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ARTICLE INFO ABSTRACT
KeJ/WOTdS-‘ ) ] ) There have appeared in the literature a lot of k-step block methods for solving initial-
Ordinary differential equations value problems. The methods consist in a set of k simultaneous multistep formulas over k

Initial value problems
k-step block methods
Efficient formulation

non-overlapping intervals. A feature of block methods is that there is no need of other pro-
cedures to provide starting approximations, and thus the methods are self-starting (shar-
ing this advantage of Runge-Kutta methods). All the formulas are usually obtained from a
continuous approximation derived via interpolation and collocation at k + 1 points. Never-
theless, all the k-step block methods thus obtained may be considered as different formu-
lations of one of them, which results to be the most efficient and simple formulation of
all of them. The theoretical analysis and the numerical experiments presented support this
claim.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Consider a first-order initial value problem (LV.P.) of the form

y'(x) =fx,y(x), yxo)=Yo, (1)

on a given interval [xg, b] € R, where conditions about the existence of a unique solution are assumed.

Among the numerical methods available in literature for solving the problem in (1) are the block methods. Block methods
were proposed firstly by Milne [1]. They have the advantages of being more efficient in terms of cost implementation,
time of execution and accuracy, and were developed to tackle some of the setbacks of predictor-corrector methods [2-7].
The block methods contain main and additional methods, a concept that is due to Brugnano and Trigiante [8]. They have
appeared in literature dozens of block methods. This paper aims at analyzing and classifying these methods to show that
most of them are the same. In fact, we will see that for each k e N, k > 2, there is only one k-step method that is the
simplest one.

The paper is organized as follows. In Section 2, we made a detailed analysis of 2-step block methods, showing that
different methods appeared in literature in fact correspond to different formulations of the same method. Among these
formulations there is only one which is the most efficient in terms of computational cost. In Section 3, the above analysis
is extended to k-step block methods, obtaining a similar conclusion that there is only one of these methods which is the
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most efficient. Some numerical examples are considered in Section 4 to show the performance of the different formulations
of block methods. Finally, some conclusions are outlined in Section 5.

2. Analysis of the 2-step block methods
The first appearance of a 2-step block method seems to have been in [9] attributed to B. Dimsdale and R. F. Clippinger,

where the method was written in the form

1 _1 hf hf
yn+1_§yn+2—EYn+Z nT g n+2

. 2)
Yn2=Yn+ §(fn +4fni1 + far2)-
This method was mentioned also in [5], and later in [2], where the two previous works were cited.
Later, Onumanyi et al. in [10] presented the 2-block method given by the two formulas
h
Ynr1 =Yn + ﬁ(5fn +8fnr1 — fas2)
h 3)
Ynt2 =Yni1 + ﬁ(_fn + 8 fns1 4+ 5 fui2)-
This 2-step block method has also appeared in [11-13] and [14].
Finally, in [15] Hongjiong and Bailin presented the 2-step block method that follows
h
Ynr1 =Yn+ ﬁ(sfn +8fnr1 — far2)
(4)

h
Yny2 =Yn + §(fn +4fai1 + far2)-

Although we have made a vast searching, it possibly might have some other 2-step block methods of this kind in literature.
What is the difference between these methods? Are there more possibilities? Which of them is the most efficient? To
answer these questions we are going to proceed in developing all the 2-step block methods which are similar in appearance
to the ones presented above.

We consider the grid points given by X, X1 = Xn + h, X2 = Xy + 2h. For solving the problem in (1) on the interval
[xn, Xn,.2] we consider the approximation of its solution y(x) by a polynomial p(x) given by

3
Yy ~px) =Y a;jx, (5)
j=0

where the aj e R, are real unknown parameters to be determined. The usual way to determine the values of these pa-
rameters relies on imposing appropriate collocation conditions to p(x) and p’(x) at the points Xp, X;41, X;,2. Choosing four
equations of the set

{PGn+ih) = ynii P/ +ih) = foi}, 1=0.1.2

where as usually y,,; and f,,; are approximations for the solution and the derivative at the given points, y, ;i ~y(X; +
ih) , fari =¥ (xn +ih) = f(xn 4 ih, y(x, 4 ih)), we obtain a system of four algebraic equations in four unknowns (the a;, j =
0,1, 2, 3). After solving the above system we substitute the obtained values in the polynomial p(x), and the remaining two
equations after substituting the a; will constitute the block method. All of the 2-step block methods shown before may be
obtained in this way.

The collocation conditions are given explicitly by

g + Xn@ + X203 +X3a3 —y, =0
2 3
Ao + Xn101 + X 102 + X5, 103 —Yny1 =0
a 2 3 =0
0 + Xpt201 + X p02 + X503 — Yni2 =
ay + 2X,ay + 3x2a3 — f =0
2
ay + 2Xp410z + 3X; 103 — fry1 =0

2
a1 + 2Xp42a3 + 3,503 — fo2 = 0.
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which may be written in matrix form as Ay, =0, where

1 X x2 x3 -1 0 0 0 0 O
1 X1 ¥, x¥, 0 -1 0 0 0 O
A, — 1 X2 ¥, x¥, 0 0 -1 0 0 0
0 1 2Xn 3x2 0 0 0o -1 0 ol
0 1 2. 32, 0 0 0 0 -1 0
0 1 2Xp2 3%2, 0 0 0 0 0 -1

and y, = (ag, 1, Az, A3, Yn. Yni1. Yns2: foo Fasts far2)

It is obvious that the rank of the matrix A, is six, and the system has a unique indeterminate solution. Thus, choosing
any of the six columns as principal variables, we will obtain the solutions in terms of these variables. Four of these principal
variables must be chosen to be the parameters a;, j=0,1,2,3 in order to have the appropriate expression for the polyno-
mial, and the other two solutions of the remaining principal variables give the two formulas that constituent the different
2-step block methods. In this way, the total of possibilities is (g) =15, which results in as many 2-step block methods, but
in fact all of them are equivalent.

From all the 15 possible equivalent formulations of 2-step block methods, the simplest one will be that in which the
number of evaluations of the function f is the lowest. There is only one possibility and corresponds to select as principal
variables in the above system the a;,j=0,1,2,3 and the f,,q, fy;2. Thus the simplest formulation of the 2-step block
methods is the following

—5Yn +4Yni1 +Yni2 — 2 hfyu =4 hfia
2Yn — 4Yni1 + 2Yne2 + hfa = hfopa.

Note that in order to advance the solution in the block interval [x;, x,,2] we have to solve the system in (6) for which a
Newton-type method is usually appropriate. The y, and f; in (6) are constants, the y,,; and y,,, are the variables and thus
the nonlinearity of the function f is reflected only two times in the system. On the contrary, in any other formulation of the
2-step block method the occurrences of the function f is higher, and may complicate the system, and thus its resolution.

(6)

3. Analysis of k-step block methods

For other than 2-step block methods the situation is similar, having a lot of different formulations. For example, in
[13,15-21] there are different formulations of 3-step block methods, being the most common

h
Ynt1 =Yn + 24 (9fn +19fn41 — 5fas2 + fas3)
h
Ynt2 =Yn + 3 (fo +4fui1 + far2) (7)

h
Yni3 =Yn+ 3 Bfn+9fni1 +9fni2 +3far3)-
Nevertheless, the simplest formulation of the above method is given by
18 hfpi1 = =6 hfy — 17yn + Yni1 + Wns2 — Yns3
Ohfri2 =3 hfn +7yn — 18Yn1 + Yni2 + 2Yns3 (8)
6hfni3 = =6 hfy — 13y + 27y — 27Yn42 + 13Yn,3.

For the k-step block methods, k € N, we may follow a similar approach as before. We consider the grid points given by
Xn,Xpi1 =Xn+h, ..., X,k = Xn + kh. For solving the problem in (1) on the interval [xn, X, ] we consider the approximation
of its solution y(x) by a polynomial p(x) given by

k+1

Yy ~px) =Y a;x, 9)
j=0
with the a; € R real unknown parameters to be determined. The usual way to determine the values of these parameters re-
lies on imposing appropriate collocation conditions to p(x) and p’(x) at the points X,, Xn 41, - - -, Xn4k- Choosing k + 2 equations
of the set
{pGta +ih) = ynii, ' Gn +ih) = fr}, i=0,1,...k
we get a system of k+2 algebraic equations in k+2 unknowns (the a;,j=0,1,..., k). After solving the above system

we substitute the obtained values in the polynomial p(x), and the remaining k equations (of the total set of 2k + 2) after
substituting the g;’s, will constitute the block method. Any of the k-step block methods may be obtained in this way.
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The collocation conditions are given by

k+1

Ao+ Xn@1 +X2ay + X3az + -+ x5 g —y, =0

2 3 ki1
Ao + Xp1@1 + X1 G2 + X5, 103 4 -+ X, Gy — Vo1 =0

2 3 Kt
Ao + Xpy Q1 + X, o + X5 03 + -+ + X,;ikakﬂ ~ Yk =0
ay + 2xp0 + 3x2a3 + - - + (k+ Dxka,; — fu =0

ay + 2Xp 103 + 3X%+1a3 +- 4 (k+ 1)X1§+1ak+1 — fos1=0

a1 + 2Xn ko + 3X2, 03 + - + (k+ X5, agq — fru = 0.

which may be written in matrix form as Ay, =0, where

1 X X2 Xk -1 0 .-~ 0 0 0 - 0
1 Xp X2, Xk o -1 .- 0 0 ©
A T Xy X2, oo X0 0 o0 -1 0 o0 0 ’
0 1 2%, - (k+Dxk 0 0 0 -1 0 0
0 1 2 - (k+Dxk, 0 0 0o o0 -1 0
0 1 22X - k+Dx, 0 0 - 0 0 0 - -1
T
and yy = (ag, a1, Az, - G, Y, Yt s Yk s fsts - fs) -

It is obvious that the rank of the matrix Aj is 2k + 2, and the system has a unique indeterminate solution. Thus, choos-
ing any of the 2k + 2 columns as principal variables, we will obtain the solutions in terms of these variables. From these
principal variables k + 2 must be chosen to be the parameters a;,j=0,1,...,k+1 in order to have the appropriate expres-
sion for the polynomial, and the other k solutions of the remaining principal variables give the k formulas that constituent
the different k-step block methods. In this way, the total of possibilities is (2",:f2) which results in as many k-step block
methods, but in fact all of them are equivalent.

From all the (2",:’ 2) possible equivalent formulations of k-step block methods, the simplest one will be that in which the
number of evaluations of the function f is the lowest. There is only one possibility and corresponds to select as principal
variables in the above system the a;j,j=0,1,...,k and the f;,1,..., fo1k- In this way the nonlinearity of the function f is
reflected only once in each of the equations of the block method.

Concerning the features of the k-step block methods, it can be shown that they are A-stable and of order k + 1. Details
on stability analysis can be found in the works by Akinfenwa et al. among others [22,23]. We will show how to proceed
in the case for k = 2, but the procedure is the same for any k. For completeness we also have included in an appendix the
simplest formulation of the block methods until k = 10, together with the local truncation errors and the stability functions.

Note that in its simplest form any k-step block method consists on a set of k linear formulas of the form

Rfosi = E Vst oo Yoo hfa) . i= 10 k.

For each of the above formulas we consider a functional operator of the form
L¥z(x0); h] = hZ'(x + ih) — E[z(x), z2(x + h), ..., 2(x + kh), hZ () ] (10)

withi=1,2,..., k, where z(x) is an arbitrary analytic function defined on [xg, xy], and F; is the corresponding linear function
on the right hand side of each formula with the approximate values replaced by the exact ones. Expanding the above
expressions by Taylor’s series around x and collecting terms in h, after substituting z(x) by the true solution y(x) of (1) and
x by x, we obtain the expressions for the local truncation errors, which may be arranged in vector form as

ITEK — (Cf ck. .. .,C,E)Ty(’””(x,,)h"*z n O(h"”).
For k = 2 we have that
LTE? = <_l l)Ty<4> (xn)h* + O(h°)
24’ 6 " ’
indicating that it is a third order method. In the appendix one can verify the order of the simplest block methods until
k = 10, being the algebraic order of the k-step method, k + 1.
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The linear stability analysis of a given numerical method is usually examined by applying it to the well-known Dahlquist’s
test equation given by

vy =Xy, Re(A)<DO. (11)

The true solution of this problem is y(x) = e**, which will be damped out as x — co. It is expected that the application of
a given numerical method to this problem has the same behavior as the true solution of the problem. For k =2 we will
determine the region in which the method in (6) reproduces the behavior of the true solutions for the test problem.

After applying the method in (6) to the test problem in (11) and setting h = A h it results that it may be arranged in
vector form as

A, Ynt+1 =B, Yn-1
Yn+2 Yn

where A, is the following matrix

_ 1
Ay = h-1 _ 4
4 h-2

and the matrix B, is given by

] -
B, — 0 Z(—_2h—5) .
0 h+2

Thus, the method applied to the test problem may be written finally as

Ynt1 ) _ oy [ Yn-1
()= (3.

where M, (h) = A;'B, is the stability matrix.

The behavior of the numerical solution will depend on the eigenvalues of this matrix, and the stability properties of the
method will be characterized by the spectral radius, p[M(h)]. The region of absolute stability, S, is defined as (see Hairer
and Wanner [25])

S={hecC:|pM] <1}

The method is said to be .A-stable if the left-half complex plane is included in the region of absolute stability, that is, if
Cc-cS.

After some calculus, it can be obtained that the dominant eigenvalue consists in the rational function (known as stability
function)
h? +3h+3
h2 —3h+3
which has modulus less than one on the left-half complex plane, and thus, according to the above definition, the method

is A-stable. Fig. 1 shows the stability region of the presented method. The stability functions for the simplest k-step block
methods up to k = 10 are given in the appendix, being the same plot of the stability region for all of them.

pIMz ()] =

4. Some numerical experiments

To see the performance of the block methods we have used in the numerical experiments the two-step block method
BLOCK?2 in (2), the simplest two-step block method BLOCK2SIMP in (G), a 10-step block method BLOCK10 obtained taking as
principal variables in the system in Section 3 the a;, j=0,1,...,10 and the yn,q, ..., Yn+10, and finally the simplest 10-step
block method BLOCK10SIMP (obtained taking as principal variables in the system in Section 3 the a;, j=0,1,...,10 and the

fog1s s far0)-

4.1. Example 1

Consider the IVP given by
p_ o y@xy+1)
x(x3y3 —2xy - 1)
whose exact solution is given in implicit form by
1 1 4
We have taken fixed stepsizes h = 1/20, 1/40, 1/80. Fig. 2 shows an efficiency plot of the absolute global errors in logarith-
mic scale versus CPU times. We see that the simplest formulations perform much better than the other ones.

. y()=1, xe[1,100]
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Fig. 2. Efficiency plot showing the absolute global error versus CPU time for Example 1.
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Fig. 3. Efficiency plot showing the absolute global error versus CPU time for Example 2.
4.2. Example

Now we have considered a system given by
¥} = —1002y; +1000y3, y;(0) =1,
ya=Yy1—-y2(1+y2). y2(0)=1,

whose exact solution is
y1(x) =e ™,
ya(x) =e™

The problem has been solved in the interval [0, 500] taking fixed stepsizes h =1/5,1/10,1/20. We have considered the
maximum norm in the errors, showing the efficiency plot of the errors in logarithmic scale versus CPU times in Fig. 3. We
see that the performance has a similar behavior as in the previous example.

4.3. Example

The final example is a stiff parabolic equation with initial and boundary conditions, given by

du 0%u
ﬁsz, XG[O,]],te[O,l]

u(0,t) =u(1,t) =0, u(x,0)=sin(mwx) +sin(krx) . k> 1,
whose exact solution is

—k2m2ut

ux,t) = e sin(rx) + e sin(kmx).

For the numerical experiments we have taken v =1 as in [24]. The procedure used to solve this problem consists in dis-
cretizing in space and then to apply the k-step block method, following a similar approach as in the method of lines. We
take on the space domain a discrete mesh evenly spaced,

Q:={xo<x <...<xy;1 =D},

in such a way that for every x; € 2, the second-order spatial derivative appearing in (12) is approximated by means of the
finite difference

oo 8(Xip1) —28(%) + 8(xi_1)
g'(x) = )2 :
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Table 1
Maximum absolute errors at t = 1.

k 2-step block method Best method in [24]

2 0.17 x 10-° 0.74 x 10>
3 0.11 x 1073 0.74 x 10>
5 0.10 x 10-° 0.74 x 107>
10 0.10x 1073 0.74 x 10>

1.7x107°
1.6x107°
1.5%107°
1.4%107°

1.3x107°

—@— BLOCK-2

p —#&— BLOCK-2SIMP
1.2x107

1.1x107°

0.1 0.2 0.3 0.4

Fig. 4. Efficiency plot showing the absolute global error versus CPU time for Example 3.

Setting u;(t) = u(x;, t) fori=1,...,N, with values uy(t) = u(0,t) =0, uy,1(t) =u(1,t) =0, having in mind the above dis-
cretization, the problem in (12) may be approximated by an initial-value problem of the form

du
{dtzAu(t), )
u(to) = (i (to), ..., un(to))",

where u(t) = (uq(t), ..., uN(t))T and A is the tridiagonal matrix
-2 1 0 0 0 0
1 -2 1 0 0 0
0 1 -2 0 0 0
1 . .
T (ax)? : :
0 -2 1
0 0 0 1 -2 1
0 0 0 0 1 -2

where Ax = 1/(N + 1). We note that the eigenvalues of A are (see [26])

-2
i= ———= 4+ ——= cos(im AX), i=1,...,N,
"= ot T ez A
which belong to the range (—4 (N + 1)2,0), and so, for large values of N, the system becomes very stiff.
In the numerical experiments we have considered different values of k, and Ax = 0.05 as in [24], and At = h = 1/(10k).
In order to check the performance of the method a uniform step size has been used and the maximum absolute error has
been computed at the final point b =1 by

err = max |u;(1) —u(x;, 1)], (13)
O<i<N

where u;(1) is the numerical solution at time t =1 and space x;, and u(x;, 1) is the exact solution. The results with the
methods for k = 2 in the previous sections are presented in Table 1 where we have included also the best results obtained
in [24].

Fig. 4 shows the efficiency plot of the errors in logarithmic scale versus CPU times for the 2-step block methods in (3) and
(6) considering the values of k =2, 3,5, 10 (from left to right). We see that the errors are the same, but the computational
time needed by the simplest 2-step method is less, as expected.
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Fig. 5. Exact and discrete solutions for Example 3 with the 2-step block method taking Ax = At = 0.05.

Fig. 5 shows the exact graphical solution of the problem, and the numerical solution obtained on a uniform mesh with
Ax = At = 0.05.

5. Conclusions
An analysis of k-step block methods has been done, showing that among all the possible formulations there is only
one which is the most efficient, being all of them equivalent. To illustrate the performance of the methods considered,

some numerical experiments have been presented. The numerical experiments support the claim that among the methods
considered, the indicated ones are the most efficient.
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Appendix A. Simplest k-step block formulas, their truncation errors and stability functions.
k=2:

4 hfn1 = =5Yn+4Ynr1 +Yni2 — 2 hfa
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hfarz = 2yn — 4Yns1 + 2Yni2 + hfo.

1 1\7
2 “4) 4 5
LTE _(7ﬂ,é) Y@ )h* + 0(1°),
h?2+3h+3

My(h)] = ——2 "2,
oM, (h)] 33

18 fur1h = =17yn + Yny1 + Wns2 — Yni3 — 6fnh
9 fui2h = 3fuh + 7yn — 18Yni1 + Yni2 + 2Vn43
6fni3h = —6fah —13yn +27yn11 = 27Yn12 + 13Ynys.

ITE3 = (i 3 g)Ty(s)(x )h’ + ()
10° 10° 10 " ’
- 3h3 +11h% + 18h + 12
p[Msz(h)] =

—3h3 4+ 11h2 —18h + 12’

48 fuiih = =12 fuh — 37yn + 8Yni1 + 36Yny2 — 8Yny3 + Yura
72 fo2h = 12 fuh + 31yn — 96Yn11 + 36Yn42 + 32043 — 3Ynia
48 frish = =12 foh — 29yn 4+ 72yYn1 — 108yy42 4 56Yni3 + Ynia
3furah = 3fah +7yn — 16yn1 + 18Yny2 — 16043 + 7TYnia.
4 6 2

;
ITE* = (_é -2, 5) YO () + O(h7)

12h* + 50h3 + 105h% + 120h + 60
12h4 — 50h3 + 105h2 — 120h 4+ 60

p[Ma(h)] =

300fp1h = =60 f3h — 197y, — 25y511 4 300y512 — 100¥543 + 25Yn44 — 3Ynes
600 fn,2h = 60 f3h + 167y, — 600y, 1 + 10052 + 400Yn.3 — 75Vns4 + 8Ynss
600, 3h = —60fyh — 157y, + 450,71 — 900y, + 400y, 3 + 225Y14 — 18Vpss
75 friah = 15fuh 4 38y, — 100y,,1 + 150y,,2 — 200¥,,3 + 100Y,.4 + 1255
60 fnish = —60fuh — 149yn + 375Yn11 — 500¥n42 + 500¥413 — 375Yn14 + 149y p,s.
10 20 30 10 50

T
ITES = (7, = 7) YO )l + 0(h8),

60h5 + 274h* + 675h3 + 1020h? + 900h + 360

pIMs ()] = —— . a a . :
—60h> + 274h* — 675h3 + 1020h2 — 900h + 360

305
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360fni1h = =60 foh — 207yn — 102y541 +450yn12 — 200¥n43 + 75Yn14 — 18Yni5 + 2Vny6
900fn12h = 60fnh 4+ 177yn — 720¥n 41 — 75Yn12 + 800yn13 — 22514 + 48Yn15 — SYni6
1200f,,3h = —60f,h — 167y, + 540y,1 — 1350¥,2 + 400y,,3 + 675Yns4 — 108Y,.5 + 10Y,6
450 fniah = 30 fuh + 81yn — 240y,1 + 4505, — 80043 + 37514 + 144Y515 — 10y 6
360 fnysh = —60 fuh — 159yn + 450¥n11 — 750542 + 1000ys,3 — 1125y,4 + 534Yny5 + 50¥n6
60fn,6h = 60fyh + 157y, — 432y,,.1 + 675Y52 — 800,43 + 675y 04 — 432y 045 + 157y ny6.

15 15 45 15 75 45\'

6 __(_"2 2 T Y7 (8) 8 9
LTE _( TR RO 14,7)y (xn)h® + O(h°).,
30h8 + 147h5 + 406h* + 735h3 + 875h2 + 630h + 210

30h6 — 147h5 + 406h* — 735h3 + 875h2 — 630h + 210

p[Ms(h)] =

k=7:

2940y 1h = —420 fyh — 1509y, — 1323y,,.1 + 4410y, — 2450013 + 1225y,14
—441Yny5 +98Yni6 — 10¥ny7
8820 f,,2h = 420f,h + 1299y, — 5880y,,..1 — 2499y;,,> + 9800y,,,3 — 3675y 44
+1176yn45 — 245Yn46 + 24Yn47
14700f, . 3h = —420f,h — 1229y, + 4410y,,,.1 — 13230y;,42 + 1225y,,,3 + 11025y,,4
—2646Yn5 +490yYn.6 — 45Yn17
7350 fyah = 210 fyh + 597y, — 1960y,11 + 4410y;,2 — 9800y, 3 + 3675144
+3528yn45 — 490yn16 + 40y 7
8820 f,,sh = —420f,h — 1173y, + 3675Yn41 — 7350y, + 12250y,,,3 — 18375y544
+8673yn.5 + 2450y,,6 — 150y,,7
2940 fy6h = 420fsh + 1159y, — 3528yp,1 4 6615y,,2 — 9800y, 3 + 11025y,,4
—10584y,, 5 + 4753y n6 + 360yn,7
420fn,7h = —420f,h — 1149y, + 3430y,,,1 — 6174y, 2 + 8575yn,3 — 8575y 44
+6174y,,, 5 — 3430y,,,6 + 1149y, 7.

;
35 35 35 35,E,—35, #) YO xh? + 0 (),

7 _ - = _~=
LTE_(G’ 3'2° 3°°6

210h7 + 1089k + 3283h5 + 6769h* + 9800h3 + 9660h? + 5880h + 1680
—210h7 + 1089h6 — 3283h5 + 6769h* — 9800h3 + 9660h2 — 5880h + 1680

pIM; ()] =

k = 8:

6720f,41h = —840f,h — 3123y, — 3984y,,,1 + 11760y,,,2 — 7840y;,,3 + 4900y ;1.4
—2352Yn45 + 784yn,6 — 160y5,7 + 15y
23520 fn2h = 840 f,h + 2703y, — 13440y, .1 — 10584y,,,5 + 31360y,,,3 — 14700y, 4
+6272yny5 — 1960y416 + 384Yny7 — 35Ynys
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47040f, . sh = —840f,h — 2563y, + 10080y,,1 — 35280y,,,2 — 5488y,3 + 44100y, 4
—14112yy,5 + 3920¥n46 — 720¥n47 + 63Yn1s

58800 f,+4h = 840 f;h + 2493y, — 8960yy41 + 23520¥5,2 — 6272043 + 14700y5,4
+37632y,,5 — 7840y,,6 + 1280y,,,7 — 105y, 8

47040f,.sh = —840 f,h — 2451y, + 8400y,1 — 19600y4.2 + 39200y,1,3 — 73500y 4
4305765 -+ 19600Y5+6 — 2400y, 7 + 175Vn.s

23520 f6h = 840 fuh + 2423y, — 8064y, 1 + 17640y, 5 — 31360y,,3 + 44100y,,4
56448, 5 + 26264y, + 5760yn.7 — 315yn.s

6720, 7h = —840 fuh — 2403y, + 7840y, 1 — 16464y, + 27440y, 3 — 34300y, 4
+32928Y15 — 2744015 + 11664Yn,7 + 735Yn 8
210fy,gh = 210fyh + 597y, — 1920y,1 + 3920¥5 2 — 62723 + 735014

—6272Yns5 + 3920n.6 — 1920y517 + 597Ynss.

28 56 112 140 196 56\
ITE® = <—?, 30 7e% 3 T30 T ?) y(m)(xn)hm + O(hn),
p[Mg(h)] = Py (1) , where
Qs(h)

Ps(h) = 1680h® + 9132h7 + 29531h° + 67284h° + 112245h* + 136080h°
+114660h? + 60480h + 15120,

Qs(h) = 1680h® — 9132h7 + 29531h° — 67284h° + 112245h* — 136080h°
+114660h* — 60480h + 15120.

22680, 1h = —2520f;h — 9649y, — 16281y, 1 + 45360Y,2 — 35280y, 3 + 26460y,,4
—15876Yn 5 + 7056Yn.6 — 2160y4,7 + 405y 148 — 35¥n49
90720 f,.,h = 2520 fyh + 8389y, — 45360y, 1 — 53784y, + 141120y,,3 — 79380y,.4
+42336Yy45 — 17640y.6 + 518457 — 945,15 + 80Yn.o
211680f,.3h = —2520 fuh — 7969y, + 34020y, 1 — 136080y,,2 — 59976y, 3 + 238140y,.4
—095256Yy,5 + 35280yn16 — 9720yn:7 + 1701yns — 140y519
317520 ,,.4h = 2520 fuh + 7759y, — 30240y, 1 + 90720y,2 — 282240y, 3 + 15876yn,4
42540161, 5 — 70560y5.6 + 1728057 — 2835yp.5 + 224510
317520, 5h = —2520 fuh — 7633y + 28350y, 1 — 75600¥,.2 + 176400y, 3 — 396900y, 4
+127008yy,5 + 176400y, — 32400y, 7 + 4725Vn15 — 350Vn10
211680, 6h = 2520 fyh + 7549y, — 27216Yn,1 + 68040y, 2 — 141120y, 3 + 238140y, 4
381024y, 5 + 165816yn.6 + 77760117 — 8505y, + 56050
90720f,,7h = —2520 fuh — 7489y, + 26460y, 1 — 63504y, + 123480y,,3 — 185220y,,4
1222264y, 5 — 246960y, 6 + 112104y,,7 + 19845y,,5 — 98059
5670, .sh = 630f,h + 1861y, — 6480y, 1 + 15120y,2 — 28224y, 3 + 39690y,,4
—42336Yp.5 + 35280y 0,6 — 2592057 + 10449y, 5 + 560¥ns0
2520, 0h = —2520 fuh — 7409yy + 25515y, 1 — 58320y,.2 + 105840y, 3 — 142884y,
+142884y,,5 — 105840y,,6 + 5832057 — 25515515 + 7409¥, 6.
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252 504 756 1008 1260 1512 1764 504 2268\7
9_ (222 7 YR _ _ oy (11) 1 12
LTE_(H’ ST S S TR S S W T NS T § )y (k™ +O(h™?).

p[Mg(h)] = gz((%)) , where

Py(h) = 15120h° + 85548h® + 293175h7 + 723680h° + 1346625h°
+1898190h* + 1984500h> + 1461600h? + 680400h + 151200,

Qq(h) = —15120h° + 85548h8 — 293175h7 + 723680h5 — 1346625h°
+1898190h* — 1984500h> + 1461600h? — 680400h + 151200.

—25200 hfyq = 2520 hfy, + 9901y, + 20890y, 1 — 28Vn 10 — 56700y,,2 + 50400y, 3
— 44100y, 4 + 31752y, 5 — 17640y, + 720057 — 202555 + 350¥ns0
113400 hf,,, = 2520 hf, + 8641y, — 50400y, 1 — 63Yn, 10 — 81405y,,5 + 201600y, 3
—132300yy.4 + 84672Y,5 — 44100y, 6 + 1728057 — 4725Yn15 + 800Y510
~302400 hfy,3 = 2520 hf, + 8221y, — 37800yn,1 — 108y 10 + 170100y, + 128880y, 3
—396900Y.4 + 190512y 15 — 88200Y,.6 + 32400¥,.,7 — 8505y5.5 + 1400y
529200 hfp,q = 2520 hfy + 8011yn — 33600y, 1 — 168y 10 + 113400y, 5 — 403200y,,3
—61740y,,.4 + 508032y,,.5 — 176400y, + 57600y,7 — 14175y,5 + 2240y
635040 hf,.s = —2520 hf, — 7885yn + 31500yn:1 + 252Yns10 — 94500,:2 + 252000y, 3
— 661500y, 4 + 127008y, 5 + 441000y, 5 — 108000y, 7 + 23625515 — 3500yns0
529200 hfy.6 = 2520hf, + 7801y, — 30240y, 1 — 378Yn:10 + 85050¥,,2 — 201600y, 3
+396900y,,4 — 762048y, 5 + 282240y,,6 + 259200¥,,7 — 42525y, 5 + 5600y,
302400 hfy,; = —2520 hfy — 7741y, + 29400y, 1 + 588Yns10 — 79380y,.2 + 176400y, 3
—308700,,4 + 444528y,,5 — 617400y, 6 + 272880y, 7 + 99225y, — 9800y, 0
14175 hfy,s = 315 hfy + 962y, — 360051 — 126Yns10 + 9450y, 2 — 20160y,. 3
+33075Y44 — 42336y .5 + 44100y, — 43200y,,,7 + 19035y,,,5 + 2800y,,.9
25200 hf, g = —2520 hfy, — 7661y, + 28350y, 1 + 2268Y,410 — 72900y, + 151200y,,.3
—238140yn14 + 285768yn 5 — 264600y5,6 + 194400yn,7 — 127575y 5 + 48890yp.9
2520 hfni10 = 2520 hfy + 7633y, — 28000y, 1 + 7633Y5 10 + 70875y ;2 — 144000y, 3
£220500y,,4 — 254016Yy,5 + 220500y, — 144000y, 7 + 70875y5.5 — 28000y,

_210 420 —630 840 —1050 1260 —1470 210 —1890 2100\"
10 _ = - e 12) 12 13
LTE _( S S S § W § N ¥ N § N S WS VI S ¥ )y (n)h™? +0(h®).

p[Mp(h)] = Pw(lz) , where

Qio(h)

Pyo(h) = 75600h™ + 442860h° + 1594197h% + 4204750h” + 8542325h° + 13530825h°
+16566165h* + 15246000 + 9979200h? + 4158000h + 831600,

Qio(h) = 75600h™ — 442860h° + 1594197h® — 4204750h7 + 8542325h° — 13530825h°
+16566165h* — 15246000h° + 9979200h? — 4158000h + 831600.
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