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In this study, we investigate the so called carbuncle phenomenon by means
of numerical experiments and heuristic considerations. We identify two main
sources for the carbuncle: instability of the 1d shock position and low numerical
viscosity on shear waves. We also describe how higher order stabilizes the 1d
shock position and, thus, reduces the carbuncle.

1 Introduction

For the simulation of shock structures in multidimensional gas flows there are essentially
two major approaches: shock fitting and shock capturing. The idea of the first class of
schemes is to exactly detect the shock position and split the computational domain along
the shock line into two (or for more complex structures even more) domains, leading to an
almost perfect reproduction of shocks in the numerical solution [|11,41},42]. Disadvantages
of this method include the difficulty to deal with shocks which unexpectedly evolve in the
domain and a practical restriction to certain shock structures. In order to overcome these
restrictions, more and more scientists started to build their simulations on shock capturing
schemes, which are designed to work without the knowledge of the exact shock position.
Thus, the shock is captured in a (hopefully) thin layer of grid cells. For an overview over
shock fitting schemes and some recent developments in that area, we refer to [[6,/52].



A main ingredient of shock capturing schemes are so called Riemann solvers: numerical
(first order) flux functions, which are based on an approximate solution of the Riemann
problem at the cell face. This class was later on expanded, starting with [[54,56]], through
introduction of Flux-Vector-Splitting schemes, which are based on a splitting of the physical
flux function, but in a wider sense can be considered as Riemann solvers. More important
for our study however, is the distinction between complete and incomplete Riemann solvers.
While the first are designed to resolve all waves present in a Riemann problem, the latter will
neglect some waves. Prominent examples of complete Riemann solvers are the schemes by
Roe [|50] and Osher [44]]. While these solvers are preferable when complex wave structures
as well as entropy and shear waves are expected, incomplete solvers are known to be
robust in situations dominated by strong shocks. An example is the HLL-solver [21]] whose
construction is based only on the two outer waves of the Riemann problem. In the eighties
and nineties, more and more applications were treated with above mentioned methods for
gas dynamics. The methods were also extended to other hyperbolic conservation laws like
shallow water or compressible magnetohydrodynamics (MHD). For a detailed discussion of
shock capturing, we refer to the textbooks [[16}|17,[35+37,/58,61]].

In the context of shock capturing, some irregularities were observed: properties of the
discrete solutions which were by no means representations of physical phenomena. In gas
dynamics simulations unphysical discrete shock structures and even a complete breakdown
of the discrete shock profile could appear [47,/48]. According to its form in blunt body
problems, it was christened carbuncle phenomenon. Since the seminal paper of Quirk [48]],
an immense amount of research has been conducted on this instability problem. The origin
of the name comes from the fact that in strongly supersonic flows against an infinite cylinder
simulated on a body-fitted, structured mesh the middle part of the resulting bow shock
degenerates to a carbuncle-shaped structure. It was conjectured already by Quirk [48]
that this phenomenon is closely related to other instabilities such as the so-called odd-even-
decoupling encountered in straight shocks aligned with the grid. Unfortunately, the failure is
only found in schemes with high resolution of shear and entropy waves, so called complete
Riemann solvers, which are needed to properly resolve the boundary layers and turbulent
structures. This category includes for example the Godunov, Roe, Osher, HLLC and HLLEM
schemes [13},58]]. These schemes are preferable in calculations involving complex wave
structures as well as boundary layers.

The research on the carbuncle was twofold. On the one hand, the stability of discrete
shock profiles was investigated in one as well as in several space dimensions. On the other
hand, a lot of effort was put into finding cures for the failure of some schemes in numerical
calculations. For example, many cures that were offered, are based on an indicator that
tells the scheme when to switch to an incomplete Riemann solver. These indicators need
information from other cell faces, making the numerical flux function non-local. It was
found that even in one space dimension there are some instabilities of discrete shock
profiles: slowly moving shocks produce small post-shock oscillations [|1,123,48]]. But also
in the case of a steady shock, instabilities can be found depending on the value of the



adiabatic coefficient y as was shown by Bultelle et al. [7]]. However, the connection to
two-dimensional instabilities is still not fully understood.

The two-dimensional instabilites themselves seem to be closely related to each other.
Chauvat et al. [[9] show through an ingenious numerical investigation that the mechanisms
driving the odd-even-decoupling and the carbuncle are closely related. Dumbser et al. [[12]
present a method to test Riemann solvers for their tendency to odd-even-decoupling. Here,
the basic idea is to discretise a steady shock in space and test the linear stability of the
system of ODEs resulting from the Method of Lines. This allows for all tested solvers
to predict whether they would evolve an instability or not. There is also a number of
experimental studies of the carbuncle, especially the influence of the underlying numerical
flux function [|32-34,/59], with the goal to identify the “optimal Riemann solver”. Finally,
Elling [|14] found a connection to physical shock instabilities.

Most these investigations have in common that they (a) intend to find a single source for
the carbuncle, (b) do not take into account the influence of the order of the scheme—they
usually compare different Riemann solvers in a scheme with fixed order—, and (c) do not
distinguish between the contribution of entropy or shear waves to the carbuncle. The most
surprising is case (b) since it is well known that in higher order schemes the carbuncle is
much weaker than in first order; for very high orders, it is essentially absent. The purpose
of this paper is to fill these gaps in research. We want to study the influence of the (1d)
stability of the shock position and the 2d or 3d features such as vorticity separately. In this
course, we also try to separate the influences of entropy and shear waves. But the main
focus (and main novelty) of this study is that we investigate the influence of the order of
the scheme on the stability of the (1d) shock position. We will show how increasing the
order of the scheme, despite of lowering the numerical shear viscosity, stabilizes the 1d
shock position.

The outline of the paper is as follows: In Section[2|we give a short representative review of
some theoretical results. The insight gained by these results provides us with the guidelines
for our numerical experiments. In Section [3| we give a review of the schemes we use in
our numerical experiments. The numerical test cases are introduced in Section |4, The
main results are presented in Sections|[5| (one-dimensional issues) and [6] (multi-dimensional
issues), followed by some conclusions and directions for further research in Section

2 Short review of the theory

There are many papers dedicated to the carbuncle phenomenon [|1,/3,7,9}/14,29.31,43,45,
46,48,53,/63-65], however only few of them discuss the origins of the carbuncle from a
theoretical point of view. Here, we give a short representative review of some theoretical
results.



2.1 Contribution by Bultelle et al.

Bultelle et al. [[7] investigate steady shocks in one space dimension. A first study of these
was done by Barth [4]] who found that for a perfect gas with y = 1.4, flux functions which
enforce the Rankine-Hugoniot condition at discontinuities may have transition states which
are unstable to perturbations when the preshock Mach number is greater than six. Bultelle
et al. go even further. They prove that the Godunov scheme for strong steady shocks and
an adiabatic coefficient 1 < y* ~ 1.62673, with y* being a root of

Y +3y°—21y*+17y +8=0,

can produce unstable shock profiles. They report that in practice, after a transient regime,
the unstable leads to a stable profile with the intermediate state in a neighbouring cell or
even one cell further. If in neighbouring grid slices normal to the shock front, the shock
position jumps in a different direction, say +2 cells in one and —2 cells in another slice,
this leads to an unphysical crossflow along the shock. We discuss this situation in more
detail in Section

2.2 Contribution by Roe and Zaide

While Bultelle et al [[7]] discuss steady shocks in general, Roe and Zaide [[63-65|] focus on the
long-time behavior. Although they mainly discuss the standard Roe solver, the discussion
relies on the fact that the solver tries to establish the exact Rankine-Hugoniot condition at
single shocks. Thus, we can expect that their results also apply to other Riemann solvers
with this property, e.g. Godunov, HLLE etc. Roe and Zaide investigate the behavior of
steady discrete shocks with one intermediate point in 1d. For the Euler equations (and
also for the shallow water equations) it is impossible to find for a non-trivial steady shock
with left and right states g; and q,, which are related via the Rankine-Hugoniot condition,
a middle state g,, which is related to both states via the same condition. As a result, the
scheme enforces a middle state which is unphysical. In some situations, g,, is not even
constant in time: the shock, although unsteady;, is trapped in a single grid cell. And even
if q,, is steady, the shock position in the cell is ambiguous. Depending on the conservative
variable used to compute the shock position one gets different results. Another feature of
these shocks is an overshoot in the momentum, which is also the mass flux, again indicating
the deviation of the discrete solution from real world physics.

From these results we can draw the conclusion that, at least for Riemann solvers based
on the Rankine-Hugoniot condition, even shocks which remain in the same grid cell are
highly sensitive to perturbations.

2.3 Contribution by Elling

Elling [[14] investigates the influence of the supersonic upstream region on the shock profile.
He models the interaction of a vortex filament with a strong shock. For this purpose,
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Figure 1: Model situation for physical carbuncle.

he starts with a steady shock. In the region upstream of the shock, he picks the middle
slice of the computational grid and artificially sets the velocity to zero as sketched out in
Figure (1l This closely corresponds to the experimental and theoretical investigations by
Kalkhoran and Smart [[24] and by Zhang et al. [|66]]. It turns out that the carbuncle-like
structure which comes with the Godunov-scheme is similar to the experimental results.
Furthermore, Elling gives numerical evidence that the structure does not depend on the
energy inherent in the filament. Even more so, the structure is the same for all reasonable
resolutions of the computational domain. The numerical results obtained with Osher or
HLLEM are almost identical to those obtained with the Godunov scheme in contrast to the
HLLE and other incomplete Riemann solvers. We find that in real world simulations of
a shock interacting with a vortex filament, the viscosity, especially the shear viscosity, of
HLLE and other incomplete Riemann solvers is too high. It outweighs the physical viscosity
by far. This explains why Elling not only states that the carbuncle is incurable but also that
the carbuncle should not (completely) be cured, or better: not completely be prevented.
The challenge is to avoid unphysical carbuncles and, at the same time, allow physical
carbuncles. In other words, one has to look for schemes which allow shear and entropy
waves to be well resolved but still prevent the unphysical breakdown of shock waves.

3 Review of the numerical schemes for our
experiments

In order to perform meaningful numerical experiments, one has to choose a suitable set of
numerical methods. Since it is well known that the choice of the Riemann solver has a strong
impact on the tendency of the scheme to develop a carbuncle, we have to compare Riemann
solvers which differ from each other in some features coincide in other features. Motivated
by the discussion in the previous section, we choose solvers with different approaches at



shocks: Osher as an example of a solver which abandons the Rankine-Hugoniot condition
as a construction principle and some members of the Roe/HLL-family which in general force
the Rankine-Hugoniot condition at single shockﬂ Since the carbuncle is characterized
by strong shear flows among the Roe/HLL-type solvers, we select HLLEM, HLLEMCC, and
HLLE in order to compare different shear viscosity mechanisms and their relation to the
carbuncle. For the discussion of the influence of the order of the scheme on the carbuncle,
we employ several standard 1st- and 2nd-order variants as described below.

3.1 Basic finite volume scheme

For shallow water equations, we employ CLAWPACK [10[], which is an implementation
of the wave propagation approach. Thus, limiting for higher order is always done on
characteristic variables. Higher order calculations are done (1) on Cartesian grids with the
Superpower limiter [26,27]] and (2) on non-Cartesian grids with the Albada 3 limiter [26].
Both are smooth limiters. While on Cartesian grids the more compressive Superpower
limiter could be applied, on non-Cartesian grids one has to go back to a less compressive
limiter. In Section [17]we will discuss the reason why it is advantageous to opt for a more
compressive limiter. The Superpower limiter is a generalization of the Power limiter by
Serna and Marquina [|55[]. In contrast to the original Power limiter, the powers are not
fixed but adapted to the local CFL-number in such a manner that the resulting limiter is
always TVD and approaches third order behavior in smooth regions. The Albada p limiters
are derived from the van-Albada limiter in the same way as Serna and Marquina derived
the Power limiters from the van Leer limiter. While Power 2 is just the original van Leer
limiter, Albada 2 is just the original van Albada limiter. Albada 3 is the most compressive
version that still makes up a CFL-number independent TVD limiter.

For the Euler results, we employed Euler2d, a 2d-Cartesian code developed in the Group
of Claus-Dieter Munz at Stuttgart University. The code implements standard finite volumes.
For higher order, direction-wise geometric limiting with minmod on primitive variables is
used.

3.2 Roe, HLL and their relatives

Since the Roe scheme and the HLL-type schemes are closely related [13,28]], we treat them
as one family of schemes. For a better understanding it is convenient to start with the Roe
scheme.

3.2.1 Roe

The core of the Roe scheme is a consistent local linearization [50[], which was first announced
by Roe and Baines [51] as a means to employ their TVD-limiters in a wave-wise manner. In

!We will also present a modification of HLLEM that yields a behavior at steady shocks close to the Osher
scheme.



the linear case, one finds for the flux function

fl@=Aq (1)

and, thus, for the flux difference

flg.)—flaq)=A(q,—q). (2)

For a local linearization to ensure local conservation, it is crucial to satisfy a similar condition.
Furthermore, the linearized system should be hyperbolic, and the system matrix should
depend continuously on the left and right states q; and q,. Therefore, Roe came up with
the following conditions for a consistent linearization with system matrix A(q;, g,):

f(g)— fla) = Alq,q.) (g, —q), (3)
A(q.q)— Alg)  for (q,9,)—(q,9), 4)
A(q,,q,) is diagonalizable for all g;, q, . (5)

A matrix A(q,,q,) that satisfies these conditions is called a Roe matrix or a consistent
local linearization for the underlying system of conservation laws. If there exists a single
state (_7 = (j(ql) qr) with

A(qlﬁ qr) = A(d) ’ (6)
then it is called a Roe mean value for g, q,. For the Euler equations of gas dynamics a Roe
mean value is given by
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with 92 = @i* + ¥? + W? in the full three-dimensional case. For 2d, we just have to omit the

values for the third velocity component w. Similarly, we find a Roe mean value for the
shallow water equations by
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Together with wave-wise application of standard upwind, this results in the numerical flux
function

e, 0) = 5 (fa) + £(a)) —5 |A(@IAg, ©

where the absolute value is applied to the eigenvalues of the matrix. This numerical flux
is usually referred to as the standard Roe solver and is an example for a complete flux.
Note that the wave-wise application of schemes other than standard upwind would only
affect the eigenvalues of the viscosity matrix. In this study, we do not use the solver in
the form (9) but with the so called Harten-Hyman fix [|20]], which slightly increases the
numerical viscosity at sonic rarefaction waves and thus prohibits the sonic glitch. The sonic
glitch would otherwise lead to a representation of sonic rarefaction waves as rarefaction
shocks. It is also possible to resemble the following HLL-type schemes by simply modifying
the eigenvalues of the viscosity matrix in (9).

3.2.2 HLLE

As an example of an incomplete flux, we employ HLLE. In [21], Harten, Lax, and van Leer
present and discuss a variety of numerical flux functions, the simplest and most robust of
which is usually called HLL, a scheme with very low computational cos Their basic idea
is to start from conservation. First, one estimates S; < 0 < Sy for the bounding speeds
of the Riemann problem given by left and right states gq;, g,. If one uses conservation for
rectangle [S;,S,]x [0, 1] in space and time, the mean value of the conserved quantities q in
the intermediate states of the Riemann problem can be computed. From this, by integration
over [S;,0] x[0,1] and [0,S,] x [0, 1] and averaging, one obtains the numerical flux

1S:+S,

1
giu(ar @) = 5 (Fla) + fla)) —3 S.—S,

(fla)— fla))+

5. _SL (g —q). (10

We assume now that A = A(qy,q,) is a consistent local linearization, a so-called Roe
matrix, and thus satisfies condition (3). Then (10) can be rewritten as

1 1Sg+S; <
a)==(f(g)+ —= A(q, —q)+ , 11
giuu(ar a) = 5 (£(a) + F(a) 25,5, Aar—a)+ g _SL(q q). (1
Hence, the viscosity matrix of the HLL-flux is
Sp+S SpS
V="__"tA-2 LT (12)
S _SL S _SL

and has the same left and right eigenvectors as the Roe matrix A itself. The eigenvalues

and thus the wave-wise viscosity coefficients are
Sg+S; = SrS;
Sp=5."" TSp—5,

(13)

2Their more elaborate solvers somehow anticipate HLLC [|57]]



with A, being the eigenvalues of A. Apparently, the choice of the bounding wave speeds is
crucial for the numerical viscosity. In the literature, many choices of the wave speeds S, , Sp
are given. For an overview, the reader is referred to [|58]]. Here, we mainly rely on the choice
suggested by Einfeldt [[13]]: If it is affordable to compute the leftmost and the rightmost
wave speed of a consistent local linearization A, and A, and the flux function f is convex,
then set

S, =min{A;,4,(q),0},  Sp=max{A,,1,(q,),0}. (14)

This ensures that for both a single discontinuity and a single rarefaction wave the estimate
of the maximal and minimal wave speed is sharp. The resulting numerical flux is called
HLLE. Like the standard Roe scheme, it tries to force the Rankine-Hugoniot condition at
shocks.

3.2.3 HLLEM

The first scheme that exploited the relation between Roe and HLL type schemes is the
HLLEM scheme for gas dynamics by Einfeldt [|13]]. It is an attempt to formulate the Roe
scheme as correction to HLL. There are several advantages: The computational effort is
reduced, the adjustment of the viscosity on the acoustic waves can be easily applied by
choosing the bounding speeds S; and S, the sonic point glitch can be avoided, and the
failure of the standard Roe scheme for strong rarefaction waves can be healed.

The construction is as follows: For the sake of s1mp11c1ty, we assume for the e1genva1—
ues A, < Az . < A, of the Roe matrix A that 1, <0 < A,.. Thus, we can choose S; = A,
and Sy = 7Lm. With this setting, the viscosity matrix of the Roe scheme can be written as

S.S, .~ .
Vroe = Vi + L RKL (15)
SR 9oL
A A -
=V + 2" -RKL (16)
m~ ‘M1
with the anti-diffusion-matrix
K =diag(0,0,,...,0,,_1,0). (17)

For the two-dimensional Euler equations (m = 4), we find for the so-called anti-diffusion-
coefficients

52:53:2(1_5J|ru||a|)' (18)
The special structure K allows us to express the standard Roe flux by only using the
eigenvectors corresponding to the entropy and shear wave. Park and Kwon [46] show
that, independent of the choice of S; and Si, HLLEM resolves single contact waves exactly
when adhering to the Roe mean values for the anti-diffusion-term, i. e. if we stick to (16])
instead of as originally suggested by Einfeldt. For HLLEMCC, our modification of



HLLEM as discussed in the next section, we nevertheless employ the original Einfeldt
setting (15]). The loss in resolution of the scheme is rather small. An advantage of is
that it deactivates the anti-diffusion terms automatically for full upwind, i. e. if one of the
bounding speeds S;, Sy vanishes.

A special case of HLLEM is obtained if we set S = —S; = |S,x|- In gas dynamics and
shallow water flow, the numerical viscosity of the resulting scheme coincides with the
viscosity of the Rusanov/LLF (Local Lax Friedrichs) scheme for nonlinear waves and with
the viscosity of the standard Roe scheme for shear and entropy waves. In the following, we
refer to that scheme as LLFEM.

3.2.4 HLLEMCC

If in the definition of the HLLEM scheme, we replace the anti-diffusion coefficients 6,
by (1 — ¢) 6, with ¢ € [0,1], we can smoothly vary between HLLEM (¢ = 0) and
HLL (¢ = 1), i.e. between a complete and an incomplete Riemann solver. This is a
technique which we used for our carbuncle cure of HLLEM (HLLEMCC) in [|25] for the
Euler equations and in [29] for the shallow water equations.

Since the goal of HLLEMCC is to prevent unphysical shear and entropy waves, its core is
the computation of the residual in the Rankine-Hugoniot condition for these waves:

v=f(q,)— f(q)—1i(q, —q) (19)

with the Roe mean value for the normal velocity &i. Now, we take as our basic indicator the
residual relative to ¢, respectively its Euclidean norm

1
0 =il (20)

which vanishes for all shear and entropy waves. By introducing parameters a, 8 € (0,1),
we can now define

¢(0,Fr,) =min{1, ¢ 6 max{0, (1 —Fr*)}}’ (21)
for shallow water and

¢(6,M,) = min{1, (¢ 6)" max{0, (1 — M*)}} (22)

for the Euler equations, where Fr, and M, are the directional Froude and Mach numbers
perpendicular to the cell face. A major advantage of this approach is that the modification
can be applied to shear and entropy waves separately. This we will use in Section to
somehow measure the influence of both wave types on the carbuncle.

However, we still have to choose the parameters. Here, we adhere to the values as
already published [3,25,28,29]]: For both shallow water and gas dynamics a = § = .33
turned out to be a good choice. Furthermore, if not stated otherwise, we use ¢ = 1/100 in
the gas dynamics case and for the shallow water equations € = 107°.
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3.2.5 Shock fix

While HLLEMCC modifies the numerical viscosity of HLLEM on the linearly degenerate
waves, here we present a modification of the numerical viscosity at shocks. We will restrict to
steady shocks in the Euler equations. Again we employ the residual in the Rankine-Hugoniot
condition but this time on the nonlinear waves:

v=flg,)— fla)—@—Og. — @) = E(Wy + W5 +243), (23)
for shocks in the left wave, and for shocks in the right wave
v=f(q,)— flq)—({@—¢)q, —q)=—C (2W1 + W, + Wg) . (24)

Instead of using the residual in the Rankine-Hugoniot condition relative to the speed of
sound, we employ the sum of the fluxes as our weighting factor. If we take the shock
indicator

o, (1 3 IIf(qr)—f(qz)Ilz)
U T IR+ Fa@l,

with some small positive parameter ¢,, we can modify the Einfeldt choice of wave speeds (14)
to

(25)

S; =min{0,(u; —¢;) +(1—6,)({i—¢), u;—¢;, 0},

26
Sy = max{0,(u, +¢,)+ (1— 0,)(@—8), u, +¢,, 0} (26)

resulting in a HLLEM-solver that does not enforce the Rankine-Hugoniot condition at steady
shocks. In fact, the numerical viscosity is slightly increased as like in the Osher scheme,
which we describe next.

3.3 Osher-Solomon

The Osher-Solomon scheme [44]], a generalization of the Enquist-Osher scheme [[15]] to
systems of conservation laws, was designed with two major goals: prevent the sonic glitch
and represent physically steady states as discrete steady states. For that purpose, they first
had to abandon the Rankine-Hugoniot condition at shocks as a design principle. Instead,
they use (generalized) Riemann-invariants. While this would lead to a slightly increased
numerical viscosity at shocks, it also allows for stable steady state representations of steady
shocks. Thus, the scheme is a good candidate for our purposes: measure the influence of
the stability of the shock position on the carbuncle. The resulting numerical flux function
reads as

Gomner(a1 ) = 5 (F(a) + fla) — f A(@) g, @7)

where T is a path in the state space which connects the left and right state via integral curves.
Later on, Hemker and Spekreijse [[22]] presented an alternative choice for I', which they
claim leads to better results. But, since in our tests we could not find any difference between
the results of both versions, we just refer to it as Osher-scheme without differentiating for
the integration path in (27).

11



4 Discussion of the test cases for the numerical
investigation of the carbuncle

In our discussion of the carbuncle and its sources, the choice of test cases plays an important
role. They include classical examples like the double Mach reflection and the blunt body
problem, which gave rise to the name of the carbuncle [47], as well as some 1§-dimensional
problems like the colliding flow problem, the steady shock, and the Quirk test. These tests
have in common that they originate from one-dimensional problems which are artificially
augmented with an additional space dimension. Since in these physically one-dimensional
problems there is no inherent source for the carbuncle, we have to trigger it by adding
some noise to the initial data. While most of these test cases have in common that in a
physical sense we would not expect to see a carbuncle, the opposite is observed for the
Elling test as drawn from the considerations in Section

4.1 Blunt body problem

In gas dynamics, a popular test case for the carbuncle is the flow around a cylindrical
obstacle [9,12,31,45,46,48,/53[]. In the shallow water case, a similar test would be the
flow around a cylindrical bridge pier. We chose a pier with radius r = 1. As computational
domain we employ a third of the annulus with inner radius r = 1 and outer radius R = 2.
Since the interesting part of the flow is the inflow region, we restrict the domain in angular
direction to 2?”, 4?“. The domain is discretized with 150 cells in the radial direction and 800
cells in the angular direction. The initial flow is set to the inflow state everywhere. At the
pier we employ wall boundary conditions, at the other boundaries first order extrapolation.

Although, in principle, it is possible to do comparisons for blunt body flow also in the gas
dynamics case [[28]], here we restrict our investigation to shallow water. Since we want to
start with the initial flow set to the inflow state, we could employ the gas dynamics version
of the Osher scheme only for subsonic inflow. Thus, in this paper, we only show results for
the shallow water case. For the inflow we choose Froude number Fr = 5.

4.2 Double Mach reflection

A famous test for the quality of a Riemann solver is the Double Mach reflection problem. It
was suggested by Woodward and Colella [62] as a benchmark for Euler codes. An analytical
treatment is found in [39], [5], and references therein, while experimental results are
presented in [|19]] and also in [|5, pp. 152 and 168]. The problem consists of a shock front
that hits a ramp which is inclined by 30 degrees. When the shock runs up the ramp, a
self-similar shock structure with two triple points evolves. The situation is sketched out in
Figure [2| To simplify the graphical representation, the coordinate system is aligned with
the ramp —as done for the numerical tests. In the primary triple point, the incident shock i,
the mach stem m, and the reflected shock r meet. In the double Mach configuration, the

12
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Figure 2: Sketch of Double Mach Reflection with the carbuncle-type numerical artifact
resulting in a kink in the leading Mach stem m.

reflected shock breaks up forming a secondary triple point with the reflected shock r, a
secondary (bowed) Mach stem m’, and a secondary reflected shock r’. From both triple
points, slip lines emanate. The reflected shock r’ hits the primary slip line s causing a
curled flow structure.

While the main challenge for a high resolution scheme is to resolve the secondary slip
line s’ [[30,/62], the main challenge for first and second order schemes is to correctly
represent the leading Mach stem. For some lower order schemes, the lower end of the Mach
stem moves too fast, leading to a kink in the stem [48]. The situation is comparable to that
for the blunt body problem. According to the wall boundary conditions, the ramp can be
interpreted as the symmetry-line of a free-stream flow. Since the Mach stem is not perfectly
aligned to the grid lines of a Cartesian grid, the same mechanisms come into place as for
the blunt body problem. Thus, we expect Riemann solvers which produce a carbuncle for
the blunt body to behave similar in that case. If the flow is split at the symmetry-line by
reinterpreting it again as a wall (or ramp), we have to expect the lower part of the Mach
stem to be kinked as sketched out in Figure

For the numerical tests in this paper, we follow the guidelines in [[30]. That means the
boundary conditions at the upper boundary model a slightly smeared shock, and the vertical
size of the computational domain is doubled compared to [62]. The only difference is that,
instead of the vertical momentum, we choose the entropy for our plots.

4.3 Colliding flow

This test [38,, Section 7.7] resembles a simplified model for the starting process of the
blunt body test when using the inflow state as initial data in the complete computational
domain. This is best understood when considering the flow before the blunt body along
the symmetry line. Since the flow is aligned with that symmetry line, and due to the switch
of the sign of the flow velocity in wall boundary conditions, it behaves essentially like the
left half of a colliding flow in 1d. To turn it into a 2d-test, the flow is equipped with an
additional space direction, in which everything is expected to be constant. In order to
trigger the carbuncle, the initial state is superimposed with noise that is generated randomly
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and has a small amplitude.

For the gas dynamics test, in the initial state, density and pressure are setto p =1, p = 1.
The normal velocity is set to Ugsign = £20, the transverse velocity component to v = 0.
To trigger the carbuncle, we superimpose artificial numerical noise of amplitude 10~° onto
the primitive variables instead of disturbing it in just one point as was done originally by
LeVeque [38, Section 7.7]. The computations are done on [0, 60] x [0, 30] discretized with
60 x 30 grid cells.

For shallow water tests, we set the initial height to h = 1 and the left and right velocities
to u = £30. The transverse velocity is zero. Onto this initial state, we superimpose artificial
numerical noise of amplitude 107°, but in this case we add the noise to the conserved
variables. The computations are done on [—2.5,2.5] x [—2.5,2.5] discretized with 40 x 40
grid cells.

Since the problem is a simple 2d-extension of a one-dimensional problem, the results are
presented in scatter-type plots: we slice the grid in x-direction along the cell faces and plot
the entropy for all slices at once.

4.4 Steady shock

While the colliding flow test models the starting process of the blunt body flow, the steady
shock test, introduced by Dumbser et al. [12]], features a simplified model for the converged
shock in the blunt body flow. Following Dumbser et al., we set in the upstream region p =
1, u = 1. The upstream Mach number is set to M = 20, the transverse velocity component
to v = 0. The shock is located directly on a cell face. To trigger the instability of the
discrete shock profile, we add artificial numerical noise of amplitude 107° to the primitive
variables in the initial state. The computations are done on [0, 100] x [0,40] discretized
with 100 x 40 grid cells.

For shallow water we set the water height and the Froude number at the inflow to h =1
and Fr = 30 respectively. At the outflow, we simply employ extrapolation boundary
conditions. Again, we add artificial numerical noise, this time of amplitude 1073, to
the conserved variables in the initial state. The computations are done on [—2.5,2.5] x
[—2.5,2.5] discretized with 100 x 40 grid cells.

Again for the presentation of the results, we employ scatter-type plots as described for
the colliding flow problem.

4.5 Quirk test

Quirk [48] introduced a test problem which is known as Quirk test. Contrary to the
preceding example, it is not a one-dimensional Riemann problem, but consists of a shock
running down a duct. The shock is caused by Dirichlet-type boundary conditions on the
left boundary with p = 5.26829268, u =4.86111111, p = 29.88095238, while the flow
field is initialized with p =1, u =v =0, p = 1/y. Originally, a disturbance of the middle
grid line was used to trigger the instability [48]. Because the computations are done with

14



a Cartesian code, we instead use numerical noise in the same manner as for the steady
shock and the colliding flow problem. The only difference lies in the amplitude of the
perturbation, here 1073, The computations are done on [0,1600] x [0, 20] discretized with
1600 x 20 grid cells. In this study, we only perform the test for the Euler equations. For a
similar test in shallow water, we refer to [3]].

Again we use scatter-type plots (as described above) to present the results.

4.6 Elling test

The Elling test is the experiment which was already described in Section The initial
condition is a modified version of the steady shock test, cf. Section The region to the
right of the shock remains unchanged. In the supersonic inflow region, only the middle
x-slice is changed. Here the velocity is set to zero. This is done to model a vortex layer
hitting the shock front. Again, we only perform the test for the Euler equations and refer
to [|3] for a similar test in shallow water.

5 Influence of one-dimensional issues

Although the carbuncle is a multi-dimensional issue, it is obvious that, especially on
Cartesian grids, one-dimensional issues can drive multi-dimensional effects.

5.1 Instability of shock position in first order schemes

Two of the instabilities discussed in Section [2| are purely one-dimensional. Both are
instabilities of the shock: the instability of the shock position relative to the grid (Sec.|2.1)
and the instability and ambiguity of the shock position within the grid cell (Sec. [2.2)).
Figure |3|illustrates how the instability of the shock position can destroy a discrete shock
profile. As Bultelle et al. [7]] point out, the shock position might jump by up to two grid
cells. Figure [3|shows the worst case scenario: in one grid slice, it jumps two cells upstream,
in the neighboring slice, it jumps two cells downstream. Thus, at a length of four grid faces,
we created a new Riemann problem with all types of waves [28]]. In the depicted situation,
a strong flow downwards would be initiated. The instabilities and the ambiguity discussed
in Section can affect the discrete shock profile in a similar way. Since they are highly
sensitive for perturbations, cross-flow might be induced within the grid slice containing the
original shock itself.

This situation could be avoided if the 1d shock position was stable. However, as seen
from the discussions in Sections [2.1] and this would mean to abandon the requirement
of Riemann solver which exactly reproduces the Rankine-Hugoniot condition at a single
shock. As mentioned above, the Osher solver replaces this by the requirement of yielding
steady discrete solutions for any steady discontinuity and employs Riemann invariants
over all nonlinear waves. Thus, the Osher scheme seems to be a good candidate to avoid
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Figure 4: Scatter-type plots of entropy for steady shock with different numerical fluxes
at t = 1000.
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Figure 5: Scatter-type plots of entropy for Quirk test with different numerical fluxes at t =
125.

the instability of the 1d shock position, much the same as the HLLEM-scheme with the
modification at steady shocks (Sec. [3.2.5). Another solver which also disregards the
Rankine-Hugoniot condition is LLFEM. The difference to Osher and the steady shock fix
is that the numerical viscosity on the nonlinear waves is much higher. As the results in
Figure |4/ show, the LLFEM cannot prevent the carbuncle while the other two can. From
that, we conclude that it is important to add the correct amount of viscosity in order to
stabilize the shock position.

Figure |5/ reveals that if we guarantee steady discrete representations of steady states this
is not sufficient to guarantee a proper representation of unsteady flows. The Quirk test is
employed and shows that the Osher scheme still might produce carbuncle-like structures,
although much weaker than with, e. g., HLLEM.

Our setting for the blunt body problem results in a highly transient starting phase which
eventually passes into a steady state. This raises the question which property of the Osher
scheme would be dominant: the tendency to produce a carbuncle in a transient flow or the
guarantee for steady discrete representations of steady flows. Thus, in Figure [, we show
the shallow water flow around a cylindrical pier at different times. At time t = 1.5, it is
easy to see that the scheme produces a slight carbuncle-type structure. When the discrete
flow field eventually becomes steady, obviously that carbuncle is somehow smoothed out.
The solution is steady but not physical, confirming the statement by Robinet et al. [|49] that
the carbuncle can lead to unphysical steady states.

5.2 Influence of the order of the scheme

Since it is often reported that increasing the order of the scheme applied in the computation
reduces the carbuncle, here we investigate the relation between the order of the scheme and
the 1d-stability of the discretized shock. At this point, we should stress out that throughout
this paper the term order refers to the design order of the scheme, which is only achieved
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Figure 6: Flow around cylindrical pier in shallow water with 1st order Osher scheme at
different times. Energy shown.

in smooth parts of the flow field, and not to the actual order of the scheme which would
automatically drop in the vicinity of shocks. As was pointed out by Roe and Zaide [[63-65]],
a major role is played by the fact that it is impossible, at least for gas dynamics and shallow
water flows, to split a shock satisfying the Rankine-Hugoniot condition into two consecutive
shocks which both would satisfy the Rankine-Hugoniot condition. This situation improves
for higher order, at least when geometric reconstruction is applied. For the computation of
the inter-cell fluxes, two states are available, one at the left cell boundary and one at the
right cell boundary. Thus, for a steady shock it would be sufficient to satisfy

fla)=f(qg)=f(g})=f(q,), (28)

which can easily be achieved by

=9, 4q.=q,. (29)

This is (for a scalar situation) sketched out in Figure|7| For the sake of simplicity, in the
following, we restrict our considerations to the scalar case. It is easy to see how the results
can be transferred back to the systems case.

Figure |7| shows how the situation improves with increasing order of the scheme. If, for
instance, we employ a polynomial reconstruction in the cell where the shock is located, for
high orders, condition can be ensured for almost all shock positions without sacrificing
monotonicity:
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1st order
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Figure 7: Reconstruction of shock profile (dashed line) on finite volume grid with different
orders

Theorem 1. Given the situation depicted in Figure@ let the cell with the shock be [x;_1 5, X;41/2]
and AX = X;i1/5 — X;_1/o. Furthermore let Aq = q, —q; # 0. Let the shock be located
at x;_y/, + 0 Ax with 6 € [0,1].

1. For any 6 €[0,1], a polynomial reconstruction p, with degree less or equal two can
be found such that condition (29) is satisfied.

2. In the cell [x;_y/5,X;.1/2], the reconstruction can be made monotone for polynomial

degreeSnif@e[ﬁ,l—ﬁ.

Proof. Statement (1|is obvious and well known. It was already used by van Leer in his work
on higher order methods [|60].
For the proof of statement 2, we can assume, without restriction,

[xi—l/ZJ Xi+1/2:| = [O’ 1] ) q, = 0 > 4y = 1 ) and 6= 1/2 .

All other cases can be derived from this by symmetry, scaling, and translation.
It is easy to see that with above settings

1
J q(x)dx=1-6. (30)
0
On the other hand, we know for any monomial
' 1
x"dx = . (31)
0 n+1

Furthermore all monomials with degree greater of equal one are monotonously increasing
in [0, 1] and attain the values 0 at x = 0 and 1 at x = 1. Obviously, the same is true for
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all weighted means of such polynomials as long as the weights are non-negative. Thus,
for any 0 € [%, n+r1]> we can find a polynomial p, of degree < n, monotonously increasing
in [0, 1], with

1
pn(O):Os pn(]-):15 and J pn(x)d'x:]-_e . (32)
0

As already mentioned, the general case follows from this by symmetry, scaling, and transla-
tion. O

Note that the linear reconstruction of case [1|in Theorem |[1is not achieved by standard
second order schemes. Due to their restricted stencil, they cannot distinguish between the
situation of Theorem 1] case|1| (slope Aq/Ax in the middle cell), and a linear state with
slope Ag/(2Ax). But in order to achieve second order, they have to reconstruct linear
states exactly. Slope Aq/Ax in the middle cell can be achieved, e. g., by the limiter pgyepy»
the upper bound of the Sweby region, as described in [|26, Section 2.4.2], leading to a
first order scheme. For other 6 € [—1,1] it would still satisfy one of the identities ([29).
While Minmod cannot satisfy any of the identities for 6 € (—1,1), Superbee shares
the behavior of gy, for [0] = 1/3 and the MC-Limiter for [6| > 1/2.

In this context, it is also worth to note that some third order schemes, although formally
based on linear reconstructions, e. g. [2,8]] in the final analysis still employ parabolic recon-
structions. For each cell, they compute two linear reconstructions in the manner described
in [26, Section 2.4.2], one ensuring third order for left-going waves and another one
ensuring third order for right-going waves. While g is taken from the first reconstruction,
q; is taken from the latter. Although it is, in general, not possible to reinterpret this as
a single linear reconstruction, it is always possible to reinterpret it as a parabolic recon-
struction. But due to their restricted stencil, they do, in general, not satisfy the identities
in equation (29). Strangely enough, none of the authors of such limiters considers the
resulting parabolic reconstruction, and, therefore, none of them checks if this parabolic
reconstruction is indeed monotone.

Since many modern schemes, like ENO/WENO, do not explicitly enforce monotone
reconstructions in the cells, for these schemes, we can expect identities to be satisfied
in most cases, and, if not so, at least approximated with very small error. Thus, for
schemes of order greater or equal three, we we might expect physically steady shocks to be
represented as discrete steady shock, independent of the Riemann solver and the position
of the shock, and hope for a similar behavior for moving shocks.

6 Influence of two- or three-dimensional issues

For years, the research on the carbuncle concentrated on two-dimensional issues, although
the Osher scheme was already in widespread use, and the carbuncle was known to be
rarely found in very high order schemes or on unstructured grids. Here, we started with
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Figure 8: Steady shock problem in shallow water at times t = 0.2, 0.4, 0.6, 0.8, 1.0 with
Roe scheme, energy shown. Upper row: first order; second row: second order
with Superpower limiter.

2 @
S 9
33

LI T S s s

ol
X
3393
333

LI T S s s

ol

Figure 9: Colliding flow problem in shallow water at times t = 2/3, 1, 4/3, 5/3, 2 with
Roe scheme, energy shown. Upper row: first order; second row: second order
with Superpower limiter.
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Figure 10: Leading shock structure of double Mach reflection in gas dynamics at t = 0.2
with different numerical fluxes, entropy shown. Upper row: first order, lower
row: second order.
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Figure 11: Flow around cylindrical pier in shallow water at Froude number Fr = 5 with
Roe and Osher, first order and second order with Albada 3.
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Figure 12: Scatter-type plots of entropy for Quirk test with different numerical fluxes and
second order at t = 125.
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Figure 13: Transverse velocity at different times in gas dynamics steady shock problem for
different solvers.

one-dimensional issues to better understand how they, when everything is generalized to
two or three space-dimensions, interact with two- and three-dimensional issues. Hence, in
this section, we want to concentrate on the interplay of 1d and 2d (or 3d) issues.

6.1 Numerical shear viscosity

At this point, we have to refer the reader back to Figure 3| It is obvious that the vertical
flow induced by the instability of the shock position in turn induces a strong shear flow
not only in the newly created Riemann problem, but even more along the original shock
profile. In summary, some kind of turbulence at the original shock position is created
which is superimposed onto the original flow. Due to its construction, the HLLEMCC solver
distinguishes between shear waves which are superimposed onto nonlinear waves and
shear waves which are not. On the first, it behaves like HLLE, thus damping the turbulence,
on the latter, it behaves like HLLEM, here allowing, e. g., for well resolved boundary layers.
In our previous works [|3, 25,28, 29]], we could show that HLLEMCC prevents the carbuncle
while allowing for good resolution of physical shear waves.

In Figure |13 we demonstrate how the above described mechanism drives the carbuncle.
We show the transverse velocity at different times for HLLEM, HLLE, and the Osher scheme.
By stabilizing the 1d shock position, the Osher scheme keeps the transverse velocity at
about the magnitude of the artificial numerical noise introduced in the initial state. Thus,
no carbuncle arises. The HLLE scheme, by its excessive shear viscosity, keeps the transverse
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Figure 14: Quirk test at t = 125 with 1st order standard HLLEMCC and different versions
of 2nd order HLLEMCC scheme.
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Figure 15: Steady shock in gas dynamics at t = 1000 with 1st order standard HLLEMCC
and different versions of 2nd order HLLEMCC scheme.

velocity below some threshold and thus also avoids the carbuncle. For HLLEM, there is
no mechanism to damp the turbulence along the original shock. Over time, a carbuncle
evolves.

6.1.1 Shear viscosity and order of the scheme

As we have seen in Section|[5.2] higher order has a stabilizing effect on the 1d shock position.
This raises the question if for second order schemes, the carbuncle correction in HLLEMCC
might be relaxed. The answer is not obvious since raising the order also lowers the viscosity
on the shear waves. In Figure we give a comparison of first order HLLEMCC and
several implementations with second order. The difference between the versions is in
the choice of the parameters. As mentioned in Section for the standard HLLEMCC,
the parameter ¢ in equations and is chosen as ¢ = 0.01. Here we also show
results for € = 0.005, € = 0.00125, and for £ = 107°. For the latter, the results are almost
indistinguishable from the pure second order HLLEM. All in all, the results suggest to leave
the parameters unchanged and stay with the same parameters as in the standard version for
first order. The gain in stability of the 1d shock position and the loss in shear viscosity are
just in balance. For the steady shock test in Figure the situation slightly improves. But
it is still recommended to use HLLEMCC with the set of parameters given in Section [3.2.4

6.1.2 Shear viscosity and the resolution of physical carbuncles

In Section [2.3|we discussed the findings of Elling [[14] on physical carbuncles. This lead us
to the Elling test case as described in Section [4.6| which allows us to test the numerical flux
functions for their ability to resolve these physical carbuncles correctly. As we can see from

25



Osher 1st order HLLEM 1st order HLLEMCC 1st order HLLE 1st order

20 | =20 [— > 20 > 20

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
X X X X

Osher 2nd order HLLEM 2nd order HLLEMCC 2nd order HLLE 2nd order

N T Y s N R Y s N R Y s MRS (T
0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70
b3 X b3 b3

Figure 16: Elling test for gas dynamics at time t = 100; comparison of different solvers;
entropy shown.

Figure the numerical results with Osher, HLLEM, and HLLEMCC are rather similar even
with the first order scheme. The HLLE scheme, which suppresses the carbuncle by a severe
amount of numerical shear viscosity, tries to prevent even the physical carbuncle, not only
in the first order, but also in the second order computation. Since the test case is a model
for shock boundary-layer and other shock vortex interactions, we note that schemes which
rely on the HLLE flux, even when it is only applied locally in the vicinity of strong shocks,
might destroy some physical features of the flow. Thus, codes which are based on a switch
between complete and incomplete Riemann solvers depending on the distance to the next
strong shock should be carefully tested with the Elling test before applying them to more
complex flow problems. If the physical carbuncle is not properly reproduced, the switching
mechanism has to be reworked.

6.2 Influence of viscosity on entropy waves

Some authors consider the carbuncle a result of the treatment of mass transport and entropy
waves [40]] within the Riemann solver. The hunt for entropy consistent Riemann solvers,
e. g., is at least partially driven by that idea. And indeed, for some schemes this causes
problems, e. g. for Flux Vector Splitting (FVS) schemes, which may loose positivity by
exactly resolving entropy waves [[18]. But there is no strict proof, not even the proof by
Liou and Steffen in [40]], for a connection between the resolution of entropy waves and the
carbuncle.

From our considerations in Section[5, we know that the instability of the 1d shock position
causes a new Riemann problem perpendicular to the original shock, which includes all
types of waves (for gas dynamics also entropy waves). Thus, although the carbuncle occurs
also in shallow water, where there are no entropy waves, we can conclude that there is
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Figure 17: Steady shock in gas dynamics; comparison of HLLEM without carbuncle cor-
rection, correction on entropy waves, and full HLLEMCC at t = 1000; entropy

shown.
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Figure 18: Colliding flow in gas dynamics; comparison of HLLEM without carbuncle cor-
rection, correction on entropy waves, and full HLLEMCC at t = 20; entropy
shown.

a connection between carbuncle and entropy waves. The question we have to answer is:
Which type of waves has the stronger impact on the stability of discrete shock profiles:
shear waves or entropy waves?

A good means to answer that question is the HLLEMCC solver, which allows to apply the
carbuncle correction to both types of linearly degenerate waves separately. In Figures
and |18, we present results for the steady shock and the colliding flow problem. We compare
pure HLLEM with three versions of HLLEMCC: correction only applied to entropy waves,
correction only applied to shear waves, full HLLEMCC. From the numerical results we
easily conclude that the resolution of entropy waves contributes to the carbuncle, but the
contribution is small compared to the contribution by the shear waves.

7 Conclusions and directions for further research

In this paper, we investigated the origin of the carbuncle phenomenon. Guided by the
theoretical results reviewed in Section [3) we found a set of numerical test cases which
helped us to sort out the different issues involved in the carbuncle. We observed that the
Osher scheme by its special construction of the numerical viscosity on shocks suppresses
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the carbuncle to a certain extent. For steady grid-aligned shocks, we could remodel this
viscosity in the HLLEM scheme, confirming that it is in fact the numerical viscosity on the
shock which is responsible for the stabilizing effect. We also showed how increasing the
order offers an alternative way to stabilize the shock position: introducing more degrees of
freedom for the scheme allows to remodel the Rankine-Hugoniot condition at a captured
shock. This stabilizing mechanism even works when the mechanism of the Osher scheme is
not sufficient anymore: in the case of not perfectly-grid aligned shocks like the bow shock
in the blunt body problem.

Since the instability of the 1d shock position creates vorticity along the shock, we also
considered the influence of the numerical viscosity on entropy and shear waves. We found
that the influence of the shear viscosity is much higher than that of the viscosity on entropy
waves. We also found (cf. Section that Riemann solvers like HLLEMCC, which try to
reduce the carbuncle from within the Riemann solver and without too much loss of the
resolution of shear layers, should not be altered when used in a higher order scheme. The
gain in stability of the shock position is compensated by the reduction of the shear viscosity.
By employing the Elling test we could show that incomplete Riemann solvers like HLLE
not only prevent non-physical carbuncles but also the physically induced breakdown of the
shock profile when it is hit by a vortex layer.

What is still lacking, is a deeper understanding of the amount of numerical viscosity
on shocks in order to stabilize the shock position already for low order schemes. But
this would be desirable when one wants to combine the stabilizing mechanisms of Osher
and HLLEMCC, in which case the shear viscosity of HLLEMCC could be further reduced.
Furthermore, one would hope to be able to extend the theoretical results reviewed in
Section [3]to the case of higher order schemes. As we have seen, there is a significant impact
of the order of the scheme on the stability of discrete shock profiles.
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