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Abstract

Let G = (V,E) be a connected graph. A vertex w ∈ V distinguishes two elements (vertices
or edges) x, y ∈ E ∪ V if dG(w, x) 6= dG(w, y). A set S of vertices in a connected graph G is
a mixed metric generator for G if every two elements (vertices or edges) of G are distinguished
by some vertex of S. The smallest cardinality of a mixed metric generator for G is called the
mixed metric dimension and is denoted by mdim(G). In this paper we consider the structure of
mixed metric generators and characterize graphs for which the mixed metric dimension equals
the trivial lower and upper bounds. We also give results about the mixed metric dimension of
some families of graphs and present an upper bound with respect to the girth of a graph. Finally,
we prove that the problem of determining the mixed metric dimension of a graph is NP-hard in
the general case.

Keywords: mixed metric dimension; edge metric dimension; metric dimension.
AMS Subject Classification Numbers: 05C12; 05C76; 05C90.

1 Introduction

Given a simple and connected graph G = (V,E) and two vertices x, y ∈ V , the distance dG(x, y)
(or d(x, y) for short) between x and y is the length of a shortest x − y path. A vertex v ∈ V is
said to distinguish (we also use the terms “recognize” or “determine” instead of “distinguish”) two
vertices x and y, if dG(v, x) 6= dG(v, y). A set S ⊂ V is called a metric generator for G if any pair
of vertices of G is distinguished by some element of S. A metric generator of minimum cardinality
is a metric basis, and its cardinality the metric dimension of G, denoted by dim(G).

The concept of metric dimension was introduced by Slater in [24], where the metric generators
were called locating sets, according to some connection with the problem of uniquely recognizing
the position of intruders in networks. On the other hand, the concept of metric dimension of a
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graph was independently introduced by Harary and Melter in [14], where metric generators were
named resolving sets. After these two seminal papers, several works concerning applications, as well
as some theoretical properties, of this invariant were published. For instance, applications to the
navigation of robots in networks are discussed in [17] and applications to chemistry in [5, 6, 15].
Furthermore, this topic has found some applications to problems of pattern recognition and image
processing, some of which involve the use of hierarchical data structures [19]. Some interesting
connections between metric generators in graphs and the Mastermind game or coin weighing have
been presented in [4].

On the other hand, with respect to the theoretical studies on this topic, different points of view
of metric generators have been described in the literature, which have highly contributed to gain
more insight into the mathematical properties of this parameter related with distances in graphs.
Several authors have introduced other variations of metric generators like for instance, resolving
dominating sets [2], independent resolving sets [7], local metric sets [21], strong resolving sets
[20], simultaneous metric generators [23], k-metric generators [10], resolving partitions [8], strong
resolving partitions [13], k-antiresolving sets [25], etc. have been presented and studied.

Moreover, a few other very interesting articles concerning metric dimension of graphs can be
found in the literature. However, according to the amount of results on this topic, we prefer to cite
only those papers which are important from our point of view. In concordance with it, we refer the
reader to the work [1], where it can be found some historical evolution, nonstandard terminologies
and more references on this topic, and the recent work [11], where a general approach on metric
generators is described. Some other interesting results and a high number of references can be found
in the theses [9, 18, 22].

In connection with describing other new variants of metric generators in graph, very recently a
parameter used to uniquely recognize the edges of the graph has been introduced in [16]. Roughly
speaking, there was used a graph metric to identify each pair of edges by mean of distances to a
fixed set of vertices. This was based on the fact that a metric basis S of a connected graph G
uniquely identifies all the vertices of G by mean of distance vectors, but not necessarily such metric
basis uniquely recognizes all the edges of the graph. In this sense, the following concepts deserved
to be considered.

Given a connected graph G = (V,E), a vertex v ∈ V and an edge e = uw ∈ E, the distance
between the vertex v and the edge e is defined as dG(e, v) = min{dG(u, v), dG(w, v)}. A vertex
x ∈ V distinguishes (recognizes or determines) two edges e1, e2 ∈ E if dG(x, e1) 6= dG(x, e2). A set
S of vertices in a connected graph G is an edge metric generator for G if every two edges of G are
distinguished by some vertex of S. The smallest cardinality of an edge metric generator for G is
called the edge metric dimension and is denoted by edim(G). An edge metric basis for G is an edge
metric generator for G of cardinality edim(G).

Having defined the concept of edge metric generator, which uniquely determines every edge of
the graph, one could think that probably any edge metric generator S is also a standard metric
generator, i.e. every vertex of the graph is identified by S or vice versa. However, as it proved in
[16], this is further away from the reality, although there are several graph families in which such
facts occur. In [16], among other results, some comparison between these two parameters above
were discussed. As a consequence of the study, families of graphs G, for which edim(G) < dim(G)
or edim(G) = dim(G) or dim(G) < edim(G) hold were described.

In the present work we focus in a kind of mixed version of these two parameters described
above. That is, given a connected graph G, we wish to uniquely identify the elements (edges and
vertices) of G by means of vector distances to a fixed set of vertices of G.

Since the (edge or mixed) metric dimension is defined only over connected graphs, in order to
avoid repetitions, from now on in this article, all the graph which will be considered are connected,
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even so we do not explicitly mention it. Moreover, we do not consider here any graph with only
one vertex (a singleton). That is, from now on, all the studied graphs contain at least two vertices.

In the next section we formally define mixed metric dimension of a graph and present equivalent
definition of the problem in the form of a linear program. Further, we study the structure of mixed
metric generators. We present necessary conditions for a vertex to be included in a mixed metric
generator. Moreover, we characterize graphs with extreme mixed metric dimensions (2 or number
of vertices). In Section 4 we present results about the mixed metric dimension of several families of
graphs. Section 5 is used to give an upper bound for the mixed metric dimension of a graph with
respect to the girth of the graph. Finally, in Section 6 we study the complexity of the problem of
determining the mixed metric dimension of a graph and show that it is NP-hard in general. We
conclude the paper with three open problems.

2 Definition of the problem

We say that a vertex v of a connected graph G distinguishes two elements (vertices or edges) x, y
of G if dG(x, v) 6= dG(y, v). A set S of vertices of G is a mixed metric generator if any two elements
(vertices or edges) of G are distinguished by some vertex of S. The smallest cardinality of a mixed
metric generator for G is called the mixed metric dimension and is denoted by mdim(G). A mixed

metric basis for G is a mixed metric generator for G of cardinality mdim(G).
The problem of determining the mixed metric dimension of a given graph can also be restated

as the following optimization problem. Let us now present this mathematical programming model
which can be used to solve the problem of computing the mixed metric dimension or finding a
mixed metric basis for a graph G. A similar model for the case of the standard metric dimension
was described in [5].

Let G be a graph of order n and size m with vertex set V = {v1, v2, . . . , vn} and edge set
E = {e1, e2, . . . , em}. We consider the n × (n + m) dimensional matrix D = [dij ] such that dij =
dG(xi, xj) and xi ∈ V and xj ∈ V ∪ E. Now, given the variables yi ∈ {0, 1} with i ∈ {1, 2, . . . , n}
we define the following function:

F(y1, y2, . . . , yn) = y1 + y2 + · · · + yn.

Clearly, minimizing the function F subject to the following constraints

n
∑

i=1

|dij − dil|yi ≥ 1 for every 1 ≤ j < l ≤ n+m,

is equivalent to finding a mixed metric basis of G, since the solution for y1, y2, . . . , yn represents a
set of values for which the function F achieves the minimum possible, and this is equivalent to say
that the set W = {vi ∈ V : yi = 1} is a mixed metric basis for G. On the other hand, let W ′ be
a mixed metric basis for G and let (y′1, y

′

2, . . . , y
′

n) be a vector such that for any i ∈ {1, 2, . . . , n},
y′i = 0 if vi /∈ W ′, or y′i = 1 if vi ∈ W ′. Thus, it is straightforward to observe that F(y′1, y

′

2, . . . , y
′

n)
gives a minimum subject to the constraints given before.

3 The Structure of Mixed Metric Generators

We next continue with several combinatorial properties of mixed metric generators. Firstly, it clearly
follows that any mixed metric generator is also a metric generator and an edge metric generator.
In this sense, the following relationship immediately follows. For any graph G,

mdim(G) ≥ max{dim(G), edim(G)}. (1)
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On the other hand, it is not difficult to see that the whole vertex set of any graph G forms a
mixed metric generator. Also, any vertex of G and any incident edge with it, have the same distance
to the vertex itself. In this sense, a vertex alone cannot form a mixed metric generator in G. As a
consequence of these situations, the following remark is readily seen to be true.

Remark 3.1. For any graph G of order n, 2 ≤ mdim(G) ≤ n.

First, we present some necessary terminology and several useful propositions about the structure
of mixed metric generators. The open neighbourhood N(v) of a vertex v in a graph G is given by
all the vertices which are adjacent to v and the closed neighbourhood of v is N [v] = N(v) ∪ {v}.
The vertex v is called an extreme vertex if N(v) induces a complete graph. Two vertices u, v of G
are called false twins if they are have the same open neighbourhoods, i.e., N(u) = N(v). Similarly,
the vertices u, v are called true twins if N [u] = N [v]. A vertex v is a true twin or a false twin in G,
if there exists u 6= v such that u, v are true twins or false twins, respectively.

Proposition 3.2. If u, v are true twins in a graph G, then u, v belong to every mixed metric

generator for G.

Proof. Since u, v are adjacent, it clearly follows that the edge uv and the vertex v have the same
distance to every vertex of the graph, except u. Similarly, the edge uv and the vertex u have the
same distance to every vertex of the graph, except v. As a consequence, u, v must belong to every
mixed metric generator for G.

Proposition 3.3. If u, v are false twins in a graph G and S is a mixed metric generator for G,

then {u, v} ∩ S 6= ∅.

Proof. If u, v are false twins, it clearly follows that they have the same distance to every vertex of
G except themselves. Thus, if S is a mixed metric generator for G, then at least one of them must
belong to S.

Proposition 3.4. If u is an extreme vertex in a graph G, then u belongs to every mixed metric

generator for G.

Proof. Since N(u) induces a complete graph, for any vertex v ∈ N(u) it follows that the edge uv
and the vertex v have the same distance to every vertex of the graph, except u. Therefore, the
vertex u must belong to every mixed metric generator for G.

As a direct consequence of Proposition 3.4 we get the following result.

Corollary 3.5. If u is a vertex of degree 1 in a graph G, then u belongs to every mixed metric

generator for G.

We next deal with characterizing the families of graphs achieving the equality in the bounds
from Remark 3.1.

Theorem 3.6. Let G be any graph of order n. Then mdim(G) = 2 if and only if G is a path.

Proof. By Corollary 3.5 both end-vertices of the path must be in every mixed metric generator,
therefore mdim(Pn) ≥ 2. It is straightforward to observe that for any path Pn the two leaves
of the path distinguish all pairs of elements (vertices and/or edges) of the path. It follows that
mdim(Pn) = 2.

For the converse, assume G satisfies that mdim(G) = 2 and let S = {u, v} be any mixed metric
basis. If there is a neighbour v′ of v such that d(v′, u) ≥ d(v, u), then d(v′v, u) = d(v, u), which
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means that the edge v′v and the vertex v are not distinguished by any vertex of S, a contradiction.
Thus, for any vertex v′ adjacent to v it follows that d(v′, u) = d(v, u) − 1.

Now, if there exist two vertices x and y belonging to two different shortest u − v paths such
that d(x, u) = d(y, u), then also d(x, v) = d(y, v), which means x, y are not distinguished by S, a
contradiction again.

So, there exists exactly one shortest u − v path in G, say P = uw1w2 . . . wrv. Suppose there
exists i ∈ {1, . . . , r} such that the vertex wi in P is of degree at least three and let w′ be a
neighbour of wi which is not in P . Since S is a mixed metric basis, the edge wiw

′ and the vertex wi

are distinguished by some x ∈ S. This means that d(wi, x) 6= d(wiw
′, x) = min{d(wi, x), d(w

′, x)}.
It follows that d(w′, x) < d(wi, x). Let x′ ∈ S \ {x}. Since d(w′, x) ≤ d(wi, x) − 1, there is a
path Q = x . . . w′wi . . . x

′ of length d(x,w′) + d(w′, wi) + d(wi, x
′) ≤ d(wi, x) − 1 + 1 + d(wi, x

′) =
d(wi, x) + d(wi, x

′) from x to x′ (note that {x, x′} = {u, v}), a contradiction since this is either a
u− v path shorter than P (which is the shortest u− v path) or a path of the same length than P
(contradicting the uniqueness of P ). Thus, every vertex wi, with i ∈ {1, . . . , r}, in P has degree
two.

It remains to prove that u and v are both of degree 1. Suppose u is of degree at least 2.
Let u′ be the neighbour of u which not in P . Since S is a mixed metric basis, the vertex v must
distinguish the edge uu′ and the vertex u. It follows that d(u′, v) < d(u, v). Following the same
line of thought as for the case above we obtain contradiction for all possibilities. Therefore u is of
degree 1. Analogously, v is of degree 1. Since G is connected, it follows that G must be a path.

Lemma 3.7. Let v be an arbitrary vertex in a graph G and let S = V (G)\{v}. If ∀w ∈ N(v), ∃x ∈
S : d(vw, x) 6= d(w, x), then S is a mixed metric generator for the graph G.

Proof. If we want to prove that S is a mixed metric generator, we have to show that any two
elements (vertices or edges) of the graph G are distinguished by some vertex from the set S. Any
subset of V (G) with cardinality n− 1 is a metric generator and also an edge metric generator. So,
we only have to check pairs of elements, where one element is a vertex and the other is an edge.
Let e ∈ E(G) be an arbitrary edge. The vertex v and the edge e are distinguished by at least
one endpoint of the edge e. All vertices different from v are in the set S. This means that for an
arbitrary vertex u ∈ V (G) \ {v} we only have to check the edges that are incident with the vertex
u. If both endpoints of the edge e = uw are in the set S, then u and e are distinguished by the
vertex w. It remains to check only the pairs of vertices w and edges wv for all w ∈ N(v). Since we
know that for all such pairs there ∃x ∈ S : d(vw, x) 6= d(w, x) it follows that S is a mixed metric
generator.

Let v be a vertex of a graph G. A vertex u ∈ N(v) is said to be a maximal neighbour of the
vertex v if all neighbours of v (and v itself) are also in the closed neighbourhood of u. Now, we are
ready to characterize the family of graphs G satisfying that mdim(G) = n.

Theorem 3.8. Let G be a graph of order n. Then mdim(G) = n if and only if every vertex of the

graph G has a maximal neighbour.

Proof. First let mdim(G) = n. We want to prove that ∀v ∈ V (G),∃u ∈ N(v) : N [v] ⊆ N [u].
Towards contradiction suppose that there ∃v ∈ V (G),∀u ∈ N(v) : N [v] 6⊆ N [u]. Let S = V (G)\{v}.
We claim that S is a mixed metric generator.

If S is not a mixed metric generator, then due to Lemma 3.7 there ∃w ∈ N(v),∀x ∈ S :
d(vw, x) = d(w, x). Since w ∈ N(v) it follows that N [v] 6⊆ N [w], so there exists v′ ∈ N(v) : wv′ /∈
E(G). It follows that 1 = d(vw, v′) 6= d(w, v′) = 2, a contradiction. So S is a metric generator and
mdim(G) < n, a contradiction.
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For the converse assume that ∀v ∈ V (G),∃u ∈ N(v) : N [v] ⊆ N [u]. Suppose that mdim(G) <
n. Therefore there exists a mixed metric generator S with cardinality n− 1 and v ∈ V (G) : v /∈ S.
Let u ∈ N(v) be a neighbour of v for which it holds that N [v] ⊆ N [u]. Since S is a mixed
metric generator, there must exist x ∈ S, such that d(u, x) 6= d(uv, x). Thus, it follows that
d(v, x) < d(u, x). On an arbitrary shortest path between x and v there exists v′ ∈ N(v) such that
d(v, x) = d(v′, x)+1. Since N [v] ⊆ N [u] it follows that d(v, x) ≥ d(u, x), a contradiction. Therefore
mdim(G) = n.

4 Mixed Metric Dimension of Some Families of Graphs

In this section we determine the mixed metric dimension of cycles, complete bipartite graphs, trees
and grid graphs.

Proposition 4.1. For any positive integer n ≥ 4, mdim(Cn) = 3.

Proof. From Remark 3.1 and Theorem 3.6 we know that mdim(Cn) ≥ 3. On the other hand, let
V (Cn) = {v0, v1, . . . , vn−1} where vivi+1 ∈ E(Cn) for every i ∈ {0, . . . , n− 1} and operation i+1 is
done modulo n. Let S = {v0, v1, v⌈n

2
⌉}. It is clear that the vertices v0, v1 distinguish every pair of

two distinct vertices or two distinct edges. Now, let e be an edge and let vi be a vertex. If d(e, v0) =
d(vi, v0) and d(e, v1) = d(vi, v1), then it must happen either e = vivi+1 or e = vi−1vi. Thus, it
follows either d(e, v⌈ n

2
⌉) = d(vi+1, v⌈n

2
⌉) < d(vi, v⌈n

2
⌉) or d(e, v⌈ n

2
⌉) = d(vi−1, v⌈n

2
⌉) < d(vi, v⌈n

2
⌉).

Therefore, the edge e and the vertex vi are distinguished by v⌈n

2
⌉ and, as a consequence, S is a

mixed metric generator of cardinality three, which completes the proof.

Proposition 4.2. For any positive integers r, t ≥ 2,

mdim(Kr,t) =

{

r + t− 1, if r = 2 or t = 2,
r + t− 2, otherwise.

Proof. From [3] and [16] we know that dim(Kr,t) = edim(Kr,t) = r+ t−2. So, by using (1) we have
mdim(Kr,t) ≥ r + t− 2. Let U and V be the bipartition sets of Kr,t with |U | = r and |V | = t. We
first consider the case r = 2. Suppose mdim(Kr,t) = r+ t− 2 and let S be a mixed metric basis for
K2,t. Since any metric basis or edge metric basis must contain at least r− 1 vertices of U and t− 1
vertices of V , we deduce that |U ∩ S| = 1 and |V ∩ S| = t− 1. Let u ∈ U ∩ S and v ∈ V − S. We
observe that the vertex u has distance 0 to itself (vertex u) and distance 1 to every other vertex
in S. Moreover, the edge uv has distance 0 to the vertex u and distance 1 to every other vertex
in S. Thus, the vertex u and the edge uv are not distinguished by S, a contradiction. A similar
contradiction is obtained if t = 2. Therefore, mdim(Kr,t) ≥ r+ t− 1 and the proof is completed by
using Theorem 3.8, since no vertex of Kr,t admits a maximal neighbour.

From now on, assume r, t ≥ 3. Let S be set of cardinality r + t − 2 such that it does not
contain exactly one vertex from each bipartition set of Kr,t. Since S is a metric basis and also an
edge metric basis, we only need to check that S distinguishes those pairs given by an edge and by
a vertex. But, this is straightforward to observe since any edge of Kr,t has distance 0 or 1 to every
vertex of S and for any vertex there is at least one vertex in S at distance 2, since r ≥ 3 and t ≥ 3.
Therefore, S is a mixed metric generator of cardinality r + t− 2 and the result follows.

Theorem 4.3. For any tree T with l(T ) leaves, mdim(T ) = l(T ).
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Proof. Let S be the set of all leaves of T and let x, y be any two distinct elements of T . From [17]
and [16] is known that there are a metric basis and an edge metric basis which are both subsets
of leaves in T . Thus, if x, y are either two vertices or two edges, then they are distinguished by S,
which is formed by all leaves of T . Now, assume x = x1x2 is an edge and y is a vertex. Without
loss of generality, we consider there is an x1 − y path containing x2 (notice that it could happen
y = x2). Now, let x′ and y′ be two leaves of T such that x1, x2, y lie in the x′ − y′ path (notice
that it could be x′ = x1 and y′ = y or viceversa). Thus, it is easy to see that at least one of the
leaves x′ or y′ distinguishes x and y. The case when only one of these two leaves distinguishes
x and y is given whether x2 = y. Therefore, S is a mixed metric generator and we have that
mdim(T ) ≤ l(T ). On the other hand, since every leaf of T is of degree 1 from Corollary 3.5, we
obtain that mdim(T ) ≥ l(T ), which completes the proof.

The Cartesian product of two graphs G and H is the graph G�H, such that V (G�H) =
{(a, b) : a ∈ V (G), b ∈ V (H)} and two vertices (a, b) and (c, d) are adjacent in G�H if and only
if, either (a = c and bd ∈ E(H)), or (b = d and ac ∈ E(G)). Let h ∈ V (H). We refer to the set
V (G) × {h} as a G-layer. Similarly {g} × V (H), g ∈ V (G) is an H-layer. When referring to a
specific G or H layer, we denote them by Gh or gH, respectively. Obviously, the subgraph induced
by a G-layer or by an H-layer is isomorphic to G or H, respectively. Next we give the value of the
mixed metric dimension of the grid graph, which is the Cartesian product of two paths Pr and Pt

with r and t vertices, respectively.

Proposition 4.4. Let G be the grid graph G = Pr�Pt, with r ≥ t ≥ 2. Then mdim(G) = 3.

Proof. In order to simplify the procedure, we shall embed G into Z
2. That is, each vertex of the

grid is represented as an ordered pair of coordinates (x, y). In this sense, G is embedded into Z
2

where (0, 0), (r − 1, 0), (0, t − 1), (r − 1, t − 1) are the corner vertices of G (the vertices of degree
two). We shall prove that the set S = {(0, 0), (0, t − 1), (r − 1, 0)} is a mixed metric generator for
the grid G. Consider any two different elements x, y of G.
Case 1: x, y are vertices. From [17] we know that S′ = {(0, 0), (0, t − 1)} is a metric generator for
G. Thus, x and y are distinguished by (0, 0) or by (0, t− 1). Notice that also S = {(0, 0), (r − 1, 0)
is a metric generator for G.
Case 2: x, y are edges. From [16] we know that S′ = {(0, 0), (0, t − 1)} or S = {(0, 0), (r − 1, 0) are
edge metric generators for G and we are done for this case.
Case 3: x is a vertex and y is an edge, say x = (i, j) and y = (k, a)(k, b) (notice that vertices of any
edge have either equal first components or equal second components). Without loss of generality we
assume a < b (which means b = a+ 1). Suppose the vertex x and the edge y are not distinguished
by S. This means the following.

i+ j = d(x, (0, 0)) = d(y, (0, 0)) = k + a,

i+ t− 1− j = d(x, (0, t − 1)) = d(y, (0, t − 1)) = k + t− 1− b = k + t− 2− a,

j + r − 1− i = d(x, (r − 1, 0)) = d(y, (r − 1, 0)) = a+ r − 1− k.

Thus, we obtain the following system of equations

i+ j − k − a = 0

i− j − k + a = −1

−i+ j + k − a = 0

7



which is straightforward to observe to be a not compatible system of linear equation, a contradiction.
An analogous procedure gives a similar contradiction in the case x = (i, j) and y = (a, k)(b, k).
Thus, at least one of the vertices in S identifies the pair x, y. As a consequence, S is a mixed metric
generator of cardinality three. Therefore, by using Theorem 3.6 we complete the proof.

5 An Upper Bound for the Mixed Metric Dimension of Graphs

The girth g(G) of G is the order of the smallest cycle in G. We can give an upper bound for
mdim(G) in terms of the girth of the graph.

Theorem 5.1. Let G be a graph of order n. If G has a cycle, then mdim(G) ≤ n− g(G) + 3.

Proof. Let C = v0v1 . . . vr−1v0 be a cycle of order r = g(G) in the graph G. We claim that
S = V (G)− V (C) ∪ {v0, v1, v⌈ r

2
⌉}} is a mixed metric generator.

Let x, y ∈ V (G) be two arbitrary distinct vertices. If at least one of them, say x, is in S,
then they are clearly distinguished by x, since 0 = d(x, x) 6= d(x, y) > 0. If none of them is in S,
then they are vertices of the cycle C and are by Proposition 4.1 distinguished by at least one of
{v0, v1, v⌈ r

2
⌉}}. Therefore, S is a metric generator.

Now, let e, f ∈ E(G) be two distinct edges of G. If at least one of them, say e, has both
end-vertices in S, then they are clearly distinguished by at least one end-vertex of e. Suppose now,
that e = uv, with u ∈ S and v ∈ V (G) − S. If e and f are disjoint or their common end-vertex
is v, then they are distinguished by u. If e = uv and f = uv′ and v, v′ ∈ V (C), then the vertex
that distinguishes v and v′ also distinguishes e and f . The remaining case, where e and f have no
end-vertices in S is covered by Proposition 4.1. It follows that S is an edge metric generator.

To conclude the proof we need to prove that any vertex and any edge are distinguished by at
least one vertex of S. Towards contradiction suppose that there exist e ∈ E(G) and v ∈ V (G)
that are not distinguished by any vertex of S; in other words ∀x ∈ S : d(e, x) = d(v, x). Suppose
both end-vertices of e = xy are in S (note that it could happen that v ∈ {x, y}). Then e and
v are distinguished by the endpoint of e that is not v, a contradiction. Suppose that both end-
vertices of e = xy are in V (G) − S (again, it could be that v ∈ {x, y}). If v ∈ S, then e and
v are distinguished by v, a contradiction. The case where v 6∈ S is covered by the fact that C
is a smallest cycle in G and Proposition 4.1, again a contradiction. The remaining case is where
e = xy, with x ∈ S and y ∈ V (G) − S. If v is not an end-vertex of e or v = y, then e and
v are distinguished by x, a contradiction. Finally, say v = x. If x ∈ V (C), again, since C is
a smallest cycle in G at least one vertex of {v0, v1, v⌈ r

2
⌉} distinguishes the edge e and vertex v

by Proposition 4.1, a contradiction. Therefore, x /∈ V (C). Let v′ ∈ {v0, v1, v⌈ r

2
⌉} be a vertex

closest to y. Then d(e, v′) ≤ d(y, v′) ≤ r
4 . On the other hand, since v′ ∈ S by assumption

d(v, v′) = d(e, v′) ≤ d(y, v′) ≤ r
4 . Let Pv′,y be the shortest path in C from v′ to y. Let Pv′,v be the

shortest path in G from v′ to v. But then the subgraph of G induced by vertices of Pv′,y and Pv′,v

admits a cycle of size at most d(v, v′) + d(y, v′) + d(y, v) ≤ r
4 + r

4 + 1 = r
2 + 1 < r (the case where

the two paths Pv′,y and Pv′,v have no internal vertices in common; otherwise the cycle in question
is even smaller), a contradiction with the fact that r is the girth of the graph G. Since we obtained
a contradiction in all cases, it follows that any vertex and any edge are distinguished by at least
one vertex of S.

Combining all of the above it follows that S is a mixed metric generator and the proof is
completed.
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Clearly the bound from Theorem 5.1 is sharp as the following examples show. For any cycle
Cn, mdim(Cn) = n− g(Cn) + 3 = 3. For any complete graph mdim(Kn) = n− g(Kn) + 3 = n. For
any complete bipartite graph K2,t we have mdim(K2,t) = t+2− g(K2,t)+ 3 = t+1. For any graph
G such that every vertex has a maximal neighbour the girth is g(G) = 3, therefore by Theorem 3.8,
mdim(G) = n− g(G) + 3.

6 The Complexity of the Mixed Metric Dimension Problem

Due to the close relationship between the mixed metric dimension, edge metric dimension and
the standard metric dimension, it is natural to think how computationally difficult the problem of
computing the mixed metric dimension of a graph is. The decision problems concerning the metric
dimension and the edge metric dimension of a graph are already known as NP-complete problems.
The proofs are presented in the book [12] (a formal proof of it appeared in [17]) and in [16],
respectively. Let us take a look if the decision problem for the mixed metric dimension is also NP-
complete. We will use a reduction from the 3-SAT problem, as in the case of the metric dimension
proof in [17] and edge metric dimension proof in [16] with slight improvements to the gadgets in
construction. From now on, in this section we show that the problem of finding the mixed metric
dimension of an arbitrary connected graph is NP-hard. We first deal with the following decision
problem.

MIXED METRIC DIMENSION PROBLEM (MDIM problem for short)
INSTANCE: A connected graph G of order n ≥ 3 and an integer 2 ≤ r ≤ n.
QUESTION: Is mdim(G) ≤ r?

To study the complexity of the problem above we make a reduction from the 3-SAT problem, which
is one of the most classical problems known to be NP-complete. For more information on this
problem, and NP-completeness reductions in general, we suggest [12].

Theorem 6.1. The MDIM problem is NP-complete.

Proof. First let us show that MDIM is in NP. For a set of vertices S guessed by a non-deterministic
algorithm for the problem, one needs to check that this is a mixed metric generator. This can be
checked in polynomial time. One has to compute the distances from vertices of S to all elements
(edges and vertices) and check that all pairs of these elements have different distance vectors with
respect to the set S.

We now describe a polynomial transformation of the 3-SAT problem to the MDIM problem.
Consider an arbitrary input of the 3-SAT problem, a collection C = {c1, c2, . . . , cm} of clauses
over a finite set U = {u1, u2, . . . , un} of Boolean variables. We shall construct a connected graph
G = (V,E) and set a positive integer r ≤ |V | such that the graph G has a mixed metric generator of
size at most r if and only if C is satisfiable. The construction will be made up of several components
augmented by some additional edges for communicating between various components.

For each variable ui ∈ U we construct a truth-setting component Xi = (Vi, Ei), with Vi =
{Ti, Fi, ai, bi, ci, di} and Ei = {Tici, aici, aibi, bidi, cidi, diFi} (see Figure 1 for reference). The vertices
Ti and Fi are the TRUE and FALSE ends of the component, respectively. Each component is connected
with the rest of the graph only through these two vertices which gives us the following proposition.

Proposition 6.2. Let ui be an arbitrary variable in U . Any mixed metric generator must contain

at least one vertex from the set {ai, bi}.

9



Proof. Suppose that there exists an edge metric generator S without any of these vertices in it.
Since the component Xi is attached to the rest of the graph only through the vertices Ti and Fi,
due to the symmetry, this implies that the vertex ci and edge aici have the same distances to all
vertices in the set S, a contradiction.

Ti Fi

dici

biai

Figure 1: The truth-setting component for variable ui.

Now, suppose that cj = y1j ∨ y2j ∨ y3j , where ykj is a literal in the clause cj . For such clause

cj, we construct a satisfaction testing component Yj = (V ′

j , E
′

j), with V ′

j = {c1j , . . . , c
6
j} and E′

j =

{c1jc
2
j , c

2
jc

5
j , c

1
jc

3
j , c

2
j c

4
j , c

6
j c

3
j , c

3
j c

4
j} (see Figure 2 for reference). The component is attached to the rest

of the graph only through vertices c1j and c2j which gives us the following proposition.

Proposition 6.3. Let cj be an arbitrary clause in C. Any mixed metric generator must contain

the vertices c5j and c6j .

Proof. Suppose that there exists an edge metric generator S without vertex c5j in it. Since all the

shortest paths from any vertex x 6= c5j to the vertex c2j and to the edge c2jc
5
j go through the vertex

c2j , this implies that the vertex c2j and the edge c2jc
5
j have the same distance to all vertices in the set

S, a contradiction. A similar argument applies for the vertex c6j .

c1j c2j

c3j c4j

c5j

c6j

Figure 2: The satisfaction testing component for clause cj .

We also add some edges between truth-setting and satisfaction testing components as follows.
If a variable ui occurs as a positive literal in a clause cj, then we add the edges Tic

1
j and Fic

2
j . If

a variable ui occurs as a negative literal in a clause cj , then we add the edges Tic
2
j and Fic

1
j . For

each clause cj ∈ C denote those six added edges with E′′

j . We call them communication edges.
Figure 3 shows the edges that were added corresponding to the clause cj = (u1 ∨u2 ∨u3), where u2
represents the negative literal corresponding to the variable u2.

For all k ∈ {1, . . . , n} such that neither of uk and uk occur in clause cj , add the edges Tkc
2
j

to the graph G. For each clause cj ∈ C denote them with E′′′

j . We call them neutralizing edges,
because no matter what value is assigned to the variable uk (or equivalently which vertex vk from
the corresponding truth-setting component Xk is chosen for a mixed metric generator), this gives
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the same distance from such vk to the edges c1jc
2
j and c2jc

4
j from the satisfaction testing component

corresponding to the clause cj . These two edges play an important role later in the proof.
Finally, for each clause cj and every k ∈ {1, . . . ,m}, k 6= j, add the edge c2jc

2
k to the graph G

(if it does not exist). For each clause cj ∈ C denote them with E′′′′

j . These edges keep the graph to
be connected. We call these edges correcting edges.

c1j c2j

T1 F1 T3 F3

T2 F2

Figure 3: The subgraph associated to the clause cj = (u1 ∨ u2 ∨ u3).

The construction of our instance of the MDIM problem is then completed by setting r = 2m+n
and G = (V,E), where

V =

(

n
⋃

i=1

Vi

)

∪





m
⋃

j=1

V ′

j





and

E =

(

n
⋃

i=1

Ei

)

∪





m
⋃

j=1

(

E′

j ∪ E′′

j ∪E′′′

j ∪E′′′′

j

)



 .

It is not hard too see that the construction can be done in polynomial time. It remains to show
that C is satisfiable if and only if G has a mixed metric generator of size r. From Propositions 6.2
and 6.3 we get the following.

Corollary 6.4. The mixed metric dimension of the graph G is at least r = 2m+ n.

We now continue with the following lemmas which complete the proof of NP-completeness of
MDIM problem.

Lemma 6.5. If C is satisfiable, then the mixed metric dimension of the graph G is r.

Proof. We know that the mixed metric dimension is at least r. We now construct a mixed metric
generator S of size r based on a satisfying truth assignment for C. Let t : U → {TRUE,FALSE} be
a satisfying truth assignment for C. For each clause cj ∈ C put in the set S vertices c5j and c6j .
For each variable ui ∈ U put in the set S either the vertex ai if t(ui) = TRUE, or the vertex bi if
t(ui) = FALSE. We now show that S is a mixed metric generator for the graph G.
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Let ej,k be an arbitrary correcting edge between the satisfaction testing components cj and ck.
We notice that ej,k is uniquely determined by the set of vertices {c5j , c

5
k}, because this is the only

element in the graph G having distance 1 to both of the vertices c5j and c5k.
Let i ∈ {1, . . . , n} and j ∈ {1, . . . ,m} be arbitrary indices and let vi ∈ Vi ∩ S. Since we have

already checked that any correcting edge is uniquely determined by some vertices in S, we do not
have to check any pair of elements in which at least one correcting edge occurs. Also, one can check
that each communication edge and each neutralizing edge between a truth-setting component Xi

and a satisfaction testing component Yj is distinguished from all the remaining elements by the
vertices vi, c

5
j and c6j .

We next take a look at the elements in a truth-setting component. Let i ∈ {1, . . . , n} be an
arbitrary index and let x ∈ Vi ∪Ei be an arbitrary element from Xi. Since we have already checked
that all correcting, communication and neutralizing edges are distinguished from all other elements
by some vertices from S we only need to check that x has different distance vectors: (1) from all
other elements in Xi, (2) from all elements in other truth-setting components, and (3) from all
elements in the satisfaction testing components. This is addressed next. (1) For checking that x
has different distance vectors to all other elements in Xi suppose that ui or ui is a literal in clause
cj. It is not difficult to check that the vertices vi, c

5
j and c6j distinguish the element x from all other

elements in Xi. For (2), let k ∈ {1, . . . , n}, k 6= i, be an arbitrary index. The vertex vi distinguishes
the element x from all elements x′ ∈ Vk ∪ Ek (the elements in the truth-setting component Xk).
For (3), let j ∈ {1, . . . ,m} be an arbitrary index. Hence, the vertices c5j and c6j distinguish element
x from all elements y ∈ V ′

j ∪ E′

j (the elements in the satisfaction testing component Yj).
Finally, we take a look at the elements from the satisfaction testing components. Let j ∈

{1, . . . ,m} be an arbitrary index. Every element of {c2j , c
3
j , c

5
j , c

6
j , c

2
jc

5
j , c

3
jc

6
j} and any other element

not covered in previous cases are distinguished by the set of vertices {c5j , c
6
j}. Let D1 = {c1jc

2
j , c

2
jc

4
j},

D2 = {c1jc
3
j , c

3
jc

4
j} and D3 = {c1j , c

4
j}. The set of vertices {c5j , c

6
j} also distinguishes any pair of

elements where one element is from Di, for i ∈ {1, 2, 3}, and the other element is any element that
has not been covered in previous cases and is not in Di.

To complete the proof, we have to show that for any pair (x, y), where x 6= y and x, y ∈ Di, for
some i ∈ {1, 2, 3} there exists a vertex in the set S that distinguishes x and y. Since C is satisfiable,
suppose that cj is satisfied by the variable ui. For the variable ui there are two possibilities:

• ui occurs as a positive literal in cj and t(ui) = TRUE,

• ui occurs as a negative literal in cj and t(ui) = FALSE.

Thus, if t(ui) = TRUE, then we have added the vertex ai to the set S. In such case, the distance
from ai to the edge c1jc

2
j is 3, while the distance to the edge c2jc

4
j is 4. Similarly, the distance from

ai to the edge c1jc
3
j is 3 and to the edge c3jc

4
j is 4. The distance from ai to the vertex c1j is 3 and to

the vertex v4j is 5. The case when t(ui) = FALSE is symmetric.
Therefore, any two elements of a graph G are distinguished by at least one vertex from the set

S, and as a consequence, S is a mixed metric generator for a graph G, which completes the proof
of this lemma.

Lemma 6.6. If the mixed metric dimension of graph G is r, then C is satisfiable.

Proof. Let S be an arbitrary mixed metric generator for graph G with cardinality r. From Proposi-
tions 6.2 and 6.3, the set S must contain at least one vertex from the set {ai, bi} for each truth-setting
component Xi and at least vertices c5j , c

6
j from each satisfaction testing component Yj. Since the

cardinality of S equals r = 2m + n, it follows that in the set S there is exactly one vertex from
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each truth-setting component and exactly two vertices from each satisfaction testing component.
We shall find a function t : U → {TRUE,FALSE} such that it represents a satisfying truth assignment
for the collection of clauses C. For an arbitrary i ∈ {1, . . . , n}, let vi ∈ Vi ∩ S. Hence, we define a
function t as follows:

t(ui) =

{

TRUE, vi = ai,
FALSE, vi = bi.

We shall show that t produces a satisfying truth assignment for C. To this end, let cj be an arbitrary
clause. We claim that at least one of its literals has value TRUE. We prove that fact, by tracing which
vertex from S distinguishes the edges e1j = c1jc

2
j and e2j = c2jc

4
j , and showing that the corresponding

function t satisfies cj.
Let k ∈ {1, . . . ,m} be an arbitrary index. For the clause ck the vertices in the set S are c5k

and c6k. If j = k, then both edges e1j and e2j are at distance 1 from c5k and at distance 2 from c6k.

If j 6= k, then by using the correcting edges, we deduce that the edges e1j and e2j are at distance 2

from c5k and at distance 4 from c6k. Therefore, none of these vertices distinguish e1j from e2j .

Now, consider any variable ui which does not occur in cj . If vi = ai, then both edges e1j , e
2
j are

at distance 3 from vi. If vi = bi, then both edges are at distance 4 from vi. Thus, the vertex of S
distinguishing the edges e1j , e

2
j must belong to one of the truth-setting components that corresponds

to a variable uk that occurs in the clause cj . We recall that we have added communication edges
in such a manner that vk distinguishes the edges e1j and e2j only if one of the following statements
holds:

• uk occurs as a positive literal in cj and vk = ak - in this case t(uk) = TRUE,

• uk occurs as a negative literal in cj and vk = bk - in this case t(uk) = FALSE.

In both cases the clause cj is satisfied by the setting assigned to the variable uk. As a consequence,
the formula C is satisfiable, which completes the proof of this lemma.

As a consequence of the Lemmas 6.5 and 6.6 above, the polynomial transformation from 3-SAT
to the MDIM problem is done, and the proof of the theorem is now completed.

As a consequence of Theorem 6.1 we have the following result.

Corollary 6.7. The problem of finding the mixed metric dimension of a connected graph is NP-hard.

7 Open problems

We conclude this paper with three open problems. Considering the close relation between the metric
dimension, the edge metric dimension and the mixed metric dimension the following two problems
arise naturally.

Problem 7.1. Characterize graphs G for which mdim(G) = dim(G).

Problem 7.2. Characterize graphs G for which mdim(G) = edim(G).

The bound from Theorem 5.1 is achieved for several families of graphs therefore the following
problem would also be interesting to explore.

Problem 7.3. Characterize graphs G for which the bound from Theorem 5.1 is achieved.
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[10] A. Estrada-Moreno, J. A. Rodŕıguez-Velázquez, and I. G. Yero, The k-metric dimension of a
graph, Applied Mathematics & Information Sciences 9 (6) (2015) 2829–2840.

[11] A. Estrada-Moreno, I. G. Yero, and J. A. Rodŕıguez-Velázquez, The k-metric dimension of
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