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Abstract

In this paper, we introduce the bi-periodic Lucas matrix sequence

and present some fundamental properties of this generalized matrix se-

quence. Moreover, we investigate the important relationships between

the bi-periodic Fibonacci and Lucas matrix sequences. We express that

some behaviours of bi-periodic Lucas numbers also can be obtained by

considering properties of this new matrix sequence. Finally, we say that

the matrix sequences as Lucas, k-Lucas and Pell-Lucas are special cases

of this generalized matrix sequence.
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1 Introduction and Preliminaries

There are so many studies in the literature that concern about the special

number sequences such as Fibonacci, Lucas, Pell, Jacobsthal, Padovan and Per-

rin (see, for example [1, 5, 6, 8, 10, 11, 13, 15], and the references cited therein).

Especially, the Fibonacci and Lucas numbers have attracted the attention of

mathematicians because of their intrinsic theory and applications.

Many authors have generalized Fibonacci and Lucas sequences in different

ways. For example, in [1, 5], the authors defined the bi-periodic Fibonacci

∗
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{qn}n∈N
sequence as

qn =

{

aqn−1 + qn−2, if n is even

bqn−1 + qn−2, if n is odd
, (1.1)

and the bi-periodic Lucas {ln}n∈N
sequence as in the form

ln =

{

aln−1 + ln−2, if n is odd

bln−1 + ln−2, if n is even
, (1.2)

where q0 = 0, q1 = 1, l0 = 2, l1 = a and a, b are nonzero real numbers. Also, in

[1], Bilgici gave some relations between bi-periodic Fibonacci and Lucas numbers

as in the following:

ln = qn−1 + qn+1, (1.3)

(ab+ 4) qn = ln+1 + ln−1. (1.4)

On the other hand, the matrix sequences have taken so much interest for

different type of numbers ([2, 3, 4, 7, 9, 12, 14, 16]). In [4], the authors defined

bi-periodic Fibonacci matrix sequence and obtained nth general term of this

matrix sequence as

Fn (a, b) =

(

(

b
a

)ε(n)
qn+1

b
a
qn

qn
(

b
a

)ε(n)
qn−1

)

, (1.5)

where

ε(n) =

{

1, n odd

0, n even
(1.6)

In addition, the authors found the Binet formula of the bi-periodic Fibonacci

matrix sequence as in the following

Fn (a, b) = A1 (α
n − βn) +B1

(

α2⌊n

2 ⌋+2 − β2⌊ n

2 ⌋+2
)

, (1.7)

where A1 =
[F1 (a, b)− bF0 (a, b)]

ε(n) [aF1 (a, b)−F0 (a, b)− abF0 (a, b)]
1−ε(n)

(ab)⌊
n

2 ⌋ (α− β)
,

B1 =
bε(n)F0 (a, b)

(ab)⌊
n

2 ⌋+1
(α− β)

.

In the light of all these above material, the main goal of this paper is to

investigate the relationships between the bi-periodic Fibonacci and bi-periodic

Lucas matrix sequences. To do that, firstly, we define the bi-periodic Lucas

matrix sequences, because it is worth to study a new matrix sequence related
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to less known numbers. Then, it will be given the generating function, Binet

formula and summation formulas for this new matrix sequence. By using the

results in Sections 2, we have a great opportunity to obtain some new properties

over this matrix sequence.

2 The matrix sequence of bi-periodic Lucas num-

bers

In this section, we mainly focus on the matrix sequence of the bi-periodic

Lucas numbers. In fact, we present the some properties and Binet formula of

this matrix sequence. Also, we investigate various summations of this matrix

sequence.

Now, we firstly define the bi-periodic Lucas matrix sequence as in the fol-

lowing.

Definition 2.1 For n ∈ N, the bi-periodic Lucas matrix sequence (Ln (a, b)) is

defined by

Ln (a, b) =

{

aLn−1 (a, b) + Ln−2 (a, b) , n odd

bLn−1 (a, b) + Ln−2 (a, b) , n even
, (2.1)

with initial conditions L0 (a, b) =

(

a 2

2a
b

−a

)

,L1 (a, b) =

(

a2 + 2a
b

a
a2

b
2a
b

)

and a, b are nonzero real numbers.

In the following theorem, we give the nth general term of the matrix sequence

in (2.1) via the bi-periodic Lucas numbers.

Theorem 2.2 For any integer n ≥ 0, we have the matrix sequence

Ln (a, b) =

(

(

a
b

)ε(n)
ln+1 ln

a
b
ln

(

a
b

)ε(n)
ln−1

)

, (2.2)

where ε(n) is as in the equation (1.6).

Proof. The proof can be seen by using the induction method and the Equation

(2.1). �

In [1], the author obtained the Cassini identity for the bi-periodic Lucas

numbers. As a consequence of Theorem 2.2, in the following corollary, we rewrite

this identity with a different approximation.
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Corollary 2.3 The following equalities are valid for all positive integers:

• Let Ln (a, b) be as in (2.2). Then

det(Ln (a, b)) = (ab+ 4)
(

−
a

b

)1+ε(n)

. (2.3)

• Cassini identity can also be obtained using bi-periodic Lucas matrix se-

quence. That is, by using Theorem 2.2 and the Equation (2.3), we can

write

(

b

a

)ε(n+1)

ln+1ln−1 −

(

b

a

)ε(n)

l2n = (ab+ 4) (−1)
n+1

.

Theorem 2.4 For every n ∈ N, the following statements are true:

(i) Ln−1 (a, b) + Ln+1 (a, b) =
a
b
(ab+ 4)Fn (a, b) ,

(ii) Fn−1 (a, b) + Fn+1 (a, b) =
b
a
Ln (a, b) .

Proof. We will only prove (i) since the proof of the other equality is similar to

(i). If we take T instead of Ln−1 (a, b) +Ln+1 (a, b), by using the Theorem 2.2,

we can write

T =

(

(

a
b

)1−ε(n)
ln ln−1

a
b
ln−1

(

a
b

)1−ε(n)
ln−2

)

+

(

(

a
b

)1−ε(n)
ln+2 ln+1

a
b
ln+1

(

a
b

)1−ε(n)
ln

)

=

(

(

a
b

)1−ε(n)
(ln+2 + ln) (ln+1 + ln−1)

a
b
(ln+1 + ln−1)

(

a
b

)1−ε(n)
(ln + ln−2)

)

.

From the Equation (1.4), we get

T =

(

(

a
b

)1−ε(n)
(ab+ 4) qn+1 (ab+ 4) qn

a
b
(ab+ 4) qn

(

a
b

)1−ε(n)
(ab+ 4) qn−1

)

=
a

b
(ab+ 4)

(

(

b
a

)ε(n)
qn+1

b
a
qn

qn
(

b
a

)ε(n)
qn−1

)

which is desired. �

Theorem 2.5 For every n ∈ N, we write the Binet formula for the bi-periodic

Lucas matrix sequence as the form

Ln (a, b) = Aαn −Bβn
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where A =
bL1 (a, b) + αL0 (a, b)− abL0 (a, b)

bε(n) (ab)⌊
n

2 ⌋ (α− β)
, B =

bL1 (a, b) + βL0 (a, b)− abL0 (a, b)

bε(n) (ab)⌊
n

2 ⌋ (α− β)

such that α = ab+
√
a2b2+4ab
2 , β = ab−

√
a2b2+4ab
2 .

Proof. It is easily found by benefitting the condition (ii) of Theorem 2.4 and

the Equation (1.7). �

Theorem 2.6 The following equalities are hold:

(i) The generating function for bi-periodic Lucas matrix sequence is

∞
∑

i=0

Li (a, b)x
i =

1

1− (ab+ 2)x2 + x4

(

A2 B2

a
b
B2 C2

)

,

where A2 = a+
(

a2 + 2a
b

)

x+ax2 − 2a
b
x3, B2 = 2+ax− (ab+ 2)x2+ax3

and C2 = −a+ 2a
b
x+ (3 + ab)ax2 −

(

a2 + 2a
b

)

x3.

(ii) For k ≥ 0, there exist

n
∑

k=0

Lk (a, b)x
−k =

1

1− (ab + 2)x2 + x4







































Ln−1 (a, b)

xn−1
−

Ln+1 (a, b)

xn−3

+
Ln (a, b)

xn
−

Ln+2 (a, b)

xn+2

+x4L0 (a, b) + x3L1 (a, b)

−x2 [(ab+ 1)L0 (a, b)− bL1 (a, b)]

−x (L1 (a, b)− aL0 (a, b))







































.

(iii) For k > 0, we have

∞
∑

k=0

Lk (a, b)x
−k =

x

1− (ab+ 2)x2 + x4

(

D E
a
b
E F

)

,

where D = ax3 +
(

a2 + 2a
b

)

x2 − ax+ 2a
b
, E = 2x3 + ax2 + (ab+ 2)x+ a

and F = −ax3 + 2a
b
x2 −

(

a2b+ 3a
)

x+ a2 + 2a
b
.

(iv) For k ≥ 0, the summation of the bi-periodic Lucas matrix sequence is

n−1
∑

k=0

Lk (a, b) =
1

ab

{

bε(n)a1−ε(n)Ln (a, b) + b1−ε(n)aε(n)Ln−1 (a, b)

−bL1 (a, b) + abL0 (a, b)− aL0 (a, b)

}

.

Proof. We establish just condition (i) . The proofs of (ii), (iii) and (iv) can

be done by taking account Binet formula of this matrix sequence.
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(i) Assume thatG(x) is the generating function for the sequence {Ln (a, b)}n∈N
.

Then, we have

G (x) =
∞
∑

i=0

Li (a, b)x
i = L0 (a, b) + L1 (a, b)x+

∞
∑

i=2

Li (a, b)x
i.

Thus, we can write

(

1− bx− x2
)

G (x) = L0 (a, b) + x (L1 (a, b)− bL0 (a, b))

+

∞
∑

i=2

(Li (a, b)− bLi−1 (a, b)− Li−2 (a, b))x
i.

Since L2i (a, b) = bL2i−1 (a, b) + L2i−2 (a, b), we get

(

1− bx− x2
)

G (x) = L0 (a, b) + x (L1 (a, b)− bL0 (a, b))

+

∞
∑

i=1

(L2i+1 (a, b)− bL2i (a, b)− L2i−1 (a, b))x
2i+1

= L0 (a, b) + x (L1 (a, b)− bL0 (a, b))

+ (a− b)x

∞
∑

i=1

L2i (a, b)x
2i.

Now, let

g (x) =

∞
∑

i=1

L2i (a, b)x
2i.

Since

L2i (a, b) = bL2i−1 (a, b) + L2i−2 (a, b)

= (ab+ 1)L2i−2 (a, b) + bL2i−3 (a, b)

= (ab+ 2)L2i−2 (a, b)− L2i−4 (a, b) ,

we have

(

1− (ab+ 2)x2 + x4
)

g (x) = L2 (a, b)x
2 + L4 (a, b)x

4 − (ab+ 2)L2 (a, b)x
4

+
∞
∑

i=3

[L2i (a, b)− (ab+ 2)L2i−2 (a, b) + L2i−4 (a, b)]x
2i.

Therefore,

g (x) =
L2 (a, b)x

2 + L4 (a, b)x
4 − (ab+ 2)L2 (a, b)x

4

1− (ab+ 2)x2 + x4

=
(L0 (a, b) + bL1 (a, b))x

2 − L0 (a, b)x
4

1− (ab+ 2)x2 + x4
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and as a result, we get

G (x) =
1

1− (ab+ 2)x2 + x4











L0 (a, b) + xL1 (a, b)

+x2 (bL1 (a, b)− L0 (a, b)− abL0 (a, b))

+x3 (aL0 (a, b)− L1 (a, b))











.

where L0 (a, b) =

(

a 2

2a
b

−a

)

,L1 (a, b) =

(

a2 + 2a
b

a
a2

b
2a
b

)

. Thus,

the desired expression is obtained.

�

3 Relationships between the bi-periodic Fibonacci

and Lucas matrix sequences

The following theorem express that there always exist some interpasses

between the bi-periodic Fibonacci and Lucas matrix sequences.

Theorem 3.1 For the matrix sequences (Fn (a, b))n∈N
and (Ln (a, b))n∈N

, the

following equalities are satisfied:

(i) L0 (a, b)Fn (a, b) =
(

b
a

)ε(n)
Ln (a, b) =

(

a
b

)ε(n+1)
(Fn−1 (a, b) + Fn+1 (a, b)),

(ii) Fn (a, b)L0 (a, b) = L0 (a, b)Fn (a, b) =
(

b
a

)ε(n)
Ln (a, b),

(iii) F1 (a, b)Ln (a, b) =
(

b
a

)ε(n)
(Fn+2 (a, b) + Fn (a, b)) =

(

b
a

)ε(n+1)
Ln+1 (a, b),

(iv) Ln (a, b)F1 (a, b) = F1 (a, b)Ln (a, b) =
(

b
a

)ε(n+1)
Ln+1 (a, b).

Proof. From the Equations (1.3), (1.4), (1.5) and (2.2), desired expressions are

obtained. �

Theorem 3.2 For m,n ∈ N, we have

(i) Fm (a, b)Fn (a, b) = Fn (a, b)Fm (a, b) =
(

b
a

)ε(mn)
Fm+n (a, b),

(ii) Fm (a, b)Ln (a, b) = Ln (a, b)Fm (a, b) =
(

b
a

)ε(m)ε(n+1)
Lm+n (a, b),

(iii) Lm (a, b)Ln (a, b) = Ln (a, b)Lm (a, b) =
(

a
b

)2−[ε(m+1)ε(n+1)]
(ab+ 4)Fm+n (a, b).

Proof.
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(i) Here, we will just show the truthness of the equality Fm (a, b)Fn (a, b) =
(

b
a

)ε(mn)
Fm+n (a, b) since the other can be done similarly. From the equa-

tion (1.7), we can write

Fn (a, b) =











1
α−β

{

aF1(a,b)+αF0(a,b)−abF0(a,b)

(ab)
n

2
αn − aF1(a,b)+βF0(a,b)−abF0(a,b)

(ab)
n

2
βn
}

, n even

1
α−β

{

αF1(a,b)+bF0(a,b)

(ab)
n−1
2

αn−1 − βF1(a,b)+bF0(a,b)

(ab)
n−1
2

βn−1

}

, n odd
.

Let K = aF1 (a, b)+αF0 (a, b)− abF0 (a, b) , L = aF1 (a, b)+βF0 (a, b)−

abF0 (a, b) , M = αF1 (a, b) + bF0 (a, b) and N = βF1 (a, b) + bF0 (a, b).

Then, we have K2 = (α− β)K, L2 = − (α− β)L, M2 = α2

a2 (α− β)K,

N2 = −β2

a2 (α− β)L, KM = (α− β)M, LN = − (α− β)N, KL =

KN = MN = LM = 0. Consequently, we get

Fm (a, b)Fn (a, b) =











Fm+n, m, n even
b
a
Fm+n, m, n odd

Fm+n, m even(odd), n odd(even)

which is desired.

(ii) Here, we will just show the truthness of the equality Fm (a, b)Ln (a, b) =
(

b
a

)ε(m)ε(n+1)
Lm+n (a, b) since the other can be done similarly. Now, by

the condition (ii) of Theorem 3.1 and (i), we write

Fm (a, b)Ln (a, b) =
(a

b

)ε(n)

Fm (a, b)Fn (a, b)L0 (a, b)

=
(a

b

)ε(n)
(

b

a

)ε(mn)

Fm+n (a, b)L0 (a, b)

=
(a

b

)ε(n)−ε(mn)−ε(m+n)

Lm+n (a, b)

=

(

b

a

)ε(m)ε(n+1)

Lm+n (a, b) .

(iii) We will just show the Lm (a, b)Ln (a, b) =
(

a
b

)2−[ε(m+1)ε(n+1)]
(ab+ 4)Fm+n (a, b).

So, from Theorem 2.4 and (i), we have

Lm (a, b)Ln (a, b) =
a

b
(Fm+1 (a, b) + Fm−1 (a, b))

a

b
(Fn+1 (a, b) + Fn−1 (a, b))

=
a2

b2























(

b
a

)ε[(m+1)(n+1)]
Fm+n+2 (a, b)

+
(

b
a

)ε[(m+1)(n−1)]
Fm+n (a, b)

+
(

b
a

)ε[(m−1)(n+1)]
Fm+n (a, b)

+
(

b
a

)ε[(m−1)(n−1)]
Fm+n−2 (a, b)























8



Lm (a, b)Ln (a, b) =
(a

b

)2−[ε(m+1)ε(n+1)]

[Fm+n+2 (a, b) + 2Fm+n (a, b) + Fm+n−2 (a, b)]

=
(a

b

)2−[ε(m+1)ε(n+1)]
[(

b

a

)

Lm+n+1 (a, b) +

(

b

a

)

Lm+n−1 (a, b)

]

=
(a

b

)2−[ε(m+1)ε(n+1)]

(ab+ 4)Fm+n (a, b) .

�

Theorem 3.3 For m,n, r ∈ N and n ≥ r, the following equalities are hold:

(i) Fm
n (a, b) =

(

b
a

)⌊m

2 ⌋ε(n) Fmn (a, b) ,

(ii) Fm
n+1 (a, b) =

(

a
b

)⌊m+1

2 ⌋ε(n)
Fm

1 (a, b)Fmn (a, b) ,

(iii) Fn−r (a, b)Fn+r (a, b) =
(

b
a

)ε(n−r)
Fn

2 (a, b) =
(

b
a

)(−1)nε(r)
F2

n (a, b) ,

(iv) Ln−r (a, b)Ln+r (a, b) =
(

a
b

)(−1)nε(r)
L2
n (a, b) ,

(v) Lm
0 (a, b)Fmn (a, b) =

(

b
a

)⌊m+1

2 ⌋ε(n)
Lm
n (a, b) .

Proof.

(i) We actually can write Fm
n (a, b) = Fn (a, b)Fn (a, b) · · · Fn (a, b) (m-times).

Now, by the condition (i) of Theorem 3.2, we clearly obtain

Fm
n (a, b) =











(

(

b
a

)ε(n)
)

m

2

Fmn (a, b) , m even
(

(

b
a

)ε(n)
)

m−1

2

Fn(m−1) (a, b)Fn (a, b) , m odd

=











(

(

b
a

)ε(n)
)

m

2

Fmn (a, b) , m even
(

(

b
a

)ε(n)
)

m−1

2

Fmn (a, b) , m odd

=

(

b

a

)⌊m

2 ⌋ε(n)
Fmn (a, b) .

(ii) Let us consider the left-hand side of the equality. As a similar approxima-

tion in (i), we write

Fm
n+1 (a, b) =











(

(

b
a

)ε(n+1)
)

m

2

Fm(n+1) (a, b) , m even
(

(

b
a

)ε(n+1)
)

m−1

2

F(n+1)(m−1) (a, b)Fn+1 (a, b) , m odd

9



Fm
n+1 (a, b) =











(

(

b
a

)ε(n+1)
)

m

2

Fm(n+1) (a, b) , m even
(

(

b
a

)ε(n+1)
)

m−1

2

Fm(n+1) (a, b) , m odd

=

(

b

a

)⌊m

2 ⌋ε(n+1)

Fmn+m (a, b)

=

(

b

a

)⌊m

2 ⌋ε(n+1)
(a

b

)ε(mn)

Fm (a, b)Fmn (a, b)

=

(

b

a

)⌊m

2 ⌋ε(n+1)−ε(mn)

Fmn (a, b)Fm (a, b) .

Similarly, we can write Fm (a, b) =
(

a
b

)ε(m−1)
Fm−1 (a, b)F1 (a, b). By

iterative processes, we obtain Fm (a, b) =
(

a
b

)⌊m

2 ⌋ Fm
1 (a, b). Thus,

Fm
n+1 (a, b) =

(

b

a

)⌊m

2 ⌋ε(n+1)−ε(mn)−⌊m

2 ⌋
Fmn (a, b)F

m
1 (a, b)

=
(a

b

)⌊m+1

2 ⌋ε(n)
Fm

1 (a, b)Fmn (a, b) .

(iii) From Theorem 3.2 and (i), we write

Fn−r (a, b)Fn+r (a, b) =

(

b

a

)ε[(n−r)(n+r)]

F2n (a, b)

=

(

b

a

)ε[(n−r)(n+r)]

Fn
2 (a, b)

=

(

b

a

)ε(n−r)

Fn
2 (a, b) .

Also, we give

Fn−r (a, b)Fn+r (a, b) =

(

b

a

)ε[(n−r)(n+r)]

F2n (a, b)

=

(

b

a

)ε[(n−r)(n+r)]
(a

b

)ε(n)

F2
n (a, b)

=

(

b

a

)(−1)nε(r)

F2
n (a, b) .

�
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Conclusion

In this paper, we define the bi-periodic Lucas matrix sequence and give

some properties of this new sequence. Thus, it is obtained a new genaralization

for the matrix sequences and number sequences that have the similar recur-

rence relation in the literature. By taking into account this generalized matrix

sequence and its properties, it also can be obtained properties of the bi-periodic

Lucas numbers. That is, if we compare the 1st row and 2nd column entries of

obtained equalities for matrix sequence in Section 2, we can get some properties

for bi-periodic Lucas numbers. Also, comparing the row and column entries of

obtained expressions for matrix sequences in Section 3, we can obtain relation-

ships between the bi-periodic Fibonacci and bi-periodic Lucas numbers. Finally,

some well-known matrix sequences as Lucas, k-Lucas and Pell-Lucas are special

cases of {Ln (a, b)} matrix sequence. That is, if we choose the different values of

a and b, then we obtain the summations, generating functions, Binet formulas

and relationships of the well-known matrix sequences in the literature:

• If we replace a = b = 1 in Ln (a, b), we obtain for Lucas matrix sequence.

• If we replace a = b = k in Ln (a, b), we obtain for k-Lucas matrix sequence.
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