m×N -matrix C. Thus it follows that C⋆ = S−1XT is one
of the matrices C⋆ defined by (11). �

2.2. Generalizations of the main result and some comments

Corollary 2.2. Consider the model (2) where ε ∼ N(0, σ2W ) for given pos-

itive definite N ×N matrix W . Then

θ̂C∗
= S−1XTW−1Y, (12)

is an optimal linear statistic in the sense of (7), for any θ.

Proof Make the transformations X̃ = W− 1

2X, Ỹ = W− 1

2Y and ε̃ = W− 1

2 ε
and apply Theorem 2.1 to X̃, Ỹ and ε̃. �

Remark 3. Consider the model (2), where ε = (ε1, . . . , εN)
T is a vector

of i.i.d. random variables, not necessarily normally distributed. Then the

solution to the optimization problem (11) is given by C∗ = S−1XT , for all θ.
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In view of the central limit theorem, for large enough N , the random
variable v(C, θ) defined in (8) is approximately normal with mean 0 and
variance σ2. Therefore, the probability Pr{⟨θ, θ̂C⟩ > 0} is large when ϕ(C, θ)
is large (approximately) and its accuracy depends on the value of N . Thus
the solution to the main optimization problem (7) should be either exactly
the same as or very close to the solution of the problem (11); this solution is
provided in Theorem 2.1.

Remark 4. If m = 1 then the statistic (12) is proportional to the BLUE

and therefore BLUE provides the optimal direction in the sense of (7).

Remark 5. As follows from the Gauss-Markov theorem, for any m ≥ 1 the

BLUE provides the optimal direction in the sense of (7) if we only consider

the directions made by linear unbiased estimators of θ.

As shown in the analytical example of Section 3.1 and numerical examples
of Section 4, the BLUE, despite providing the best direction compared to all
linear unbiased estimators, can be rather poor relative to the direction of
statistic θ̂C∗

. To measure the quality of a direction v we introduce its P-
efficiency as

effP (v; θ) =
Pr{θT θ̂C∗

≤ 0}
Pr{θTv ≤ 0} (13)

which depends on the unknown parameter θ. If the errors in the regression
model are normal, then Theorem 2.1 and Corollary 2.2 imply that for any θ,
we have 0 ≤ effP (v; θ) ≤ 1 for any vector v ∈ R

m. If the efficiency effP (v; θ)
is small then the vector v gives a poor direction, in terms of the criterion
defined in (7).

3. Analytical examples

3.1. Efficiency of the BLUE direction

Theorem 2.1 implies that the P-efficiency (13) of any linear statistic θ̂ =
CY never exceeds 1. If the errors are Gaussian then as stated in Remark 5 the
BLUE direction has the highest P-efficiency among all directions computed
from unbiased estimators of θ but its P-efficiency still cannot exceed 1. Let
us show that P-efficiency of the BLUE direction can be very low.

6



Assume N = 2, m = 2 and a family of regression models yj = θ1xj +
θ2x

2
j + εj (j = 1, 2) where x1 = 0.5, x2 = 1, ε1 and ε2 are independent

Gaussian random variables with zero mean and variances var(ε1) = α and
var(ε2) = 1− α, where α ∈ (0, 1). Assume that θ = (θ1, θ2)

T ̸= 0, θ2 ̸= −2θ1
and θ2 ̸= −θ1.

For all α ∈ (0, 1), we have

θ̂C∗
= XTW−1Y =

(

y1/(2α) + y2/(1− α)
y1/(4α) + y2/(1− α)

)

,

θ̂BLUE = (XTW−1X)−1XTW−1Y =

(

4y1 − y2
−4y1 + 2y2

)

.

For the probability Pr{θT θ̂C⋆
> 0} we have

Pr{θT θ̂C∗
> 0} = Φ

(

(2θ1 + θ2)
2

16α(1− α)
+

(2θ1 + 3θ2)(6θ1 + 5θ2)

16(1− α)

)

,

where Φ(·) is the c.d.f. of the standard normal distribution. This probability
tends to 1 if α → 0 or α → 1.

On the other hand,

Pr{θT θ̂BLUE > 0} = Φ

(

(θ21 + θ22)
2

α(15θ21 + 12θ22 − 28θ1θ2) + (θ1 − 2θ2)2

)

.

This probability does not come close to 0 for any α. This means that if
α → 0 or α → 1 then the P-efficiency of the BLUE tends to 0.

Assume now the true values of parameters θ = (θ1, θ2)
T are θ = (1,−1)T ;

note that the formulas above do not cover this particular case. Then

Pr{θT θ̂C∗
> 0} = Φ

(

1

16α

)

, Pr{θT θ̂BLUE > 0} = Φ

(

4

9 + 55α

)

and therefore

effP (θ̂BLUE; (1,−1)) =
Φ (−1/16α)

Φ (−4/(9 + 55α))

This yields the following expression showing the rate of decrease of the P-
efficiency of the BLUE as α → 0:

effP (θ̂BLUE; (1,−1)) =
8
√
2α√

πΦ (−4/9)
exp

{

−1/(512α2)
} (

1 +O(α2)
)

(14)

If α → 0 then Pr{θT θ̂C∗
> 0} → 1 but Pr{θT θ̂BLUE > 0} → Φ (4/9) ≃

.823 < 1.
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3.2. Comparison of different estimators in a one-parameter model

Consider the linear regression model (2) with σ2 = 1 and some matrix
W > 0 (which can be unknown) and a class of estimators θ̂A = CAY with

CA =
(

XTA−1X
)−1

XTA−1. If A is proportional to the true covariance ma-

trix W then θ̂A becomes the BLUE θ̂W . The estimator θ̂A minimizes the
weighted sum of squares

SSA(θ) = ε̂(θ)TA−1ε̂(θ) , (15)

where ε̂(θ) = (Y −Xθ). Define

SSerror,A = SSA(θ̂A) = argmin
θ

SSA(θ) .

If the covariance matrix W is unknown but a parametric form of it is
known (so that W = σ2W (κ) with some parameters κ and unknown mul-
tiplier σ2), then it is customary (see, for example, [6]) to minimize the
weighted sum of squares of residuals SSW (κ)(θ) with respect to both θ and κ
in the belief that for κtrue, the true parameters κ, we have SSerror,W (κtrue) ≤
SSerror,W (κ) for all κ. In the example below we show that this could be
completely wrong.

Note, however, that the danger of the simultaneous minimization of SSW (κ)(θ)
with respect to θ and κ is not unknown to statisticians, as they sometimes
advocate more conservative approach to estimating θ and κ using adaptive
procedures like the one studied in [7].

Set ε̂A = ε̂(θA). We have ε̂A = GAε, where

GA = IN −X CA = IN −X
(

XTA−1X
)−1

XTA−1 .

Note G2
A = GA, trGA = N −m and GT

A = A−1GA A.
This gives

SSerror,A = εTGT
AA

−1ε = εTA−1GAε . (16)

Assume that the vector of errors ε is normally distributed ε ∼ N(0,W ).

Define η = W− 1

2 ε and BA = W
1

2GT
AA

−1W
1

2 . Then (16) can be rewritten as

SSerror,A = ηTBAη (17)

where η ∼ N(0, IN).
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We now consider an example. Assume N = 2, m = 1 and a family of
regression models yj = θxj + εj (j = 1, 2) where x1 = x, x2 = 1, ε1 and ε2
are independent Gaussian random variables with zero mean and variances
var(ε1) = α and var(ε2) = 1−α. Here x ∈ (0, 1) and α ∈ (0, 1

2
) are arbitrary.

BLUE of θ is θ̂BLUE = (XTW−1X)−1XTW−1Y , where in our example
XT = (x, 1) and

(XTW−1X)−1 =
α(1− α)

α + x2(1− α)
= var(θ̂BLUE) .

For the BLUE, SSerror,W = ηTBWη, where BW is a symmetric 2× 2 matrix
with eigenvalues 0 and 1. Hence SSerror,W has chi-square distribution with 1
degree of freedom (d.f.) and density

pW (x) =
1√
2πx

exp{−x/2}, x > 0 . (18)

In particular, ESSerror,W = 1.
Define 2× 2 matrix A as a diagonal matrix with diagonal elements 1−α

and α (that is, A is a flipped W ). The variance of the estimator θ̂A = CAY
with CA = (XTA−1X)−1XTA−1 is

var(θ̂A) = CAWCT
A =

x2α3 + (1− α)3

(x2α + (1− α))2
. (19)

By the Gauss-Markov theorem, var(θ̂A) ≥ var(θ̂BLUE). The efficiency of the
estimator θ̂A is

eff(θ̂A) =
var(θ̂BLUE)

var(θ̂A)
=

α (1− α) (x2α− α + 1)
2

(x2 (1− α) + α)
(

x2α3 + (1− α)3
) ≤ 1 .

For any fixed x ∈ (0, 1), the efficiency of θ̂A can be arbitrary small if α is
small enough. Indeed, if x ∈ (0, 1) is fixed and α → 0 then var(θ̂BLUE) → 0
and var(θ̂A) → 1 implying eff(θ̂A) → 0. More precisely,

eff(θ̂A) =
α

x2
+

(2 x2 − 1) (x2 + 1)

x4
α2 +O

(

α3
)

.

Consider now SSerror,A. In view of (17) it can be written as SSerror,A =
ηTBAη, where BA is symmetric with eigenvalues 0 and

λx,α = (x2α + 1− α)/(x2(1− α) + α) > 1 .
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Therefore SSerror,A is a random variable (r.v.) which is
√

λx,α times a r.v.
with chi-square distribution with 1 d.f. The density of SSerror,A is

pA(t) =
1

√

2πλx,αt
exp{−

√

λx,αt/2}, t > 0 .

In particular,

ESSerror,A =
1

λx,α

=
x2(1− α) + α

x2α− α + 1
.

This value is always smaller than 1 as long as x ∈ (0, 1) and α ∈ (0, 1
2
). For

small x and α the value of ESSerror,A is close to 0. Indeed, if we assume that
x = α then

ESSerror,A = α
1 + α− α2

1− α + α3
= α + 2α2 + α3 +O

(

α5
)

as α → 0 .

Let us assume now that θ > 0 and consider the probability

Pr{⟨θ̂, θ⟩ > 0} = Pr{θ̂ > 0}

for the following three estimators: θ̂∗ = XTW−1Y = X̃T Ỹ , θ̂BLUE = (X̃T X̃)−1X̃T Ỹ
and θ̂A = (XTA−1X)−1XTA−1Y ; here X̃ = W−1/2X and Ỹ = W−1/2Y . In
view of (9) with m = 1, for any θ̂ = CT Ỹ , where C is a vector of size N , we
have

Pr{CT Ỹ > 0} = 1− Φ
(

−θCT X̃/
√
CTC

)

.

This gives

Pr{θ̂∗ > 0} = Pr{θ̂BLUE > 0} = 1− Φ

(

−θ

√

x2

α
+

1

1− α

)

.

These probabilities approach 1 exponentially fast as α → 0. For example,
for θ = 1 and x = 0.5, Pr{θ̂∗ > 0} < 1.7 · 10−5 for all α ≤ 0.1. On the other
hand,

Pr{θ̂A > 0} = 1− Φ

(

−θ/

√

var(θ̂A)

)

,

where var(θ̂A) is given in (19). For small α, var(θ̂A) ≃ 1 and hence the
probability Pr{θ̂A > 0} is close to 1−Φ (−θ). For θ = 1 this is 1−Φ (−1) ≃
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0.841345, which is much smaller than 1. For any θ, the P-efficiency of the
direction created by θ̂A tends to 0 as α → 0. This is counter-intuitive to
the fact established above which says that for small x and α the value of
SSerror,A is probabilistically close to 0 whereas the distribution of SSerror,W

is not (it has the density (18)).

4. Numerical examples

Suppose we have data consisting of N observations taken on m vari-
ables X1, X2, . . . , Xm drawn from a multivariate normal distribution with
zero mean and m × m covariance matrix Σ = (Σi,j)m×m. The entries of Σ
are given by Σi,j = 1, i = j and Σi,j = ρ, i ̸= j. Suppose that the model is of
the form

Y = βX1 + βX2 + βX3 + ε,

so θ = (β, β, β, 0, . . . , 0)T and ε ∼ N(0, IN). This is one of the standard
models used in studying variable selection in problems with large number of
parameters, see [4]. We use S = Im and are hence interested in the event
⟨θ̂, θ⟩ = θ̂T θ > 0.

Example 1. In this example we take m = 100 and evaluate (9) for three
cases: (i) C = C1 = XT in accordance with the statement of Theorem 2.1,
(ii) C = C2 = (XTX)−XT and (iii) C = C3 = XT (XXT )−. Here (XXT )− is
the Moore-Penrose pseudoinverse of the matrix XXT . Note that the choice
C = C2 makes the estimator (5) the standard ordinary least squares estimator
and the matrix (XTX)−XT is a pseudoinverse for X commonly used when
m < N . The matrix XT (XXT )− is a pseudoinverse for X commonly used
when N > m.

Figure 1 contains boxplots of the probabilities computed from (9), for
different values of ρ, taken over 250 simulated data sets with N = 20 and
β = 0.05. We make the following remarks. The choice C = C1 yields
larger probabilities across all values of ρ, and the probabilities increase as a
function of ρ. Such a trend is not apparent with the choice C = C2, where
the distribution of the probabilities becomes more variable as ρ increases.
The larger value of β gives larger probabilities for the choice C = C1, whilst
it makes the distribution of the probabilities more variable for the choice
C = C2. The choice C = C3 gives larger probabilities with increasing ρ, but
they are not as large as those from C = C1.
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Figure 1: Boxplots of the probabilities computed from (9), for different values of ρ, taken
over 250 simulated data sets with N = 20.

Figure 2 contains boxplots of the probabilities computed from (9), for
different values of N , taken over 250 simulated data sets with ρ = 0.4 and
β = 0.05. Again the choice C = C1 yields larger probabilities across all
values of N , and the probabilities increase when N grows. The probabilities
when C = C2 and C = C3 relate to the discussion given earlier on the correct
choice of pseudoinverse for X depending on the dimension N . Consider first
the choice C = C2. The probabilities from (9) are smaller than for any
other choice for C when N < 100. This is because (XTX)−XT is the wrong
psuedoinverse for X when N < 100. The discussion is similar for the choice
C = C3 when N > 100. However the choice C = C3 has a smaller variation
of probabilities when N > 100 than C = C2 when N < 100.
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(a) C = C1 = XT
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(b) C = C2 = (XTX)−XT
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(c) C = C3 = XT (XXT )−

Figure 2: Boxplots of the probabilities computed from (9), for different values of N , taken
over 250 simulated data sets with ρ = 0.4.

We now consider the angles between the two vectors θ and θ̂, where θ̂ is an
estimate of θ. We estimate θ by using the estimator (5) with C = C1 = XT

and C = C2 = (XTX)−XT . Figure 3 contains plots of the angles found from
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1000 simulated data sets. The choice C = C1 yields an estimate with smaller
angle between the estimate θ̂ and θ, than the choice C = C2.

(a) C = C1 = XT (b) C = C2 = (XTX)−XT
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(c) Scatterplot of angles
from using C = C2 against
C = C1 with ‘y = x’ line

Figure 3: Plots of angles between the two vectors θ and θ̂. Parameters are m = 100,
N = 20, ρ = 0.4 and β = 0.05. Plots standardised in the interval [0, 1] such that 1
represents π radians.

Example 2. We simulate 250 data sets, and for each data set estimate θ by
using the estimator (5) with C = C1 = XT in accordance with the statement
of Theorem 2.1 with γ = 1 and by using the LASSO. For the 250 simulated
data sets we count the frequencies of the event ⟨θ̂, θ⟩ > 0, where θ̂ is either
θ̂RB = XTY or LASSO. Note that because the LASSO estimate of θ cannot,
in general, be written in the form (5) we are unable to use (9). The LASSO
estimate of θ is given by the solution to the following optimization problem:

θ̂λ = arg min
θ∈Rm

||Y −Xθ||22 + λ||θ||1 . (20)

Table 1 contains these proportions for different estimators of θ, and different
m when N = 20, β = 0.05. We compute the LASSO estimator (20) of θ
for each simulated data set by taking 100 equally spaced values of λ, in the
interval [0, λ∗] where λ∗ > 0 is the largest value of λ which gives a non-null
solution of (20). In Table 1 the column headed 0.1λmax refers to the propor-
tion of solutions of (20) with λ = 0.1λmax where ⟨θ̂, θ⟩ > 0. Other columns
are described similarly. We make the following remarks. The proportion of
the simulations which yield positive values of ⟨θ̂, θ⟩ is greater for the estima-
tor (5) with C = C1 = XT than for the LASSO, and it is less affected by m.
The proportion increases with larger ρ for this estimator, whilst it decreases
for the LASSO. As λ in (20) increases, the proportion decreases.
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Table 1: Proportion of 250 simulations which give ⟨θ̂, θ⟩ > 0 for different m and ρ.

m = 100 m = 1000
ρ C=C1 0.1λ∗ 0.5λ∗ 0.9λ∗ C=C1 0.1λ∗ 0.5λ∗ 0.9λ∗

0 0.648 0.344 0.304 0.252 0.604 0.048 0.040 0.032
0.2 0.684 0.308 0.264 0.208 0.668 0.064 0.064 0.048
0.4 0.692 0.236 0.216 0.176 0.700 0.036 0.020 0.024
0.6 0.704 0.248 0.232 0.144 0.756 0.044 0.032 0.016
0.8 0.720 0.244 0.224 0.116 0.728 0.048 0.028 0.016

Example 3. In this example we take m = 100, N = 200, ρ = 0.4 and evaluate
(9) with C = Ca = (XTX + aIm)

−1XT , where a > 0 is the so-called ridge
parameter. We set β = 0.05. Figure 4(a) contains a plot of the average
probability (evaluated using (9)) over 250 simulated data sets, against a.
Figure 4(b) contains a plot of the average probability obtained from the
LASSO (20) against λ. The lower horizontal line is the average probability
when a = 0. The upper horizonal line is the average probability when C =
C1 = XT . Note that as a → ∞ then a(XTX+aIm)

−1XT → XT . This is why
the probability as a gets larger becomes the same as for when C = C1 = XT .
The LASSO yields smaller probabilities than when (9) is evaluated when
C = Ca = (XTX + aIm)

−1XT . As the penalty coefficient λ in (20) is taken
larger then the average probability declines.
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(a) C = Ca = (XTX + aIm)−1XT

0 1 2 3 4 5

0.65

0.7

0.75

0.8

0.85

0.9

(b) LASSO with penalty coefficient λ

Figure 4: Pr{⟨θ̂, θ⟩ > 0} for different estimators θ̂ of θ averaged over 250 simulations, and
for different a and λ respectively.
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5. Further discussions and conclusions

5.1. Random balance estimator

Consider the regression model (1) where errors are i.i.d. normal. By
Theorem 2.1 and Remark 1, all estimators of the form γXTY with γ > 0
are optimal with respect to the criterion (4). Let us use γ = 1/N .

Assume that xji = ±1 for all i, j. In this case, the statistic θ̂RB =
1
N
XTY is known as the Random Balance (RB) estimator of θ, see [8] and

also [9, 10, 11]. The RB estimator θ̂RB,i of an individual parameter θi is the
LSE (least-squares estimator) in the one-parameter regression model yj =

θixji + ε
(i)
j , where ε

(i)
j = εj +

∑

k ̸=i θkxjk. In this approach, all θi’s are
estimated one-by-one by merging the input of other terms in the original
model with noise. Obviously, this estimation method produces the same
estimator if the assumption xji = ±1 for all i, j is replaced with a more

general assumption
∑N

j=1 x
2
ji = N . Note that if

∑N
j=1 x

2
ji has different values

as i varies then the statistic (3) is not associated with any classical method
of estimating the parameters θ.

5.2. The sure independence screening

Let us give more details about the sure independence screening. Assume
the inputs xji are normalised so that

∑N
j=1 x

2
ji = 1 for all i = 1, . . . ,m. Then

the statistic (3) coincides with the estimator used in the sure independence
screening. In this approach, the statistic (3) simply provides a ‘cheap’ esti-
mator of θ. It can be proved that under certain conditions the use of (3) can
significantly reduce the dimensionality while preserving the true model with
overwhelming probability. In problems of ultrahigh dimensions there are
three problems when trying to identify variables that contribute most to the
response: computational cost, statistical accuracy and model interpretabil-
ity [12]. Existing variable selection methods (such as the LASSO [13, 14])
can become computationally burdensome in high dimensions. The LASSO
can give non-consistent models if certain conditions are not met [14]. Some
methods have been developed to circumnavigate this problem, but they are
computationally intensive [15, 16].

Work which explains why θ̂∗ is a good estimator for screening out the
most important variables is based around the following ideas:

• Assume that Y and the columns of X are all standardized so that
∑N

j=1 y
2
j = 1 and

∑N
j=1 x

2
ji = 1 for all i. Then θ̂∗ is the vector of
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marginal correlations of the variables in the design matrix X with the
response variable Y . The justification of this estimator is that if θj ̸= 0
then with high probability XT

j Y ̸= 0, where Xj is the j-th column of
the design matrix X.

• For high-dimensional problems the matrix XTX is likely to be singu-
lar or nearly singular. This causes problems both in theory and in
numerical computations. Let θ̂a denote the so-called ridge estimator
of θ, given by θ̂a = (XTX + aIm)

−1XTY , for a > 0. It is clear that
θ̂a → (XTX)−1XTY as a → 0 and similarly aθ̂a → θ̂∗ as a → ∞. The
estimator aθ̂a becomes less dependent on the degeneracy of XTX for
larger a. Since ranking of the absolute values of components of θ̂a is the
same as aθ̂a, θ̂∗ can be viewed as a special case of the ridge estimator
θ̂a with a = ∞.

• It has been shown that variable selection based on θ̂∗ does preserve the
true model with high probability (this is known as the sure screening
property). This property is considered pivotal for the success of the
approach. See for example [4].

5.3. Computability and presentation of asymptotic results using the concept

of grossone

In Section 3, we have based some of our conclusions on certain asymptotic
expansions and limiting relations. All these relations can be easily rewritten
in the language of ‘grossone’ developed by Ya.Sergeyev, see for example [17,
18, 19] and also [20], where some logical arguments related to the grossone are
discussed. For example, the relation (14) written in the language of grossone
has the following form:

effP (θ̂BLUE; (1,−1)) =
8
√
2√

πΦ (−4/9) ①
exp

(

− ①
2/512

)

(

1 +O

(

1

①
2

))

,

where the grossone ① can be thought of as ‘numerical infinity’. The advan-
tage of writing asymptotic expressions in the form involving the grossone
is two-fold: first, one can easily evaluate the limiting values even if these
limiting values cannot be directly computed and may have little sense (in
our example, α = 0 cannot be used as the matrix W−1 does not exist when
α = 0); second, all the calculations can be made on the so-called ‘infinity
computer’ (see e.g. [19]). Calculations on the infinity computer (under the
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assumption of its existence) give us a possibility of operating with infinite
and infinitesimals as with numbers and not symbols (like in MAPLE) which
makes computations much faster.

5.4. Conclusions

We have considered the problem of estimating the optimal direction in
regression by maximizing the probability that the scalar product between
the vector of unknown parameters and the chosen direction is positive. For
the case when the errors are normal we have derived the explicit form for
the universally optimal estimator. It appears that this estimator is simple
in form, does nor require matrix inversion and hence is especially useful for
situations where the number of parameters is larger than the number of ob-
servations. We have shown that in particular cases our universally optimal
estimator coincides with the random balance estimator and the estimator
used in the sure independence screening approach. We have provided exam-
ples which demonstrate that our estimator is superior to the BLUE and the
state-of-the-art methods such as the LASSO.
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