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Abstract

We model the peristaltic flow of a Bingham fluid in a tube in lubrication approximation.
Following the procedure developed in [4] we derive the rigid plug equation using an integral
formulation for the balance of linear momentum, modelling the unyielded domain as an
evolving non-material volume. The mathematical problem is formulated for the yielded and
unyielded part and appropriate boundary conditions are established at the pipe walls and
at the yield surface. The zero order approximation leads to a system formed by an integral
equation and an algebraic equation for the yield surface and for the plug velocity (which is
uniform in space) respectively. Because of the integral approach adopted in the unyielded
part of the flow, the leading order approximation does not give rise to the lubrication paradox.
The problem is solved numerically and an analytical solution is found when the oscillating
wall is given as a small perturbation of the uniform wall.

Keywords: Bingham fluids; lubrication approximation; peristaltic flows; asymptotic expan-
sion; traveling wave; numerical simulations

1 Introduction

Peristaltic flows in channels or ducts are generated by the continuous periodic contraction and
expansion of the flexible walls. The mechanism of peristalsis occurs in different branches of
biomechanics and it is of prime importance when considering, for instance, how physiological
fluids such as blood and urine are transported in the human body. Among the many bio-
mechanical processes involving peristalsis we find the swallowing of food through the oesophagus,
the movement of chyme through the intestine, spermatic flow in the male reproductive system,
the movement of eggs in the fallopian tube and the transport of bile. Other non-biological
important applications are the design of finger and roller pumps used in pumping fluids where
contamination due to contact with the pumping machinery has to be avoided, the transport
of highly viscous fluids or slurries, the design of dyalises machines, open-heart bypass, infusion
pumps etc.

For all its potential applications peristalsis has been the subject of intensive theoretical and
experimental studies in the past, see [8], [3], [12], [13]. When modelling peristaltic motion,
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the main scope is to characterize the basic fluid mechanics of the process and to determine
the velocities and the pressure gradients that are generated by the wave. To obtain analytical
solutions the models often rely on simplifying assumptions such as vanishingly small Reynolds
number (creeping flow), infinitely long wavelength, small wave amplitude etc. Since the type of
fluid commonly involved in peristaltic motion is non-Newtonian, a large part of the theoretical
modelling is focussed on non-Newtonian fluids such as Jeffrey fluid, Casson fluid, Herschel-
Bulkley fluid, Bingham fluid, Power-law fluid, etc. We refer the reader to the paper [7], where a
schematic summary of key assumptions made by recent literatures related to peristaltic transport
is available.

In this paper we investigate the peristaltic motion of a Bingham fluid flowing in a cylindrical
deformable tube whose shape can be described by a periodic travelling wave. In particular we
consider a flow which occurs in lubrication regime, that is we assume that the characteristic length
of the tube is far larger than the typical radius. Although this kind of study is certainly not
new (see for instance [9], [11], [10]), here we investigate the motion adopting a novel approach
which consists in deriving the plug momentum equation using an integral formulation. This
methodology has been introduced in [4] to model the planar flow of a Bingham plastic in a
channel of varying width. The key feature is to treat the unyielded phase as an evolving non-
material volume and to write the momentum balance globally and not locally. Indeed, it is well
known that when modelling the plug with the classical differential formulation

ρ∗
Dv∗

Dt∗
= ∇∗ · σ∗ (1)

that requires the knowledge of the stress components σ∗ij in the unyielded domain, we may end up
with the so-called lubrication paradox, which consists in getting a plug velocity which depends
on the longitudinal coordinate of the tube (see [2]). In [4] we have proved that this paradox
arises because one cannot model the unyielded part using the stress components which are not
even defined for that part of the fluid. To avoid this inconsistency we have treated the rigid part
of the flow as an evolving non-material volume and we have written the momentum equation in
the following integral form∫

Ω∗
u

∂

∂t∗
(ρ∗v∗)dV ∗ +

∫
∂Ω∗

u

ρ∗v∗(v∗ · n)dS =

∫
∂Ω∗

u

σ∗ndS, (2)

where it is only required to know the stress σ∗ exerted by the yielded part at the yield surface.
Such a stress can be evaluated solving equation (1) in the yielded part. Using this strategy in
[4] we have shown that it is possible to find an explicit expression for the yield surface and to
determine the inner plug that moves with uniform velocity even for non-uniform channel walls.
This method has been subsequently used to study the planar squeeze flow of a Bingham fluid
[5] and the flow of Bingham fluid down an inclined channel [6]. Here we use the same procedure
to model the peristaltic flow of a Bingham fluid in a tube where the walls evolve as a travelling
wave.

The paper is organized as follows. We derive the model for a generic 3D setting using
cylindrical coordinates (r∗, θ, z∗) and assuming that the main variables of the problem do not
depend on θ. We rescale the problem assuming that the aspect ratio ε - corresponding to the ratio
between the characteristic length of the tube and the characteristic radius - is small. Then we
focus on the leading order approximation and we show that the mathematical problem reduces
to a set of two equations (one of which is an integral equation) involving the velocity of the plug
and the yield surface. Of course the general problem can be solved only numerically. Finally

2



we assume that the oscillation amplitude of the wall is a small parameter too and we show
that setting this parameter to zero corresponds to considering the classical Bingham model in
cylindrical geometry with fixed walls. Finally we show that assuming that the oscillating wall is a
small perturbation of the fixed wall, an analytical solution can be found as a small perturbation of
the solution with uniform wall. For this latter case we plot the evolution of the yield surface, the
plug velocity and the pressure gradient at different times. Moreover we study the dependence
of the solution on the principal parameters of the model, i.e. the Bingham number and the
prescribed inlet discharge.

2 Mathematical formulation of the problem

We consider the flow of a Bingham fluid in a pipe of circular-cross section whose amplitude1 R∗

evolves as a traveling wave. We suppose that the length of the pipe is L∗. The flow is modelled
considering cylindrical coordinates (r∗, θ, z∗) and assuming that all the kinematical quantities
appearing in the system do not depend on θ. The velocity field is of the form

v∗(r∗, z∗, t∗) = v∗r (r
∗, z∗, t∗)er + v∗z(r

∗, z∗, t∗)ez

Referring to Fig. 1 we assume that the travelling wave describing the motion of the wall is given
by

R∗(z∗, t∗) = R∗ref

[
1 + δϕ

(
z∗

λ∗
− t∗

T ∗

)]
(3)

where R∗refδ is semi-amplitude of the wave with δ ∈ (0, 1), ϕ ∈ [−1, 1] is a smooth periodic
function of period one, λ∗ is the wavelength and T ∗ is the wave period. The stress σ∗ can be
decomposed in the following form

σ∗ = −p∗I + τ ∗,

where τ ∗ is traceless deviatoric part of the stress and p∗ = −(1/3)trτ ∗ is the mean normal stress,
or mechanical pressure. The Bingham stresses τ∗ij are related to the strain rates γ̇∗ij through the

Figure 1: Sketch of the system

1The starred variables denote dimensional quantities.
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constitutive equations 
τ∗ij =

(
2µ∗ +

τ∗o
γ̇∗

)
γ̇∗ij τ∗ > τ∗o ,

γ∗ij = 0 τ∗ 6 τ∗o ,

where τ∗o is the yield stress, µ∗ is the Bingham viscosity and where

γ̇∗ =

√
1

2

∑
γ̇∗ij γ̇

∗
ij , τ∗ =

√
1

2

∑
τ∗ijτ

∗
ij ,

are the second invariants of the strain and the stress respectively. In cylindrical coordinates

τ∗rr =

(
2µ∗ +

τ∗o
γ̇∗

)
∂v∗r
∂r∗

, τ∗rz =

(
2µ∗ +

τ∗o
γ̇∗

)
1

2

[
∂v∗r
∂z∗

+
∂v∗z
∂r∗

]

τ∗θθ =

(
2µ∗ +

τ∗o
γ̇∗

)
v∗r
r∗
, τ∗zz =

(
2µ∗ +

τ∗o
γ̇∗

)
∂v∗z
∂z∗

We suppose that the yielded (τ∗ > τ∗o ) and unyielded (τ∗ 6 τ∗o ) phases are separated by a sharp
interface r∗ = r∗p(z

∗, t∗), so that the whole domain can be divided into

Ω∗y =
{

(r∗, z∗) : z∗ ∈ [0, L∗], r∗ ∈ [r∗p, R
∗]
}

Ω∗u =
{

(r∗, z∗) : z∗ ∈ [0, L∗], r∗ ∈ [0, r∗p]
}

where Ω∗u represents the unyielded plug moving with uniform velocity. Assuming incompressibil-
ity, the velocity field satisfies

1

r∗
∂

∂r∗
(r∗v∗r ) +

∂v∗z
∂z∗

= 0, (4)

in Ω∗u ∪ Ω∗y. Following [4] we write the local differential form of the momentum balance in Ω∗y,
while in Ω∗u we write the momentum balance using the global integral formulation, because in this
latter region the stress is not defined and the local differential form of the momentum balance
cannot be used 2. Hence in Ω∗y

ρ∗
[
∂v∗r
∂t∗

+ v∗r
∂v∗r
∂r∗

+ v∗z
∂v∗r
∂z∗

]
= −∂p

∗

∂r∗
+

1

r∗
∂

∂r∗
(r∗τ∗rr)−

τ∗θθ
r∗

+
∂τ∗rz
∂z∗

ρ∗
[
∂v∗z
∂t∗

+ v∗r
∂v∗z
∂r∗

+ v∗z
∂v∗z
∂z∗

]
= −∂p

∗

∂z∗
+

1

r∗
∂

∂r∗
(r∗τ∗rz) +

∂τ∗zz
∂z∗

(5)

In Ω∗u, following [4], we write∫
Ω∗

u

∂

∂t∗
(ρ∗v∗)dV ∗ +

∫
∂Ω∗

u

ρ∗v∗(v∗ · n)dS =

∫
∂Ω∗

u

σ∗ndS, (6)

where n is the outward normal to ∂Ω∗u. For symmetry reasons the velocity field in the unyielded
phase is

v∗ = v∗p(t)ez,

2See [4] for detailed discussion on how to model the unyielded part of a Bingham fluid.
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where v∗p(t) is unknown. Writing (6) component-wise we find

0 =

∫
∂Ω∗

u

σ∗n · erdS∗,

ρ∗v̇∗p

∫
Ω∗

u

dV ∗ + ρ∗v∗
2

p

∫
∂Ω∗

u

(ez · n)dS =

∫
∂Ω∗

u

σ∗n · ezdS,

(7)

The boundary ∂Ω∗u can be split as follows

∂Ω∗u = Σ∗` ∪ Σ∗in ∪ Σ∗out

where Σ∗` is the lateral boundary r∗ = r∗p and Σ∗in, Σ∗out are the inlet and outlet boundaries. The
outward normals are

n` =

er −
(
∂r∗p
∂z∗

)
ez√

1 +

(
∂r∗p
∂z∗

)2
, nin = −ez, nout = ez.

We assume that the stress at the inlet and outlet is given by

σ∗in =


−p∗in 0 0

0 −p∗in 0

0 −p∗in

 σ∗out =


−p∗out 0 0

0 −p∗out 0

0 −p∗out

 (8)

where p∗in, p
∗
out may depend on time and are unknown. The particular form of (8) implies that

the tangential components of the stress at z∗ = 0 and z∗ = L∗ are zero and the stress is directed
along the normal ez, so that no torque is applied to the rigid plug. As a consequence (7)1 can
be rewritten as

0 =

∫
Σ∗

`

σ∗n` · erdS

︸ ︷︷ ︸
=0 symmetry

+

∫
Σ∗

in

σ∗innin · erdS

︸ ︷︷ ︸
=0

+

∫
Σ∗

out

σ∗outnin · erdS

︸ ︷︷ ︸
=0

.

Therefore the equation for the momentum in the unyielded plug reduces to the second of (7).
We notice that ∫

∂Ω∗
u

(ez · n)dS =

2π∫
0

dθ

L∗∫
0

−r∗p
∂r∗p
∂z∗

dz∗ − πr∗2p,in + πr∗
2

p,out = 0,

where r∗p,in = r∗p(0, t
∗), r∗p,out = r∗p(L

∗, t∗). Moreover

∫
∂Ω∗

u

σ∗n·ezdS =

2π∫
0

dθ

L∗∫
0

(
τ∗rz + p∗

∂r∗p
∂z∗
− τ∗zz

∂r∗p
∂z∗

)∣∣∣∣
r∗p

r∗pdz
∗+2π


r∗p,in∫
0

p∗inr
∗dr∗ −

r∗p,out∫
0

p∗outr
∗dr∗
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Assuming that the pressure is continuous across Σ∗in, Σ∗out , we can integrate by parts the above
and find ∫

∂Ω∗
u

σ∗n · ezdS = 2π

L∗∫
0

(
τ∗rz −

r∗p
2

∂p∗

∂z∗
− τ∗zz

∂r∗p
∂z∗

)∣∣∣∣
r∗p

r∗pdz
∗

In conclusion (7)2 reduces to

ρ∗v̇∗p

L∗∫
0

r∗
2

p dz =

L∗∫
0

(
2τ∗rz − r∗p

∂p∗

∂z∗
− 2τ∗zz

∂r∗p
∂z∗

)∣∣∣∣
r∗p

r∗pdz
∗ (9)

that represents the momentum balance of the unyielded phase. For what concerns the boundary
conditions we assume no-slip on the wall r∗ = R∗ so that

v∗r (R
∗, z∗, t∗) =

∂R∗

∂t∗
v∗z(R

∗, z∗, t∗) = 0. (10)

Still following [4], we assume that the velocity and the stress are continuous across the yield
surface r∗ = r∗p so that

Jv∗ · n`K = Jv∗ · t`K = 0 (11)

Jσ∗n` · n`K = −Jp∗K

[
1 +

(
∂r∗p
∂z∗

)2
]

+ Jτ∗rr − 2

(
∂r∗p
∂z∗

)
τ∗rz +

(
∂r∗p
∂z∗

)2

τ∗zzK = 0 (12)

Jσ∗n` · t`K = Jτ∗rzK +

(
∂r∗p
∂z∗

)
Jτ∗rr −

(
∂r∗p
∂z∗

)
τ∗rz − τ∗zzK = 0 (13)

on r∗ = r∗p where

t` =

(
∂r∗p
∂z∗

)
er + ez√

1 +

(
∂r∗p
∂z∗

)2
,

is the tangential vector to r∗p. Notice that (11) is equivalent to require Jv∗rK = Jv∗zK = 0. A further
condition to be imposed on the yield surface is the yield criterion

γ̇∗ = 0, (14)

or equivalently τ∗ = τ∗o . The flux at the inlet is given by

q∗in(t∗) =

∫
Σ∗

in

v∗zdS =

2π∫
0

dθ

R∗
in∫

0

r∗v∗z(r
∗, 0, t∗)dr∗ (15)

where
R∗in = R∗(r∗, 0, t∗) = R∗ref

[
1 + δϕ

(
− t∗

T ∗

)]
The mathematical problem is therefore formed by by equations (4), (5), (9) coupled with condi-
tions (10)-(15). To investigate the unsteady problem, we need also to indicate some appropriate
initial conditions.
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3 Lubrication scaling

In this section we rescale the variables to obtain a dimensionless formulation of the problem.
We begin by making the assumption that the reference amplitude of the tube R∗ref is far smaller
that the tube length L∗, i.e.

ε =
R∗ref
L∗
� 1. (16)

The approach taken here is to exploit the small aspect ratio ε to expand the momentum equa-
tions in a perturbation series in powers of ε. In doing so we develop the so-called thin film
or lubrication approximation. We rescale the variables to bring out balances that reflect the
lubrication approximation, namely

z∗ = L∗z r∗ = R∗refr r∗p = R∗refrp R∗ = R∗refR

v∗z = V ∗refvz v∗r = εV ∗refvr v∗p = V ∗refvp t∗ = t∗ref t

q∗in =
(
πR∗

2

refV
∗
ref

)
qin τ∗ij =

(
µ∗V ∗ref
R∗ref

)
τij γ̇∗ij =

(
V ∗ref
R∗ref

)
γ̇ij p∗ =

(
µ∗L∗V ∗ref

R∗
2

ref

)
p

where t∗ref is a characteristic time, V ∗ref is the characteristic velocity in the z∗ direction and where
R is given by the term in square bracket in (3). Notice also that the pressure is rescaled using
the Poiseuille formula. To detect the characteristic velocity V ∗ref we observe that

∂R∗

∂t∗
= −

R∗refδ

T ∗
ϕ′
(
z∗

λ∗
− t∗

T ∗

)
so that, recalling (10)1, it seems reasonable to take

εV ∗ref =
R∗ref
T ∗

=⇒ V ∗ref =
L∗

T ∗
. (17)

Let us select t∗ref = T ∗. We get
ε3Re

[
∂vr
∂t

+ vr
∂vr
∂r

+ vz
∂vr
∂z

]
= −∂p

∂r
+
ε

r

∂

∂r
(rτrr)− ε

τθθ
r

+ ε2∂τrz
∂z

εRe

[
∂vz
∂t

+ vr
∂vz
∂r

+ vz
∂vz
∂z

]
= −∂p

∂z
+

1

r

∂

∂r
(rτrz) + ε

∂τzz
∂z

(18)

where

Re =
ρ∗V ∗refR

∗
ref

µ∗

is the Reynolds number. The equation in the rigid plug (9) becomes

εRe
[
v̇p

1∫
0

r∗
2

p dz
]

=

1∫
0

(
2τrz − rp

∂p

∂z
− 2ετzz

∂rp
∂z

)∣∣∣∣
rp

rpdz (19)

while velocity acquires the form
v = vp(t)ez. (20)
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Mass conservation (4) becomes
1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0.

The boundary conditions on the tube walls are

vr(R, z, t) =
∂R

∂t
= −δϕ′

( z
λ
− t
)

vz(R, z, t) = 0, (21)

where
λ =

λ∗

L∗
(22)

On the yield surface r = rp we have the yield criterion

γ̇ =

√√√√ε2

2

[(
∂vr
∂r

)2

+
(vr
r

)2
+

(
∂vz
∂z

)2
]

+
1

4

(
ε2
∂vr
∂z

+
∂vz
∂r

)2

= 0,

and the continuity of the velocity and stress

JvrK = JvzK = 0, (23)

−JpK

[
1 + ε2

(
∂rp
∂z

)2
]

+ Jετrr − 2ε2

(
∂rp
∂z

)
τrz + ε3

(
∂rp
∂z

)2

τzzK = 0 (24)

JτrzK + ε

(
∂rp
∂z

)
Jτrr − ε

(
∂rp
∂z

)
τrz − τzzK = 0 (25)

The nondimensional stress components are

τij =

(
2 +

Bn

γ̇

)
γ̇ij

where

Bn =

(
τ∗oR

∗
ref

µ∗V ∗ref

)
is the Bingham number. The nondimensional inlet flux is

qin(t) = 2

Rin∫
0

rvz(r, 0, t)dr. (26)

Remark 1 We notice that

∂R

∂t
= −δϕ′

( z
λ
− t
) ∂R

∂z
=
δ

λ
ϕ′
( z
λ
− t
)

so that
∂R

∂t
+ λ

∂R

∂z
= 0.
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4 Thin-layer approximation: leading order

We exploit the small aspect ratio of the tube (ε � 1) to simplify the governing equations. The
idea is the following: we substitute the asymptotic sequences

(v, p, rp) = (v(0), p(0), r(0)
p ) + ε(v(1), p(1), r(1)

p ) + ε2(v(2), p(2), r(2)
p ) + ....... (27)

into the governing equations/boundary conditions and we gather together terms of the same
order obtaining a a hierarchy of equations that approximate the general problem. Due to the
smallness of the parameter ε we may focus on the zero order of these approximated problems,
sometimes referred to as the leading order, neglecting O(ε) terms. This drastically simplifies the
governing equations and analytic solutions may be found. We plug the expansion (27) into the
governing equations and we retain only the leading order terms. Dropping the superscript (0),
for simplicity of notation, we find that the equation in the yielded domain reduces to

1

r

∂

∂r
(rvr) +

∂vz
∂z

= 0

−∂p
∂r

= 0

−∂p
∂z

+
1

r

∂

∂r
(rτrz) = 0.

(28)

so that p = p(z, t) in the yielded domain. In the unyielded domain

1∫
0

(
2τrz − rp

∂p

∂z

)∣∣∣∣
rp

rpdz = 0 (29)

Mass balance is automatically satisfied in [0, rp] since the velocity field here is given by (20). The
boundary conditions become

On r = R


vr = −δϕ′

( z
λ
− t
)

vz = 0

On r = rp



JpK = 0

JτrzK = 0

γ̇ =
1

2

∣∣∣∣∂vz∂r
∣∣∣∣ = 0.

We can easily check that

γ̇ =
1

2

∣∣∣∣∂vz∂r
∣∣∣∣ r ∈ [rp, R]

so that the only non-zero component of the stress in the yielded phase is

τrz =
∂vz
∂r
− Bn. (30)

The minus sign in front of the Bingham number Bn is taken since we expect that the velocity vz
is decreasing in the interval [rp, R]. As a consequence τrz|rp = −Bn and (29) can be rewritten as

1∫
0

(
2Bnrp +

∂p

∂z
r2
p

)
dz = 0. (31)
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Let us now integrate (28)3 between rp and r > rp recalling that τrz is given by (30). We find

∂vz
∂r

= Bn
(

1− rp
r

)
+

1

2

∂p

∂z

(
r −

r2
p

r

)
r ∈ [rp, R]. (32)

Integrating the above with the no-slip condition vz = 0 on r = R we find

vz = Bn

[
r −R+ rp ln

(
R

r

)]
+

1

2

∂p

∂z

[
r2 −R2

2
+ r2

p ln

(
R

r

)]
r ∈ [rp, R].

Therefore

vp(t) = vz

∣∣∣
rp

= Bn

[
rp −R+ rp ln

(
R

rp

)]
+

1

2

∂p

∂z

[
r2
p −R2

2
+ r2

p ln

(
R

rp

)]
.

Now, integrating mass balance (28)1 between r and R we find

R vr(R, z, t)− r vr(r, z, t) = −
R∫
r

∂

∂z

[
ξvz(ξ, z, t)

]
dξ (33)

We observe that

∂

∂z

 R∫
r

ξvz(ξ, z, t)dξ

 = R
∂R

∂z
vz(R, z, t)︸ ︷︷ ︸

=0

+

R∫
r

∂

∂z

[
ξvz(ξ, z, t)

]
dξ

Hence (33) can be rewritten as

r vr(r, z, t) = −δϕ′(1 + δϕ) +
∂

∂z

 R∫
r

ξvz(ξ, z, t)dξ


︸ ︷︷ ︸

=:J(r,z,t)

Now
∂

∂z

[
J(r, z, t)

]∣∣∣
r=rp

=
∂

∂z

[
J(rp, z, t)

]
− ∂J

∂r
(rp, z, t)

∂rp
∂z

so that, recalling that vr = 0 on r = rp (because of symmetry) and that ∂J/∂r = −rvz(r, z, t),
we get

−δϕ′(1 + δϕ) +
∂

∂z

 R∫
rp

ξvz(ξ, z, t)dξ

+ rp vz(rp, z, t)︸ ︷︷ ︸
=vp(t)

∂rp
∂z

= 0

The above can be rewritten as

∂

∂z

−λR2

2
+

R∫
rp

ξvz(ξ, z, t)dξ + vp
r2
p

2

 =
∂

∂z

−λR2

2
+

R∫
0

ξvz(ξ, z, t)dξ

 = 0

implying

−λR
2

2
+

R∫
0

ξvz(ξ, z, t)dξ︸ ︷︷ ︸
adimensional flux q(z,t)/2

= C(t)
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Since the above must hold for every z we get

C(t) = −λR
2
in

2
+
qin
2

and
R∫

0

ξvz(ξ, z, t)dξ =

R∫
rp

ξvz(ξ, z, t)dξ + vp
r2
p

2
=
qin
2
− λ

(
R2
in −R2

2

)
Integrating by parts we find

R∫
rp

ξvz(ξ, z, t)dξ + vp
r2
p

2
= vz

ξ2

2

∣∣∣∣R
rp

+ vp
r2
p

2︸ ︷︷ ︸
=0

−
R∫

rp

ξ2

2

∂vz
∂ξ

dξ,

so that
R∫

rp

ξ2∂vz
∂ξ

dξ = −qin + λ
(
R2
in −R2

)
. (34)

Now, plugging (32) into (34), we find

R∫
rp

[
Bn(ξ2 − ξrp) +

∂p

∂z

(
ξ3 − ξr2

p

2

)]
dξ = −qin + λ

(
R2
in −R2

)
which yields [

Bn(
ξ3

3
− rp

ξ2

2
) +

∂p

∂z

(
ξ4

8
− r2

p

ξ2

4

)]∣∣∣∣R
rp

= −qin + λ
(
R2
in −R2

)
.

After some calculations we find

Bn

6
(R− rp)2(2R+ rp) +

1

8

∂p

∂z
(R2 − r2

p)
2 = −qin + λ

(
R2
in −R2

)
,

or equivalently

∂p

∂z
=
−8qin + 8λ(R2

in −R2)− 4Bn

3
(R− rp)2(2R+ rp)

(R2 − r2
p)

2
. (35)

In conclusion, recalling that vz(rp, z, t) = vp(t) we have that the system to be solved is the
following 

1∫
0

(
2Bnrp +

∂p

∂z
r2
p

)
dz = 0,

vp(t) = Bn

[
rp −R+ rp ln

(
R

rp

)]
+

1

2

∂p

∂z

[
r2
p −R2

2
+ r2

p ln

(
R

rp

)]
,

(36)

where ∂p/∂z is given by (35). The problem is formally closed since we have two equations for
the unknowns (vp, rp). From (35) we notice that in our problem we can either specify the inlet

11



flux qin or the pressure drop between the inlet and the outlet ∆p = pin − pout. Indeed, if we
suppose to know qin, then the pressure gradient comes directly from (35). If, on the other hand,
we suppose that the pressure difference ∆p is given, then integrating (35) in z between 0 and 1
we find

qin(t) =

∆p+

1∫
0

8λ(R2
in −R2)− 4Bn

3
(R− rp)2(2R+ rp)

(R2 − r2
p)

2
dz

8

1∫
0

dz

(R2 − r2
p)

2

. (37)

Now, inserting (37) into (35), we find ∂p/∂z in terms of ∆p.

4.1 The special case of a flat channel profile

Suppose that the tube profile is flat, so that R = 1 and suppose that qin is given. In this case it
is clear from (35), (36)2 that

rp = rp(t)
∂2p

∂z2
= 0,

meaning that the yield surface is flat and that the pressure gradient is a function of time only.
From (36)1 we find that

∂p

∂z
= −2Bn

rp
,

while, from (35),

2Bn

rp
=

8qin +
4Bn

3
(1− rp)2(2 + rp)

(1− r2
p)

2
.

Rearranging the above we get

(1− r2
p)

2︸ ︷︷ ︸
=:L(rp)

=

(
2

3

)
rp

[
α+ (1− rp)2(2 + rp)

]
︸ ︷︷ ︸

=:M(rp)

α =
6qin
Bn

(38)

Hence the solution to our problem is given by some r̄p(t) such that M(r̄p) = L(r̄p). Looking at
Fig. 2 we see that for every α > 0 (i.e. for every choice of positive Bn and qin) there exists only
one r̄p satisfying (38). Moreover it is easy to check that

v̄z(r, t) =


Bn

2r̄p
(1− r̄p)2 r ∈ [0, r̄p]

Bn

2r̄p
(1− r) (1 + r − 2r̄p) r ∈ [r̄p, 1]

v̄r(r, t) = 0.

Notice that v̄z(r, t) is continuously differentiable in [0, 1] with the classical parabolic profile in
the yielded part. Suppose now that the pressure drop ∆p(t) > 0 is given. Then the yield surface
and pressure gradient are given by

r̄p(t) =
2Bn

∆p
,

∂p

∂z
= −∆p,

12
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Figure 2: Plot of the functions M(rp), L(rp) for increasing α > 0.

respectively. In this case the constraint ∆p > 2Bn has to be enforced to guarantee that r̄p(t) < 1.
The velocity field is given by

v̄z(r, t) =


∆p

4

(
1− 2Bn

∆p

)2

r ∈
[
0,

2Bn

∆p

]
∆p

4
(1− r)

(
1 + r − 4Bn

∆p

)
r ∈

[
2Bn

∆p
, 1

] v̄r(r, t) = 0.

Also in this case v̄z(r, t) is continuously differentiable in [0, 1] with the parabolic profile in the
yielded part. The inlet flux is found from (37)

qin(t) =
∆p

4

[
1−

(
2

3

)(
2Bn

∆p

)(
1− 2Bn

∆p

)2(
2 +

2Bn

∆p

)]

where one can easily verify that the term in square bracket is always positive for 2Bn/∆p ∈ (0, 1).

4.2 An almost flat tube profile

In this section we invesigate the case in which the wall is a small perturbation of the flat tube
profile, whose solution has been pinpointed in the previous section. To this aim we look for a
solution of the form 

p = p(0) + δp(1) ∂p

∂z
=
∂p(0)

∂z
+ δ

∂p(1)

∂z

vp = v
(0)
p + δv

(1)
p rp = r

(0)
p + δr

(1)
p

vz = v
(0)
z + δv

(1)
z vr = v

(0)
r + δv

(1)
r

(39)

13



with R = 1 + δϕ, Rin = 1 + δϕin. The superscript (0), (1) are now intended w.r.t. the expansion
in δ and must not be confused with the ones used for the lubrication approximation. Plugging
(39) into (35), (36) and gathering the terms of the same order we find the problems at the zero
and first order w.r.t. to δ. The leading order problem is exactly that of Section 4.1 with the
explicit solution r(0)

p = r̄p and with
∂p(0)

∂z
= −2Bn

r
(0)
p

. (40)

Hence, we focus on the first order problem. Equation (35) becomes

∂p(1)

∂z
= r(1)

p A(t) +B(z, t), (41)

where

A(t) =
4Bn

(r
(0)2
p − 1)

B(z, t) =
8Bnϕ(1− r(0)

p ) + 16λr
(0)
p (ϕin − ϕ)

r
(0)
p (r

(0)2
p − 1)2

.

In deriving (41) we have exploited (40). The plug integral equation (36)1 becomes

1∫
0

[
r(1)
p C(t) + r(0)2

p B(z, t)
]
dz = 0, (42)

where

C(t) =
2Bn(r

(0)2

p + 1)

(r
(0)2
p − 1)

.

Finally the velocity of the plug at the first order is

v(1)
p =

∂p(1)

∂z
D(t) + r(1)

p E(t) + F (z, t), (43)

where

D(t) =
r

(0)2

p − 1− 2r
(0)2

p log
(
r

(0)
p

)
4

E(t) = Bn log
(
r(0)
p

)
,

F (z, t) = Bnϕ
(1− r(0)

p )

r
(0)
p

.

Inserting (41) into (43) we find

r(1)
p =

v
(1)
p − (BD + F )

(AD + E)
. (44)

Then, inserting (44) into (42) we find

v(1)
p =

1

C

1∫
0

[
(BD + F )C − r(0)2

p B(AD + E)
]
dz.

In conclusion we have found

r(1)
p =

∫ 1
0

[
(BD + F )C − r(0)2

p B(AD + E)
]
dz − C(BD + F )

C(AD + E)
. (45)
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The first order component of the yield surface is therefore determined in terms of the solution
at the zero order. Recalling the definitions of coefficients A, B, C, D, E, F one can show, after
some calculations that

v(1)
p (t) =

[
4λ

(r
(0)2
p + 1)

− Bn(r
(0)
p − 1)2(r

(0)
p + 1)

r
(0)
p (r

(0)2
p + 1)

] 1∫
0

ϕdz − 4λϕin

(r
(0)2
p + 1)

5 Numerics

To illustrate the behaviour of the solution we perform some numerical simulations based on the
results of Section 4.1 and 4.2. In particular, using the explicit formulas derived at the zero and
first order approximation in δ, we plot the evolution of the yield surface rp(z, t), of the pressure
gradient ∂p(z, t)/∂z and of the plug velocity vp(t). We begin by showing the evolution of the
yield surface rp = r

(0)
p +δr

(1)
p when δ is small. We assume that the travelling wave ϕ representing

the evolving wall of the tube is given by

ϕ
( z
λ
− t
)

= sin
[
2π
( z
λ
− t
)]
. (46)

We take
qin = 1, δ = 0.1 λ = 0.8 Bn = 0.5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.2

0.4

0.6

0.8

1

1.2

r

Time t = 0.000000 

R=1+

r
p
=r

p

(0)
+  r

p

(1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.2

0.4

0.6

0.8

1

1.2

r

Time t = 0.428571 

R=1+

r
p
=r

p

(0)
+  r

p

(1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.2

0.4

0.6

0.8

1

1.2

r

Time t = 0.571429 

R=1+

r
p
=r

p

(0)
+  r

p

(1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

z

0

0.2

0.4

0.6

0.8

1

1.2

r

Time t = 1.000000 

R=1+

r
p
=r

p

(0)
+  r

p

(1)

Figure 3: Evolution of the tube wall R and of yield surface rp with t ∈ [0, 1] and R given by (46).

In Fig. 3 the plots of the yield surface (dashed) and of the tube wall (solid) are shown for
increasing time. In particular t ∈ [0, 1] so that the figures describe the evolution of the system
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during the period of the oscillation. We notice that, at each time, the plug profile decreases
as the wall radius increases, i.e. the yield surface and the wall are out of phase. This result is
consistent with what found in [4] and in [2], where the same type of behaviour was observed for
the case of a static wall.

In Fig. 4 we plot the pressure gradient defined in (39) as a function of z and the pressure
drop ∆p = pin− pout which is a function of time only. We notice that the pressure gradient have
a sinusoidal behaviour with fixed maximum oscillation. The pressure drop changes with time
but remains always positive since the pressure gradient is always negative.

In Fig. 5 we plot the behaviour of the pressure gradient for z = 0.5 as a function of time for
different values of the Bingham number Bn and of the prescribed inlet discharge qin. We notice
that the increase of the Bingham number and of the inlet discharge produces an increase of the
modulus of the pressure gradient.

In Fig. 6 we plot the behaviour of the yield surface at z = 0.5 for different values of the
Bingham number Bn and of the prescribed inlet discharge qin. From Fig. 62 we notice that
there is a qcrit below which the characteristic behaviour according to which to a narrowing tube
corresponds an expanding plug stops. Therefore there’s a qcrit below which the plug and the
wall are in phase. Indeed, as one can see, if 0.8 & qin the monotonicity of the yield surface rp is
the same of the tube wall R. The same does not occur with Bn. Indeed, looking at Fig. 61, we
see that, independently of Bn, the tube wall R and the yield surface rp have opposite monotonic
character. Clearly the increase of the Bingham number, and hence of the yield stress, produces
an increase of the thickness of the rigid plug.

Finally, in Fig. 7, we plot the velocity of the plug vp(t) = v
(0)
p (t) + δv

(1)
p (t) for different

values of the Bingham number Bn and of the prescribed inlet discharge qin. We observe that the
velocity vp(t) increases with the Bingham number and with the inlet discharge for each time t.
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Figure 4: Pressure gradient ∂p/∂z as a function of space z and ∆p as a function of time t.

To investigate the dependence of the formation of the plug on δ, we introduce the quantity
Bnmin = Bnmin(δ), representing the minimum value of Bn (for a given δ) below which the plug
breaks. This value is actually a function of qin too, but here, for simplicity, we have set qin = 1.
In Fig. 8 we have plotted the relation δ − Bnmin with δ ranging from 0.05 to 0.15. As one can
see, the relation is linear in this range. The region where the plug does not break, i.e. the region
where the model is consistent, is the one to the right of the line, as indicated.
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Figure 5: Pressure gradient ∂p/∂z as a function of time at z = 0.5 for different Bn and qin.
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Figure 6: Yield surface rp = r
(0)
p + δr

(1)
p as a function of time at z = 0.5 for different Bn and qin.

6 Conclusions

We have proposed a model for the peristaltic motion of a Bingham fluid in a cylindrical tube
whose walls evolve as a periodic travelling wave. We have derived the model in a general 3D
framework using a cylindrical coordinate system. Following [4], the momentum equation for the
rigid part of the fluid has been written using an integral formulation in which the unyielded part
is treated as an evolving material surface. We have rescaled the problem exploiting the small
aspect ratio ε representing the ratio between the tube length and the typical radius and we have
focussed on the leading order approximation. For this specific case we have shown that it is
possible to find an explicit expression for the pressure gradient as a function of the (unknown)
yield surface rp(z, t), of the prescribed inlet discharge qin(t) and of the wall radius R(z, t). We
have proved that the mathematical problem eventually reduces to a set of two equation (one
of which is integral) for the yield surface rp and for the rigid plug velocity vp. We have shown
that when the oscillation amplitude δ of the wall is null we recover the classical one dimensional
Bingham model in cylindrical geometry. Then we have considered an oscillating wall which is
given as a small perturbation of the flat wall and we have proved that also in this case we may
determine explicit solutions that involve the solutions obtained when δ = 0.
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Figure 7: Velocity of the plug vp = v
(0)
p + δv

(1)
p as a function of time for different Bn and qin.
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