
s
o
u
r
c
e
:
 
h
t
t
p
s
:
/
/
d
o
i
.
o
r
g
/
1
0
.
7
8
9
2
/
b
o
r
i
s
.
1
2
6
2
8
6
 
|
 
d
o
w
n
l
o
a
d
e
d
:
 
1
8
.
4
.
2
0
2
4

SADDLEPOINT APPROXIMATION TO THE DISTRIBUTION

OF THE TOTAL DISTANCE OF THE VON MISES-FISHER

CONTINUOUS TIME RANDOM WALK

R. Gatto

Submission: July 2017

Revisions: October 2017 and December 2017

Abstract

This article considers the random walk over Rp, with any p ≥ 2, where a particle starts at

the origin and progresses stepwise with fixed step lengths and von Mises-Fisher distributed

step directions. The total number of steps follows a continuous time counting process. The

saddlepoint approximation to the distribution of the distance between the origin and the

position of the particle at any time is derived. Despite the p-dimensionality of the ran-

dom walk, the computation of the proposed saddlepoint approximation is one-dimensional

and thus simple. The high accuracy of the saddlepoint approximation is illustrated by a

numerical comparison with Monte Carlo simulation.
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1 Introduction

A particle in Rp, with p ≥ 2, starts at the origin and proceeds stepwise with fixed step

lengths and along step directions that follow a prescribed directional distribution. This is

the random flight or random walk, which appears in some problems of statistical mechanics

and crystallography, refer e.g. to Shmueli and Weiss (1995). The determination of the

distribution of the total distance between the origin and the position of the particle after a

given number of steps is a classical problem, dating from the beginning of the 20-th century.

When the number steps arises from an independent continuous time counting process, this

random walk is a particular continuous time random walk (c.t.r.w). The c.t.r.w. was

introduced by Montroll and Weiss (1965) as a model for anomalous diffusion. The present

article provides a saddlepoint approximation to the distribution of the distance to the origin

of the c.t.r.w. with arbitrary dimension p ≥ 2 and when the directions of the steps of the

particle follow the von Mises-Fisher directional distribution.

The proposed saddlepoint approximation relies on the saddlepoint approximation to the

density of the sample mean introduced by Daniels (1954). This saddlepoint approxima-

tion is very accurate, substantially more than the asymptotic normal approximation and

in particular for approximating small tail probabilities. This is due to the fact that the

relative error is bounded. Two general references are Jensen (1995) and Sections 4.3 and

6.5 of Barndorff-Nielsen and Cox (1989). Therefore the saddlepoint approximation pro-

vides a computational efficient alternative to purely numerical methods, like Monte Carlo

simulation. The von Mises-Fisher distribution is the central model for the analysis of direc-

tional data. It shares many theoretical properties or characterizations with the Gaussian

distribution of the Euclidean space. It is fully presented in e.g. Section 9.3.2 of Mardia

and Jupp (2000).

The saddlepoint approximation of this article generalizes the one for the planar c.t.r.w.

of Gatto (2017a) from p = 2 to any dimension p ≥ 2. Because any planar direction

can be represented by an angle, in radians for example, any directional distribution on

the plane is usually represented by a distribution over [0, 2π). However with any higher

dimension p ≥ 3, the unit vector representation directions appears more convenient than the

angular one and the results of Gatto (2017a) cannot be directly generalized. The proposed

saddlepoint approximation generalizes also the multidimensional one with fixed number

of steps of Gatto (2017b). Gatto (2017c) proposes a saddlepoint approximation for the

c.t.r.w. with arbitrary dimension p ≥ 2, with random step lengths but with isotropic viz.

uniform step directions. The isotropic distribution is a special case of the von Mises-Fisher

and so this article provides a generalization in this sense. Recent surveys of the literature

on alternative or related approximations can be found e.g. in Gatto (2017a, 2017b, 2017c).

The derivation of the new saddlepoint approximation is given in Section 2. Some stan-

dard formulae and results related to directional distributions are given in Section 2.1.

The saddlepoint approximation of the c.t.r.w. with von Mises-Fisher directions is given
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in Section 2.2. Section 3 shows some numerical comparisons of the proposed saddlepoint

approximation with the distribution obtained by simulation.

2 The saddlepoint approximation

Some central formulae of directional distributions are given in Section 2.1. The von Mises-

Fisher distribution is introduced. The formulae of Section 2.1 are used in Section 2.2, which

provides the derivation of the saddlepoint approximation to the distribution of the total

distance of the c.t.r.w. with von Mises-Fisher directions.

2.1 Directional distributions

For p ≥ 3, y ∈ Rp\{0} can be re-expressed as y = g(α1, . . . , αp−1, r), where

y1 = r sinα1 sinα2 . . . sinαp−2 cosαp−1,

y2 = r sinα1 sinα2 . . . sinαp−2 sinαp−1,
...

...

yp−1 = r sinα1 sinα2,

yp = r cosα1, (1)

where 0 ≤ αj ≤ π, for j = 1, . . . , p − 2, 0 ≤ αp−1 < 2π and r > 0. For p = 2, y ∈ R2\{0}
can be re-expressed as y = g(α1, r), where y1 = r sinα1, y2 = r cosα1, where 0 ≤ α1 < 2π

and r > 0. The determinant of the Jacobian matrix of g is given by

J(α1, . . . , αp−2, r) = rp−1

p−1∏
j=2

sinp−j αj−1. (2)

In this formula and later in this article, we use the convention that the argument αp−2 and

the product
∏p−1

j=2 must be ignored when p = 2. Define the centered sphere of radius r > 0

by Sp−1
r = {y ∈ Rp | ||y|| = r}. For any continuous function z : Sp−1

r → R,∫
Sp−1
r

z(y)dλp,r(y) =

∫ 2π

0

∫ π

0

. . .

∫ π

0

z(g(α1, . . . , αp−1, r))J(α1, . . . , αp−2, r)dα1 . . . dαp−1,

(3)

where dλp,r(y) denotes the infinitesimal surface area, or Lebesgue measure, around y ∈ Sp−1
r

and over Sp−1
r . In this formula and later in this article, we use the convention that the above

integrals from 0 to π must be ignored when p = 2. Thus the surface area of Sp−1
r is given

by

ap,r =

∫
Sp−1
r

dλp,r(y) = rp−1 2π
p
2

Γ(p
2
)
. (4)
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Denote Sp−1 = Sp−1
1 and B(Sp−1) = {B ∩ Sp−1 | B ∈ B(Rp)} the Borel σ-field. The

uniform or isotropic distribution over (Sp−1,B(Sp−1)) is given by Up[B] =
∫
B
a−1
p dλp(x) =

a−1
p λp[B], ∀B ∈ B(Sp−1), where ap = ap,1 and λp = λp,1. The von Mises-Fisher distribution

over (Sp−1,B(Sp−1)), with mean direction µ ∈ Sp−1 and concentration κ ≥ 0, has density

with respect to (w.r.t.) the isotropic distribution Up given by

fp(x|µ, κ) = cp(κ) exp{κ〈µ,x〉}, ∀x ∈ Sp−1, (5)

where

cp(u) =


(
|u|
2

) p
2
−1 {

Γ
(
p
2

)
I p

2
−1(|u|)

}−1

, if u ∈ R\{0},

1, if u = 0.
(6)

Recall that Iν(z) is the modified Bessel function I of order ν, ∀z ∈ C and ν ∈ C such that

<ν > −1/2; see e.g. Abramowitz and Stegum (1972), 9.6.18, p. 376. The density w.r.t.

λp has normalizing constant a−1
p cp(κ). We use the abbreviation vMF(µ, κ) distribution for

the von Mises-Fisher distribution with mean direction µ and concentration κ.

2.2 Derivation of the saddlepoint approximation

We denote byX1,X2, . . . independent directional random vectors taking values in Sp−1 and

with a common absolutely continuous distribution w.r.t. Up. The resultant vector of the n

first directions is Rn =
∑n

j=1Xj, its length Rn = ||Rn|| and its direction Mn = Rn/Rn.

We denote by {Nt}t≥0 a continuous time counting process, i.e. an a.s. nondecreasing

continuous time process taking nonnegative integer values. It is reasonable to assume

N0 = 0 a.s., so that only the times t > 0 are interesting. We assume that the sigma fields

σ (∪t≥0 σ(Nt)) and σ
(
∪∞j=1 σ(Xj)

)
are independent which means that the counting process

is independent of the elementary directions. We define X0 = 0 and denote R̂t =
∑Nt

j=0Xj,

R̂t = ||R̂t||, viz. the total distance traveled by the particle from the time 0 to the time

t > 0, and M̂t = R̂t/R̂t, when R̂t > 0. The Lebesgue measure over Rp is denoted by lp.

The following basic result can be found for example in Gatto (2017c).

Lemma 2.1 (First polar factorization lemma). Let n ≥ 2 and X1, . . . ,Xn be independent

isotropic directional random vectors. Let wp,n be the joint density of (Mn, Rn) w.r.t. Up×l1
and let qp,n be the density of Rn, w.r.t. l1. Then

wp,n(x, r) = qp,n(r), ∀x ∈ Sp−1, r ∈ (0, n].

Assign the vMF(µ, κ) distribution with density (5) to the elementary directionsX1,X2,

. . .. Denote by qκ,p,n the Lebesgue density of the resultant length Rn, under the vMF(µ, κ)

distribution. Then q0,p,n = qp,n. The joint density of (Mn, Rn) w.r.t. Up × l1 and at
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(x, r) ∈ Sp−1 × (0, n] is denoted wµ,κ,p,n(x, r). It can be obtained as follows,

wµ,κ,p,n(x, r) =

∫
. . .

∫
x1+...+xn=rx

cnp (κ) exp{κ〈µ,x1 + . . .+ xn〉}dUp(x1) . . . dUp(xn)

= cnp (κ) exp{κr〈µ,x〉}wµ,0,p,n(x, r)

= cnp (κ) exp{κr〈µ,x〉}q0,p,n(r), (7)

where the last equality follows from the First polar factorization lemma 2.1. Because the

density of Rn at r ∈ (0, n] is given by qκ,p,n(r) =
∫
Sp−1 wµ,κ,p,n(x, r)dUp(x), (7) leads to the

following result.

Lemma 2.2 (Tilting lemma). The densities of Rn w.r.t. l1, under isotropy and under the

vMF(µ, κ) distribution, respectively denoted qp,n and qκ,p,n, satisfy the relation

qκ,p,n(r) =
cnp (κ)

cp(κr)
· qp,n(r), ∀r ∈ (0, n].

Define pn(t) = P[Nt = n], ∀n ∈ {0, 1, . . .} and t ≥ 0. Let t > 0 and denote by N0
t the

zero-truncation of Nt: set N0
t = Nt over {Nt > 0} and renormalize its distribution. Thus

the distribution of N0
t is given by p0

n(t) = P[N0
t = n] = pn(t)/{1 − p0(t)}, ∀n ∈ {1, 2, . . .}

and t > 0. Denote by q̂κ,p,t the conditional density of R̂t given {Nt > 0}, w.r.t. l1 and

under the vMF(µ, κ) distribution. Denote by ĝµ,κ,p,t the conditional density of R̂t given

{Nt > 0}, w.r.t. lp and under the vMF(µ, κ) distribution.

Lemma 2.3 (Second polar factorization lemma). Let t > 0. Under the vMF(µ, κ) distri-

bution, with density given by (5), the conditional joint density of (M̂t, R̂t) given {Nt > 0}
and w.r.t. Up × l1 factorizes as

ŵµ,κ,p,t(x, r) = fp(x | µ, κr) · q̂κ,p,t(r), ∀x ∈ Sp−1 and r > 0. (8)

Alternatively, consider the angular polar coordinates of R̂t given in (1). Let ŵ◦µ,κ,p,t
be the conditional joint Lebesgue density of the polar angles (α̂1,t, . . . , α̂p−1,t) and of the

resultant length R̂t of R̂t, given {Nt > 0}. Then this density factorizes as

ŵ◦µ,κ,p,t(α1, . . . , αp−1, r) = a−1
p fp(g(α1, . . . , αp−1, 1) | µ, κr)

p−1∏
j=2

sinp−j αj−1 · q̂κ,p,t(r), (9)

∀α1, . . . , αp−2 ∈ [0, π], αp−1 ∈ [0, 2π) and r > 0, where g is the diffeomorphism (1) and

where ap = ap,1 is given by (4).

We denote by Pµ,κ the probability measure under the vMF(µ, κ) distribution.

Proof. Let r, t > 0 and x ∈ Sp−1, then from (7), for the fourth equality in (10), and from
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the Tilting lemma 2.2, for the last equality in (10), it follows that

ŵµ,κ,p,t(x, r)dUp(x)dl1(r) = Pµ,κ[M̂t ∈ Bp−1(x, dλp(x)), R̂t ∈ (r, r + dl1(r))|Nt > 0]

=

∑∞
n=0 Pµ,κ[M̂t ∈ Bp−1(x, dλp(x)), R̂t ∈ (r, r + dl1(r)), Nt = n,Nt > 0]

P[Nt > 0]

=
∞∑
n=1

wµ,κ,p,n(x, r)dUp(x)dl1(r)p0
n(t)

=
∞∑
n=1

cnp (κ) exp{κr〈µ,x〉}q0,p,n(r)dUp(x)dl1(r)p0
n(t)

= fp(x | µ, κr)
∞∑
n=1

cnp (κ)

cp(κr)
q0,p,n(r)dUp(x)dl1(r)p0

n(t)

= fp(x | µ, κr)dUp(x)
∞∑
n=1

qκ,p,n(r)p0
n(t)dl1(r), (10)

where Bp−1(x, s) is an arbitrary open set of Sp−1 containing x and possessing surface area

s > 0. Integrating the last expression over Sp−1 yields

q̂κ,p,t(r)dl1(r) =
∞∑
n=1

qκ,p,n(r)p0
n(t)dl1(r). (11)

Then (8) is obtained after inserting (11) into (10).

In order to see (9), use (3) to write, ∀r > 0,∫
Sp−1

ŵµ,κ,p,t(x, r)a
−1
p dλp(x) =∫ 2π

0

∫ π

0

. . .

∫ π

0

ŵµ,κ,p,t(g(α1, . . . , αp−1, 1), r)a−1
p J(α1, . . . , αp−2, 1)dα1 . . . dαp−1.

From the factorization (8), this is equal to∫ 2π

0

∫ π

0

. . .

∫ π

0

a−1
p fp(g(α1, . . . , αp−1, 1) | µ, κr)q̂κ,p,t(r)J(α1, . . . , αp−2, 1)dα1 . . . dαp−1.

But the integrand is ŵ◦µ,κ,p,t(α1, . . . , αp−1, r).

We now define some useful functions. We first define

Ap(u) =
I p

2
(u)

I p
2
−1(u)

, ∀u ≥ 0, (12)

which is a continuous increasing mapping from [0,∞) onto [0, 1). Define also by MN0
t

the

moment generating function (m.g.f.) of N0
t and by KN0

t
= logMN0

t
its cumulant generating

function (c.g.f.), ∀t > 0. We define also the following functions:

M̄κ(u) =
cp(κ)

cp(u)
, K̄κ(u) = log M̄κ(u), (13)

6



ˆ̄Kκ,t(u) = KN0
t
◦ K̄κ(u), (14)

Ĉκ,p,t(u) = ˆ̄K ′κ,t(u), (15)

the Hessian matrix of ˆ̄Kκ,t and its determinant by

Ĥκ,p,t(v) =
∂2

∂v>∂v
ˆ̄Kκ,t(u) and σ̂2

κ,p,t(u) = det Ĥκ,p,t(v), (16)

where u = ||v|| and v ∈ Rp.

Theorem 2.4 (Saddlepoint approximation to the density). Let r and t > 0, then the

saddlepoint approximation to q̂κ,p,t(r), the conditional density of R̂t given {Nt > 0}, w.r.t.

l1 and under the vMF(µ, κ) distribution, is given by

˜̂qκ,p,t(r) = 21− p
2 Γ−1

(p
2

)
σ̂−1
κ,p,t(ū)MN0

t

(
log

cp(κ)

cp(ū)

)
c−1
p (κr)rp−1e−ūr, (17)

where the saddlepoint ū is the positive, continuous and increasing function of r obtained by

solving w.r.t. u the equation

Ĉκ,p,t(u) = r, (18)

where

Ĉκ,p,t(u) = K ′N0
t

(
log

cp(κ)

cp(u)

)
Ap(u), (19)

σ̂2
κ,p,t(u) = Ĉ ′κ,p,t(u)

(
Ĉκ,p,t(u)

u

)p−1

, (20)

σ̂2
κ,p,t(ū) =

( r
ū

)p−1
{
K ′′N0

t

(
log

cp(κ)

cp(ū)

)
A2
p(ū)− rAp(ū)− r(p− 1)

ū
+

r

Ap(ū)

}
and where the functions cp and Ap are given by (6) and (12), respectively. Let b̂−1

κ,p,t =∫∞
0

˜̂qκ,p,t(r)dr, then the normalized saddlepoint approximation is given by b̂κ,p,t ˜̂qκ,p,t(r).

We denote by Eµ,κ the expectation functional under the vMF(µ, κ) distribution.

Proof. This proof is made of three main parts: I, II and III. Part I provides formulae for

m.g.f., c.g.f. and for other important functions. Relationships between these functions are

provided. Part II provides the p-dimensional saddlepoint approximation to the conditional

density of the position of the particle. Part III extracts from this p-dimensional saddlepoint

7



approximation the one-dimensional density of the total distance of the particle.

I. The m.g.f. of X1 at v ∈ Rp is given by

Mµ,κ(v) = Eµ,κ[exp{〈v,X1〉}]

=

∫
Sp−1

exp{〈v,x〉}cp(κ) exp{κ〈µ,x〉}dUp(x)

=
cp(κ)

cp(||κµ+ v||)
. (21)

Let t > 0. The m.g.f. of R̂t conditional on {Nt > 0} at v ∈ Rp is obtained as follows,

M̂µ,κ,t(v) = Eµ,κ[exp{〈v, R̂t〉}|Nt > 0]

= (P[Nt > 0])−1Eµ,κ[Eµ,κ[exp{〈v, R̂t〉}I{Nt > 0}|Nt]]

= (P[Nt > 0])−1Eµ,κ[Eµ,κ[exp{〈v, R̂t〉}|Nt]I{Nt > 0}]
= Eµ,κ[M

Nt
µ,κ(v)|Nt > 0]

= Eµ,κ[M
N0

t
µ,κ(v)]

= MN0
t
◦Kµ,κ(v), (22)

where MN0
t

is the m.g.f. of N0
t , Mµ,κ is given by (21) and Kµ,κ(v) = logMµ,κ(v) is

the c.g.f. Recall that KN0
t

= logMN0
t
. Thus (22) yields K̂µ,κ,t(v) = KN0

t
◦ Kµ,κ(v). It

then follows from definition (13) and from (21) that M̄κ(||κµ + v||) = Mµ,κ(v). Thus,

M̄κ(u) = Mµ,κ(v − κµ) = cp(κ)
∫
Sp−1 exp{〈v,x〉}dUp(x), which is cp(κ) times the m.g.f. of

the isotropic distribution. By using the recurrence relation

uIν+1(u) = uI ′ν(u)− νIν(u), (23)

see e.g. Abramowitz and Stegum (1972), 9.6.26, p. 376, and by using (6), one obtains

d

du

1

cp(u)
= Γ

(p
2

)(u
2

)1− p
2
I p

2
(u). (24)

Thus it follows from (13) and (24) that

K̄ ′κ(u) = cp(u)
d

du

1

cp(u)
= cp(u)Γ

(p
2

)(u
2

)1− p
2
I p

2
(u) = Ap(u). (25)

Define by v̄ the solution w.r.t. v of

∂

∂v
ˆ̄Kκ,t(u) = Ĉκ,p,t(u)

∂u

∂v
= K ′N0

t
◦ K̄κ(u)K̄ ′κ(u)z = y, (26)

where u = ||v|| and z = v/u, where ˆ̄Kκ,t and Ĉκ,p,t are respectively defined by (14) and

(15). Let ū = ||v̄|| and z̄ = v̄/ū. Let r = ||y|| and x = y/r. It follows from (25) and (26)

that ū is the solution w.r.t. u of

K ′N0
t
◦ K̄κ(u)Ap(u) = r,

8



i.e. of (18), and z̄ = x. Denote by Ip×p the identity matrix of size p× p and assume that

v is a p× 1 matrix. Recalling the definitions (16), we find

σ̂2
κ,p,t(u) = det

(
Ĉκ,p,t(u)

u

[{
uĈ ′κ,p,t(u)

Ĉκ,p,t(u)
− 1

}
vv>

u2
+ Ip×p

])

=

(
Ĉκ,p,t(u)

u

)p

det

(
1 +

{
uĈ ′κ,p,t(u)

Ĉκ,p,t(u)
− 1

}
v>v

u2

)

= Ĉ ′κ,p,t(u)

(
Ĉκ,p,t(u)

u

)p−1

,

because of Sylvester’s determinant identity, viz. det(Im×m + Am×nBn×m) = det(In×n +

Bn×mAm×n). It follows from (23) and

I ′ν(u) = Iν−1(u)− ν

u
Iν(u),

see Abramowitz and Stegum (1972), 9.6.26, p. 376, that Ap satisfies Riccati’s differential

equation

A′p(u) + A2
p(u) +

p− 1

u
Ap(u) = 1, ∀u > 0.

Riccati’s equation, (18), (19) and some algebraic manipulations lead to (20). Differentiating

(18) w.r.t. r yields

dū

dr
=

1

Ĉ ′κ,p,t(ū)
=
( r
ū

)p−1

σ̂−2
κ,p,t(ū) > 0,

which implies that the saddlepoint ū is a continuous and increasing function of r.

II. The Legendre-Fenchel transform or convex conjugate of the convex function f : Rp → R
is given by L(f)(y) = supv∈D {〈v,y〉 − f(v)}, for y ∈ Rp and where D = {v ∈ Rp| |f(v)| <
∞}. From the multidimensional saddlepoint approximation, refer e.g. to Section 6.5 of

Barndorff-Nielsen and Cox (1989), the saddlepoint approximation to ĝµ,κ,p,t(y), the condi-

tional density of R̂t given {Nt > 0} at y ∈ Rp, under the vMF(µ, κ) distribution and w.r.t.

lp, is given by

˜̂gµ,κ,p,t(y) = (2π)−
p
2 σ̂−1

κ,p,t(ū) exp{−L(K̂µ,κ,t) (y)}. (27)

The Legendre-Fenchel transform appearing in this formula can be computed as follows,

L(K̂µ,κ,t) (y) = supv∈Rp

{
〈v,y〉 − K̂µ,κ,t(v)

}
= supv∈Rp

{
〈v − κµ,y〉 − K̂µ,κ,t(v − κµ)

}
= supz∈Sp−1,u≥0

{
〈uz, rx〉 − K̂µ,κ,t(uz − κµ)

}
− 〈κµ,y〉

= supu≥0

{
ur − ˆ̄Kκ,t(u)

}
− 〈κµ,y〉

= L( ˆ̄Kκ,t) (r)− 〈κµ,y〉

= ū r − ˆ̄Kκ,t(ū)− κr〈µ,x〉,

9



where ū is uniquely defined by (18). The fourth of the above equalities is due to K̂µ,κ,t(uz−
κµ) = ˆ̄Kκ,t(u). The sixth and last equality follows from the strict convexity and the differ-

entiability of ˆ̄Kκ,t. We can now join this last result with (27) and obtain the saddlepoint

approximation at y ∈ Rp as

˜̂gµ,κ,p,t(y) = (2π)−
p
2 σ̂−1

κ,p,t(ū) ˆ̄Mκ,t(ū)e−ūr exp{κr〈µ,x〉}. (28)

III. It follows from (2) and (3) that, under the vMF(µ, κ) distribution, the joint conditional

Lebesgue density of the polar angles and the resultant length (α̂1,t, . . . , α̂p−1,t, R̂t) factorizes

as

ŵ◦µ,κ,p,t(α1, . . . , αp−1, r) = ĝµ,κ,p,t(g(α1, . . . , αp−1, r))J(α1, . . . , αp−2, r)

=

[
ap

fp(g(α1, . . . , αp−1, 1)|µ, κr)
ĝµ,κ,p,t(g(α1, . . . , αp−1, r))r

p−1

]
· fp(g(α1, . . . , αp−1, 1)|µ, κr)

ap

p−1∏
j=2

sinp−j αj−1,

∀α1, . . . , αp−2 ∈ [0, π], αp−1 ∈ [0, 2π) and r > 0, where g is the diffeomorphism (1). It

follows from this last formula and from (9) of the Second polar factorization lemma that

the squared bracket of the above formula is the conditional density of Rt, that is,

q̂κ,p,t(r) =
ap

cp(κr)eκr〈µ,y〉
ĝµ,κ,p,t(y)rp−1, ∀r > 0.

By inserting the saddlepoint approximation in the Euclidean space (28) into this last for-

mula, we obtain the saddlepoint approximation

˜̂qκ,p,t(r) =
ap

cp(κr)
(2π)−

p
2 σ̂−1

κ,p,t(ū) ˆ̄Mκ,t(ū)rp−1e−ūr, ∀r > 0,

viz. (17).

In agreement with (11), the saddlepoint approximation of Theorem 2.4 does not depend

on µ.

Corollary 2.5 (Saddlepoint approximation to the survival function). Let r and t > 0, then

the saddlepoint approximation to the survival function
¯̂
Qκ,p,t(r) = Pµ,κ[R̂t ≥ r | Nt > 0] is

given by

˜̂̄
Qκ,p,t(r) = b̂κ,p,t2

1− p
2 Γ−1

(p
2

)∫ u∗

ū

up−1σ̂κ,p,t(u)MN0
t
◦ log

cp(κ)

cp(u)

· c−1
p

(
κĈκ,p,t(u)

)
exp

{
−uĈκ,p,t(u)

}
du,

where the lower integration bound ū is the saddlepoint at r, implicitly defined by (18), the

upper integration bound is u∗ = lims→∞ ū(s), ū(s) denoting the saddlepoint ū at s > 0, and

where σ̂κ,p,t(u) is given by (20). The normalizing constant b̂κ,p,t can be obtained with the

above integral with ū = 0.
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Proof. This approximation to the survival function is the integral w.r.t. s of the saddlepoint

approximation to the density ˜̂qκ,p,t(s), given by (17), with the change of variable from s to u

defined by Ĉκ,p,t(u) = s, i.e. by the saddlepoint equation (19). This exempts the numerical

computation of the saddlepoints over the integration grid. The integrand is then simplified

by using

sp−1(u)
ds(u)

du
= Ĉp−1

κ,p,t(u)Ĉ ′κ,p,t(u) = up−1σ̂2
κ,p,t(u);

refer to (20).

It is direct to verify that the saddlepoint approximations given in Theorem 2.4 and

Corollary 2.5 simplify to the following results: to the approximations given in Proposition

3.4 of Gatto (2017a), when p = 2; to the approximations given in Theorem 2.9 and Corollary

2.10 of Gatto (2017c), when κ = 0; and to the approximations given in Theorem 3.6

and the following tail probability formula of Gatto (2017b), when Nt = n, for any fixed

n ∈ {1, 2, . . .}.
An important application of Theorem 2.4 and Corollary 2.5 is when the counting compo-

nent {Nt}t≥0 is the inhomogeneous Poisson process, precisely the Poisson random measure

with mean measure Λ over ([0,∞),B([0,∞))). In this case Λ is absolutely continuous w.r.t.

the Lebesgue measure l1 and, ∀ 0 ≤ s < t <∞, E[Nt−Ns] = Λ((s, t]). With the simplified

notation Λ(t) = Λ((0, t]), we have pn(t) = e−Λ(t)Λn(t)/n!, ∀n ∈ {0, 1, . . .}. The required

m.g.f. of the zero-truncated process at time t, N0
t , is given by

MN0
t
(v) =

1− eΛ(t)ev

1− eΛ(t)
, ∀v ∈ R.

The required first two derivatives of the c.g.f. are

K ′N0
t
(v) =

Λ(t)ev

1− e−Λ(t)ev
and K ′′N0

t
(v) =

Λ(t)ev

1− e−Λ(t)ev

(
1− Λ(t)ev

eΛ(t)ev − 1

)
, ∀v ∈ R.

In this case {Rt}t≥0 is the inhomogeneous compound Poisson process with von Mises-Fisher

step directions.

3 Numerical comparisons

Consider the von Mises-Fisher c.t.r.w. with number of direction changes over time modu-

lated by the homogeous Poisson process with rate λ > 0. Thus Λ(t) = λt, ∀t ≥ 0.

We first consider the conditional density of the total distance R̂t given {Nt > 0} of

the c.t.r.w. with p = 3, λ = 1, t = 8. The concentrations κ = 1/2 and 3 are considered

respectively in Figures 1 and 2. The value of µ is irrelevant. In these figures, the con-

tinuous curve is the normalized saddlepoint approximation and the histogram is obtained

from 50000 conditional simulations. We can see that the saddlepoint approximations are

accurate, in particular in the right-tail, which is the most important for applications. In
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Figure 2 we note some irregularities on the left tail of the Monte Carlo distribution. In

this situation the saddlepoint approximation cannot reproduce these irregularities but acts

like as smoother. Figure 3 considers the conditional densities of the total distance R̂t with

p = 3, λ = 1, t = 8 and κ = 2, 4, 6, appearing respectively from the left to the right. It

shows the evolution of the density w.r.t. the directional concentration κ. Figure 4 considers

the conditional densities of the total distance R̂t with λ = 1, t = 8, κ = 3 and p = 3, 5, 7,

appearing respectively from the right to the left. It shows the evolution of the density w.r.t.

the dimension p.

These computations are performed with Matlab. The related computer programs are

available at http://www.stat.unibe.ch.
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Figure 1: Saddlepoint approximation and histogram of simulations with vMF(µ, 1/2) direc-

tions and Poisson number of steps with p = 3, λ = 1 and t = 8
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Figure 2: Saddlepoint approximation and histogram of simulations with vMF(µ, 3) direc-

tions and Poisson number of steps with p = 3, λ = 1 and t = 8
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Figure 3: Saddlepoint approximations with vMF(µ, κ) directions and Poisson number of

steps with p = 3, λ = 1, t = 8 and κ = 2, 4, 6, appearing respectively from left to right
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Figure 4: Saddlepoint approximations with vMF(µ, 3) directions and Poisson number of

steps with λ = 1, t = 8 and p = 3, 5, 7, appearing respectively from right to left
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