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Maximal classes of matrices determining generalized inverses

D.E. Ferreyra∗, F.E. Levis∗, N. Thome†

Abstract

This paper derives some further results on recent generalized inverses studied in the literature,

namely core EP, DMP, and CMP inverses. Our main aim is to develop maximal classes of matrices

for which their representations remain valid.
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1 Introduction

Let Cn×n be the set of n × n complex matrices. For A ∈ Cn×n, the symbols A∗, A−1, rk(A), N (A),

and R(A) will denote the conjugate transpose, the inverse, the rank, the kernel, and the range space

of A, respectively. Moreover, In will refer to the n× n identity matrix.

Let A ∈ Cn×n. We recall that the unique matrix X ∈ Cn×n satisfying

(1)AXA = A, (2)XAX = X, (3) (AX)∗ = AX, and (4) (XA)∗ = XA,

is called the Moore-Penrose inverse of A and is denoted by A†.

For a given complex square matrix A, the index of A, denoted by Ind(A), is the smallest nonnegative

integer k such that R(Ak) = R(Ak+1). We observe that the index of a nonsingular matrix A is 0, and

by convention, the index of the null matrix is 1.

We also recall that the Drazin inverse of A ∈ Cn×n is the unique matrix X ∈ Cn×n such that

(2)XAX = X, (5)AX = XA, and (6k)Ak+1X = Ak,
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where k = Ind(A), and is denoted by Ad. If A ∈ Cn×n satisfies Ind(A) ≤ 1, then the Drazin inverse of

A is called the group inverse of A and is denoted by A#.

A matrix X ∈ Cn×n that satisfies the only equality AXA = A is called an inner inverse or {1}-

inverse of A, and a matrix X ∈ Cn×n that satisfies the unique equality XAX = X is called an outer

inverse or {2}-inverse of A. In general, the set of matrices satisfying the conditions (i), (j), . . . is

denoted by A{i, j, . . .}. A matrix X ∈ A{i, j, . . .} is called an {i, j, . . .}-inverse of A, and is denoted by

A(i,j,...). Let PA := AA† and QA := A†A denote the orthogonal projectors onto the range of A and

the range of A∗, respectively. Similarly, PA` := A`(A`)† and QA` := (A`)†A` for any positive integer

`.

The core inverse was introduced by Baksalary and Trenkler in [2] and later investigated by S. Malik

in [7] and S.Z. Xu, J.L. Chen, X.X. Zhang in [15], among others. For a given matrix A ∈ Cn×n, it is

defined as the unique matrix X ∈ Cn×n that satisfies the conditions

AX = PA and R(X) ⊆ R(A).

In case that such a matrix X exists, it is denoted by A#©. Moreover, it was proved that A is core

invertible if and only if Ind(A) ≤ 1.

Two generalizations of the core inverse were introduced for n × n complex matrices, namely core

EP inverses and DMP inverses. In order to recall these concepts we assume that Ind(A) = k for a

given matrix A ∈ Cn×n. Firstly, the unique matrix X ∈ Cn×n such that

XAX = X and R(X) = R(X∗) = R(Ak), (1.1)

is called the core EP inverse of A and is denoted by A †© [11]. In [11, Lemma 3.3] K.M. Prasad and

K.S. Mohana proved that the core EP of a matrix A ∈ Cn×n is the unique solution of

XAk+1 = Ak, XAX = X, (AX)∗ = AX, and R(X) ⊆ R(Ak). (1.2)

Recently, in [4, Theorem 2.7], it is was proved that the core EP inverse can be expressed as

A †© = (APAk)†. (1.3)

Secondly, the concept of DMP inverse of A was introduced in [8] by S. Malik and N. Thome. In this

case, the unique matrix X ∈ Cn×n satisfying

XAX = X, XA = AdA, and AkX = AkA†, (1.4)

is called the DMP inverse of A and is denoted by Ad,†. Moreover, it was proved that

Ad,† = AdAA†. (1.5)
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In addition, a new generalized inverse was investigated in [9] by M. Mehdipour and A. Salemi. In this

case, the matrix

Ac,† = QAA
dPA, (1.6)

is called the CMP inverse of A.

The well-known Urquhart formula [1, p. 48] establishes that

A† = A(1,4)AA(1,3), (1.7)

that is it allows us to represent the Moore-Penrose inverse by means of any {1, 4}-inverse and any

{1, 3}-inverse of A. Similarly, it occurs with the Mitra [10] and Zlobec [16] formula given by

A† = A∗Y A∗,

for arbitrary Y ∈ (A∗AA∗){1} and the Decell formula [3, Corollary 1] given by

A† = A∗XAY A∗, (1.8)

where X and Y are any element in (AA∗){1} and (A∗A){1}, respectively. Related to the group inverse,

it is well known [1, p. 168] that

A# = AXA,

where X is an arbitrary element in (A3){1}, or more generally, for the Drazin inverse it holds

Ad = A`XA`,

for ` being any integer not less than the index of A, and X being an arbitrary element in (A2`+1){1}.

The common fact is that all these formulas are represented by matrices in a more general class.

Our main aim is to develop maximal classes for the most recent generalized inverses investigated in

the literature, namely core EP, DMP, and CMP inverses.

For any matrix A ∈ Cn×n of rank r > 0, the Hartwig-Spindelböck decomposition is given by

A = U

 ΣK ΣL

0 0

U∗, (1.9)

where U ∈ Cn×n is unitary, Σ = diag(σ1Ir1 , σ2Ir2 , . . . , σtIrt) is a diagonal matrix, the diagonal entries

σi being singular values of A, σ1 > σ2 > · · · > σt > 0, r1 + r2 + · · · + rt = r, and K ∈ Cr×r,

L ∈ Cr×(n−r) satisfy KK∗ + LL∗ = Ir.

On the other hand, the following two results were recently obtained by H. Kurata in [6].
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Proposition 1.1. ([6, Theorem 3]) Let A ∈ Cn×n be a matrix of index 1 written as in (1.9). Let

r = rk(A) and X,Y ∈ A{1}. The following conditions are equivalent:

(a) A#© = XAY ;

(b) R(XA) ⊆ R(A) and Y ∈ A{3};

(c) X and Y can be expressed respectively as

X = U

 (ΣK)−1 X12

0 X22

U∗ and Y = U

 (ΣK)−1 −K−1LY21 −K−1LY22

Y21 Y22

U∗,
for some X12 ∈ Cr×(n−r), X22, Y22 ∈ C(n−r)×(n−r), and Y21 ∈ C(n−r)×r.

Notice that the condition R(XA) ⊆ R(A) in (b) is equivalent to R(XA) = R(A) and any of them

is valid for being used in (b).

Proposition 1.2. ([6, Theorem 4]) Let A ∈ Cn×n be a matrix of index 1 written as in (1.9). Let

r = rk(A) and Z ∈ A{1}. The following conditions are equivalent:

(a) A#© = (A2Z)† holds;

(b) Z ∈ A{3};

(c) Z can be expressed as

Z = U

 (ΣK)−1 −K−1LZ21 −K−1LZ22

Z21 Z22

U∗,
for some Z21 ∈ C(n−r)×r and Z22 ∈ C(n−r)×(n−r).

This paper is organized as follows. In Section 2, we discuss Proposition 1.1 and derive its extension

to matrices of arbitrary index (DMP inverses) by using the Hartwig-Spindelböck decomposition (see

(1.9)) besides to provide some new equivalent conditions for the core inverse. In Section 3, we give

further results on two representations for core EP inverses by extending Proposition 1.1 and Proposition

1.2 to matrices of arbitrary index by using the core EP decomposition (see (3.1)). In Section 4, we use

a representation of the CMP inverse obtained by Mehdipour and Salemi to derive maximal classes of

matrices for which their representation remains valid.
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2 Maximal classes for matrices determining the DMP inverse

This section is devoted to extend Proposition 1.1 from core inverse to DMP inverse, that is, from

matrices of index at most 1 to matrices of arbitrary index.

We start this section recalling an auxiliary lemma.

Lemma 2.1. ([1, p. 52]) Let A,B,C ∈ Cn×n. Then the matrix equation AXB = C is consistent if

and only if for some A(1) ∈ A{1}, B(1) ∈ B{1},

AA(1)CB(1)B = C,

in which case the general solution is

X = A(1)CB(1) + Z −A(1)AZBB(1),

for arbitrary Z ∈ Cn×n.

Theorem 2.2. Let A ∈ Cn×n be a matrix of index k written as in (1.9). Let r = rk(A), X ∈ A{5, 6k},

and Y ∈ A{1}. The following conditions are equivalent:

(a) Ad,† = XAY ;

(b) XA = AdA, AkY = AkA†;

(c) X = Ad + Z(In − PA), Y = A† + (In −QAk)W for arbitrary Z,W ∈ Cn×n;

(d) X and Y can be expressed as

X = U

 (ΣK)d Z12

0 Z22

U∗
and

Y = U

 K∗Σ−1 + (Ir −K∗MK)W11 −K∗MLW21 (Ir −K∗MK)W12 −K∗MLW22

L∗Σ−1 − L∗MKW11 + (In−r − L∗ML)W21 MKW12 + (In−r − L∗ML)W22

U∗
where M := Q(ΣK)k−1Σ = [(ΣK)k−1Σ]†(ΣK)k−1Σ, for arbitrary Z12, Z22,W11,W21,W12,W22.

(e) R(XA) = R(Ak) and N (A∗) ⊆ N (AkY ).

Proof. (a) =⇒ (b) Postmultiplying Ad,† = XAY by A we get Ad,†A = XAY A = XA because Y ∈

A{1}. Now, from Ad,† = AdAA† we obtain

XA = Ad,†A = AdAA†A = AdA.
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On the other hand, premultiplying Ad,† = XAY by Ak we have

AkAd,† = AkXAY = Ak+1XY = AkY,

since X ∈ A{5, 6k}. By the definition of Drazin inverse, it then follows that

AkY = AkAd,† = AkAdAA† = Ak+1AdA† = AkA†.

(b) =⇒ (c) It is evident that Ad satisfies the equation

AdA = XA. (2.1)

Since all solutions of equation (2.1) are obtained as a sum of a particular solution of (2.1) and the

general solution of the homogeneous equation XA = 0, applying Lemma 2.1 to this last equation, the

general solution of (2.1) is given by

X = Ad + Z(In − PA), for arbitrary Z ∈ Cn×n.

Again, by Lemma 2.1, we obtain that the general solution of the equation AkA† = AkY is given by

Y = A† + (In −QAk)W, for arbitrary W ∈ Cn×n.

(c) =⇒ (a) Assume that X = Ad+Z(In−PA) and Y = A†+(In−QAk)W for arbitrary Z,W ∈ Cn×n.

Taking into account that AdA is a projector and AdA = AAd, we have AdA = (AdA)k = (Ad)kAk.

Therefore,

XAY = [Ad + Z(In − PA)]A[A† + (In −QAk)W ]

= AdA(A† + (In −QAk)W )

= AdAA† + (Ad)kAk(In −QAk)W

= Ad,†.

(c) ⇐⇒ (d) Assume that A has the form given in (1.9). From [2, Formula (1.13)],

A† = U

 K∗Σ−1 0

L∗Σ−1 0

U∗ (2.2)

and then

In − PA = U

 0 0

0 In−r

U∗.
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From [8, Formula (14)] we have

Ad = U

 (ΣK)d [(ΣK)d]2ΣL

0 0

U∗. (2.3)

Next, partitioning accordingly

Z = U

 Z11 Z̃12

Z21 Z22

U∗,
a straightforward computation shows that X = Ad + Z(In − PA) is equivalent to

X = U

 (ΣK)d Z12

0 Z22

U∗
for arbitrary Z12 and Z22, after renaming adequately a block.

On the other hand, since

Ak = U

 (ΣK)k (ΣK)k−1ΣL

0 0

U∗,
from [5, Lemma 1] we have

(Ak)† = U

 Φ1 Φ2

0 0

† U∗ = U

 0 Ir

In−r 0

 0 0

Φ2 Φ1

 0 In−r

Ir 0

† U∗
= U

 0 In−r

Ir 0

 0 0

Φ2 Φ1

†  0 Ir

In−r 0

U∗ = U

 Φ∗1R
† 0

Φ∗2R
† 0

U∗,
where R = Φ1Φ∗1 + Φ2Φ∗2, Φ1 = (ΣK)k, and Φ2 = (ΣK)k−1ΣL. Hence,

QAk = (Ak)†Ak = U

 Φ∗1R
†Φ1 Φ∗1R

†Φ2

Φ∗2R
†Φ1 Φ∗2R

†Φ2

U∗,
Now, we calculate R as follows

R =
[

Φ1 Φ2

] [
Φ1 Φ2

]∗
=

[
(ΣK)k (ΣK)k−1ΣL

] K∗(ΣK)k−1Σ)∗

L∗((ΣK)k−1Σ)∗


= (ΣK)k−1Σ

[
K L

] K∗

L∗

 ((ΣK)k−1Σ)∗

= (ΣK)k−1Σ((ΣK)k−1Σ)∗.
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We know that B† = B∗(BB∗)† for any complex matrix B. In consequence, after computing Φ∗1R
† and

Φ∗2R
† we get

In −QAk = U

 Ir −K∗[(ΣK)k−1Σ]†(ΣK)k −K∗[(ΣK)k−1Σ]†(ΣK)k−1ΣL

−L∗[(ΣK)k−1Σ]†(ΣK)k In−r − L∗[(ΣK)k−1Σ]†(ΣK)k−1ΣL

U∗
Now, partitioning adequately

W = U

 W11 W12

W21 W22

U∗,
from (2.2) it is clear that the equalities Y = A† + (In −QAk)W is equivalent to the expression for Y

given in item (d).

(b) =⇒ (e) Clearly, XA = AdA yields R(XA) = R(AdA) = R(Ak). On the other hand, from

AkY = AkA† we obtain N (A∗) = N (A†) ⊆ N (AkA†) = N (AkY ).

(e) =⇒ (b) Since the matrix A is written as in (1.9), we can consider a partition accordingly

X = U

 X11 X12

X21 X22

U∗.
From AX = XA we obtain

X11ΣK = ΣKX11 + ΣLX21, (2.4)

X21ΣK = 0, (2.5)

X21ΣL = 0. (2.6)

Postmultiplying (2.5) by K∗, (2.6) by L∗, and adding them we obtain X21Σ(KK∗ + LL∗) = 0. Thus,

X21 = 0. Therefore, from (2.4) we get

X11(ΣK) = (ΣK)X11. (2.7)

Moreover, the equality Ak+1X = Ak implies (ΣK)k+1X11 = (ΣK)k and then

(ΣK)kX11 = (ΣK)k−1, (2.8)

because of [8, Lemma 2.8] guarantees that ind(A) = k implies ind(ΣK) = k − 1.

On the other hand, we observe that R(XA) ⊆ R(Ak) can be equivalently expressed as PAkXA = XA.

By [4, Theorem 3.2] we get

PAk = Ak(Ak)† = U

 (ΣK)k−1((ΣK)k−1)† 0

0 0

U∗ = U

 P(ΣK)k−1 0

0 0

U∗. (2.9)
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Since

XA = U

 X11ΣK X11ΣL

X21ΣK X21ΣL

U∗ = U

 X11ΣK X11ΣL

0 0

U∗,
the condition PAkXA = XA implies P(ΣK)k−1X11ΣK = X11ΣK and P(ΣK)k−1X11ΣL = X11ΣL.

Postmultiplying the first equation by K∗, the second by L∗, and adding them we obtain

P(ΣK)k−1X11 = X11. (2.10)

Now, from (2.7), (2.8), and (2.10) we have

X11(ΣK)X11 = X11(ΣK)P(ΣK)k−1X11 = [X11(ΣK)k][(ΣK)k−1]†X11 = P(ΣK)k−1X11 = X11. (2.11)

Taking into account the fact ind(ΣK) = k − 1, from (2.7), (2.8), and (2.11) we get X11 = (ΣK)d.

Finally, the equality XA = AdA follows from an easy computation.

On the other hand, we write Y as

Y = U

 Y11 Y12

Y21 Y22

U∗
according to the partition of A. Clearly, vectors of the form

v = U

 0

y

 ∈ Cn with arbitrary y ∈ Cn−r,

belong to N (A∗). By (e), v ∈ N (AkY ) holds. In consequence, from

AkY = U

 (ΣK)kY11 + (ΣK)k−1ΣLY21 (ΣK)kY12 + (ΣK)k−1ΣLY22

0 0

U∗,
the condition v ∈ N (AkY ) implies that ((ΣK)kY12 + (ΣK)k−1ΣLY22)y = 0 is valid for arbitrary

y ∈ Cn−r. Thus, (ΣK)kY12 + (ΣK)k−1ΣLY22 = 0. Also, the condition AY A = A holds if and only if

ΣKY11 + ΣLY21 = Ir, which implies that (ΣK)kY11 + (ΣK)k−1ΣLY21 = (ΣK)k−1 is also true. Now,

it is easy to check that the equality AkY = AkA† holds.

We would like to highlight the crucial fact obtained in Theorem 2.2 (b) where two decoupled

equations are obtained and then the problem can be solved independently in X and Y .

Remark 2.3. Setting Z = W = 0 in Theorem 2.2 (c) we get Ad,† = AdAA†, which is a well-known

representation for the DMP inverse of A [8].
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Remark 2.4. The necessity of the general hypothesis in Theorem 2.2 arises from the idea of giving a

more general expression for Ad,† (instead of Ad,† = AdAA†), by changing Ad and A† with matrices X

and Y respectively, satisfying less restrictive properties than those satisfied by Ad and A†. In order to

do that, and following the same idea as in Proposition 1.1 where the author change A# with X ∈ A{1}

and A† with Y ∈ A{1}, we establish X ∈ A{5, 6k} instead of Ad and Y ∈ A{1} instead of A†. We

notice that both restrictions on X and Y are required in the proof.

Remark 2.5. The following conditions:

(c’) X = Ad + Z(In − PA), Y = A† + (In −QAk)W for some Z,W ∈ Cn×n;

(d’) X and Y are as in Theorem 2.2 (c) for some Z12, Z22, W11, W21, W12, and W22;

are respectively equivalent to conditions (c) and (d) in Theorem 2.2. In fact, (c) → (c’) is trivial and

(c’) → (a) follows exactly as (c) → (a) in the proof of the theorem. A similar argument yields the

equivalence between (d) and (d’).

Before having stated our previous Theorem, a natural question would have been the following: For

a given matrix A ∈ Cn×n, is it possible to introduce an outer inverse of A given by Ad,− := AdAA−,

for some fixed A− ∈ A{1}, having interesting properties? The answer would have been affirmative.

However, this possibility is now included in the maximal class that we have found in Theorem 2.2 and

it has no sense to do a study separately for this class of matrices.

3 Maximal classes for matrices determining the Core EP in-

verse

In this section we give further results on two representations for core EP inverses extending Propositions

1.1 and 1.2 to matrices of arbitrary index by using the core EP decomposition.

According to Theorem 2.2 in [13], every matrix A ∈ Cn×n with Ind(A) = k can be represented as

A = A1 +A2, A1 := U

 T S

0 0

U∗, A2 := U

 0 0

0 N

U∗, (3.1)

where T is nonsingular with ρ = rk(T ) = rk(Ak), N is nilpotent of index k, and U is unitary. The

representation of A given in (3.1) satisfies Ind(A1) ≤ 1, Ak2 = 0, and A∗1A2 = A2A1 = 0 [13, Theorem

2.1]. Moreover, it is unique in that sense [13, Theorem 2.4] and is called the core EP decomposition of

A. For further references we refer the reader to [14] and the references therein.
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Wang [13, Theorem 13] also gave a representation for the core EP inverse as

A †© = U

 T−1 0

0 0

U∗. (3.2)

Furthermore, when k = 1, the factorization (1.9) provides the core EP decomposition of A, where

T = ΣK and S = ΣL.

The uniqueness of the Drazin inverse allows us to show the following representation by a simple

computation.

Theorem 3.1. Let A ∈ Cn×n be a matrix of index k written as in (3.1). Then

Ad = U

 T−1 (T k+1)−1T̃

0 0

U∗, where T̃ =

k∑
j=1

T jSNk−j . (3.3)

By using (3.3), it can be also seen that the core EP inverse of a square matrix A with Ind(A) = k

can be written in the form

A †© = AdPAk . (3.4)

Next, we establish the maximal classes providing the most general form to represent a DMP inverse.

Theorem 3.2. Let A ∈ Cn×n be a matrix of index k written as in (3.1). Let ρ = rk(Ak), X ∈ A{5, 6k},

and Y ∈ Ak{1}. The following conditions are equivalent:

(a) A †© = XAkY ;

(b) XAk = AdAk, Y ∈ Ak{3} (or equivalently, XAk = AdAk, AkY = PAk);

(c) X = Ad + Z(In − PAk), Y = (Ak)† + (In −QAk)W for arbitrary Z,W ∈ Cn×n;

(d) X and Y can be expressed as

X = U

 T−1 X12

0 X22

U∗, Y = U

 (T k)−1(Iρ − T̃ Y21) −(T k)−1T̃ Y22

Y21 Y22

U∗,
with T̃ defined in (3.3) and for arbitrary X12 ∈ Cr×(n−ρ), X22, Y22 ∈ C(n−ρ)×(n−ρ), and Y21 ∈

C(n−ρ)×ρ.

(e) R(XAk) = R(Ak) and N ((Ak)∗) ⊆ N (AkY ).

Proof. (a) =⇒ (b) Postmultiplying A †© = XAkY by Ak we obtain A †©Ak = XAkY Ak = XAk because

Y ∈ Ak{1}. So, from (3.4) we get

XAk = A †©Ak = AdPAkAk = AdAk.
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On the other hand, by using the fact that AA †© = PAk [4, Lemma 2.6] and premultiplying A †© = XAkY

by A we have

PAk = AA †© = AXAkY = Ak+1XY = AkY,

because X ∈ A{5, 6k}. The equivalence between Y ∈ Ak{3} and AkY = PAk is easy to see. In fact,

from AkY Ak = Ak we obtain that AkY is a projector onto R(Ak). From (AkY )∗ = AkY we get

that AkY is an orthogonal projector onto R(Ak). The uniqueness of such a kind projectors leads to

AkY = Ak(Ak)† = PAk . The converse is trivial.

(b) =⇒ (c) Similar arguments to that of the proof of Theorem 2.2, show that all solutions of equation

XAk = AdAk are given by

X = Ad + Z(In − PAk), for arbitrary Z ∈ Cn×n.

Analogously, the general solution of the equation AkY = PAk is given by

Y = (Ak)† + (In −QAk)W, for arbitrary W ∈ Cn×n.

(c) =⇒ (a) We observe that PAkAk = Ak and AkQAk = Ak. So,

XAkY = [Ad + Z(In − PAk)]Ak
[
(Ak)† + (In −QAk)W

]
= AdAk

[
(Ak)† + (In −QAk)W

]
= AdAk(Ak)† = AdPAk = A †©,

where the last equality follows from (3.4).

(a) =⇒ (d) Since A is written as in (3.1), we partition

Y = U

 Y11 Y12

Y21 Y22

U∗,
according to the sizes of the partition of A. Since (a) =⇒ (c) is valid, we have that

X = Ad + Z(In − PAk) for arbitrary Z ∈ Cn. (3.5)

From [4, Lemma 2.5]

PAk = U

 Iρ 0

0 0

U∗. (3.6)

Now, by making the following partition with blocks of adequate sizes

Z = U

 Z11 Z12

Z21 Z22

U∗,
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from (3.3) and (3.5) we have

U∗XU =

 T−1 (T k+1)−1T̃

0 0

+

 Z11 Z12

Z21 Z22

 0 0

0 In−ρ


=

 T−1 (T k+1)−1T̃ + Z12

0 Z22

 .
Since Z12 and Z22 are arbitrary, we have that

X = U

 T−1 X12

0 X22

U∗,
for arbitrary X12 and X22.

On the other hand, since (a) =⇒ (b) has been proved, we can deduce that (AkY )∗ = AkY holds.

In consequence, by comparing their blocks we arrive at T kY12 + T̃ Y22 = 0. It then follows that

Y12 = −(T k)−1T̃ Y22. Next, since

AkY Ak = U

 T k T̃

0 0

 Y11 Y12

Y21 Y22

 T k T̃

0 0

U∗
= U

 (T kY11 + T̃ Y21)T k (T kY11 + T̃ Y21)T̃

0 0

U∗,
the condition AkY Ak = Ak implies that T kY11 + T̃ Y21 = Iρ, from where Y11 = (T k)−1(Iρ − T̃ Y21).

Thus, (e) is derived.

(d) =⇒ (a) Let T̃ be defined as in (3.3). An easy computation shows that

XAkY = U

 T−1 X12

0 X22

 T k T̃

0 0

 (T k)−1(Iρ − T̃ Y21) −(T k)−1T̃ Y22

Y21 Y22

U∗
= U

 T−1 0

0 0

U∗
= A †©.

(b) =⇒ (e) Clearly, XAk = AdAk yields R(XAk) = R(AdAk) = R(Ak). On the other hand, from

(AkY )∗ = AkY we obtain N ((Ak)∗) ⊆ N (Y ∗(Ak)∗) = N ((AkY )∗) = N (AkY ).

(e) =⇒ (d) Since the matrix A is written as in (3.1), we can consider a partition accordingly

X = U

 X11 X12

X21 X22

U∗.
13



As

Ak+1 = U

 T k+1 T T̃

0 0

U∗,
from Ak+1X = Ak we obtain X11 = T−1.

We observe that R(XAk) ⊆ R(Ak) can be equivalently expressed as PAkXAk = XAk. We know that

PAk = Ak(Ak)† = U

 Iρ 0

0 0

U∗, (3.7)

and also,

XAk = U

 X11T
k X11T̃

X21T
k X21T̃

U∗.
Hence, the condition PAkXAk = XAk implies X21 = 0 because T is nonsingular.

On the other hand, we write Y as

Y = U

 Y11 Y12

Y21 Y22

U∗
according to the partition of A. Clearly, vectors of the form

v = U

 0

y

 ∈ Cn with arbitrary y ∈ Cn−ρ,

belong to N ((Ak)∗). By (e), v ∈ N (AkY ) holds. In consequence, from

AkY = U

 T kY11 + T̃ Y21 T kY12 + T̃ Y22

0 0

U∗,
the condition v ∈ N (AkY ) implies that (T kY12 + T̃ Y22)y = 0 is valid for arbitrary y ∈ Cn−ρ. Thus,

T kY12 + T̃ Y22 = 0. It then follows that Y12 = −(T k)−1T̃ Y22. Also, the condition AkY Ak = Ak implies

that T kY11 + T̃ Y21 = Iρ, from where Y11 = (T k)−1(Iρ − T̃ Y21).

Finally, the expressions for X and Y can be written as in item (d). This completes the proof.

Remark 3.3. Similarly to Remark 2.5, conditions (c) and (d) in Theorem 3.2 are equivalent to:

(c’) X = Ad + Z(In − PAk), Y = (Ak)† + (In −QAk)W for some Z,W ∈ Cn×n;

(d’) X and Y can be expressed as in Theorem 3.2 (d) for some X12 ∈ Cr×(n−ρ), X22, Y22 ∈

C(n−ρ)×(n−ρ), and Y21 ∈ C(n−ρ)×ρ.

Since the Drazin inverse X = Ad satisfies X ∈ A{5, 6k} and the Moore-Penrose inverse Y = (Ak)†

belongs to Ak{1}, the above theorem contains (3.4) as a special case because the condition (b) holds.
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Theorem 3.4. Let A ∈ Cn×n be a matrix of index k written as in (3.1) with ρ = rk(Ak). Let

Z ∈ Ak{1}. Then the following conditions are equivalent:

(a) A †© = (Ak+1Z)†;

(b) Z ∈ Ak{3};

(c) Z can be expressed as

Z = U

 (T k)−1(Iρ − T̃Z21) −(T k)−1T̃Z22

Z21 Z22

U∗,
with T̃ defined in (3.3) and for arbitrary Z21 ∈ C(n−ρ)×ρ and Z22 ∈ C(n−ρ)×(n−ρ).

(d) AkZ = PAk .

(e) Z = (Ak)† + (In −QAk)W , for arbitrary W ∈ Cn×n.

Proof. (b) ⇐⇒ (c) It has been already proved in the proof of Theorem 3.2.

(b) ⇐⇒ (d) It has been shown in Theorem 3.2.

(d) ⇐⇒ (e) It follows from Lemma 2.1.

We show that (a) and (c) are equivalent. The condition A †© = (Ak+1Z)† is equivalent to

(A †©)† = Ak+1Z. (3.8)

We consider the following partition of Z

Z = U

 Z11 Z12

Z21 Z22

U∗,
according to the size of blocks in A. Since Z is an inner generalized inverse of Ak, Z is of the form

Z = U

 (T k)−1(Iρ − T̃Z21) Z12

Z21 Z22

U∗,
and therefore

Ak+1Z = U

 T k+1 T T̃

0 0

 (T k)−1(Iρ − T̃Z21) Z12

Z21 Z22

U∗ = U

 T T k+1Z12 + T T̃Z22

0 0

U∗.
(3.9)

On the other hand, by using (3.2) we have

(A †©)† = U

 T 0

0 0

U∗. (3.10)
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Finally, from (3.8)-(3.10) follow that the equality A †© = (Ak+1Z)† holds if and only if

Z12 = −(T k)−1T̃Z22.

We notice that the matrix Z in (b) can be the Moore-Penrose inverse of Ak, and hence the above

theorem contains the representation of the core EP inverse given in (1.3), that is, A †© = (APAk)†.

Remark 3.5. Similarly to Remark 2.5, conditions (c) and (e) in Theorem 3.4 are equivalent to:

(c’) Z can be expressed as in Theorem 3.4 for some Z21 ∈ C(n−ρ)×ρ and Z22 ∈ C(n−ρ)×(n−ρ);

(e’) Z = (Ak)† + (In −QAk)W , for some W ∈ Cn×n.

4 Maximal classes for matrices determining the CMP inverse

In this section we study a representation for the CMP inverse obtained by Salemi and Mehdipour [9]

and we derive maximal classes of matrices for which the representation remains valid.

Theorem 4.1. Let A ∈ Cn×n be a matrix of index k written as in (1.9). Let r = rk(A), X ∈ A{5, 6k},

Y, T ∈ A{1}. The following conditions are equivalent:

(a) Ac,† = Y AXAT ;

(b) AXA = AAdA, Y Ak = A†Ak, and AkT = AkA†;

(c) X = Ad + Z − QAZPA, Y = A† + W (In − PAk), and T = A† + (In − QAk)V , for arbitrary

Z,W, V ∈ Cn×n;

(d) X, Y , and T can be expressed as

X = U

 (ΣK)d + (Ir −K∗K)X11 −K∗LX21 X12

−L∗KX11 + (In−r − L∗L)X21 X22

U∗, (4.1)

Y = U

 K∗Σ−1 + Y11(Ir − (ΣK)k−1((ΣK)k−1)†) Y12

L∗Σ−1 + Y21(Ir − (ΣK)k−1((ΣK)k−1)†) Y22

U∗, (4.2)

T = U

 K∗Σ−1 + (Ir −K∗MK)T11 −K∗MLT21 (Ir −K∗MK)T12 −K∗MLT22

L∗Σ−1 − L∗MKT11 + (In−r − L∗MLT21 MKT12 + (In−r − L∗ML)T22

U∗, (4.3)

with M := [(ΣK)k−1Σ]†(ΣK)k−1Σ and arbitrary X11, X12, X21, X22, Y11, Y12, Y21, Y22, T11, T12,

T21, T22.
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Proof. (a) =⇒ (b) Since Ac,† = QAA
dPA holds by definition, post- and premultiplying Ac,† = Y AXAT

by A we get AAdA = AXA, because Y, T ∈ A{1}.

On the other hand, postmultiplying Ac,† = Y AXAT by Ak and using that PAA
k = Ak we get

Y Ak = A†Ak, (4.4)

because X ∈ A{5, 6k} and T ∈ A{1}. Similarly, premultiplying Ac,† = Y AXAT by Ak and using

AkQA = Ak, X ∈ A{5, 6k}, and Y ∈ A{1} we arrive at

AkT = AkA†. (4.5)

(b) =⇒ (c) Applying Lemma 2.1 to the equation AXA = AAdA we get

X = Ad + Z −QAZPA, for arbitrary Z ∈ Cn×n,

because Ad is a particular solution.

Next, the proof of the part (c) follows directly from (4.4), (4.5), and Lemma 2.1.

(c) =⇒ (a) We know that A`QA` = A` and PA`A` = A`, for every positive integer `. So, particularizing

for ` = 1, ` = k, and taking into account that AdA = Ak(Ad)k = (Ad)kAk we have

Y AXAT = [A† +W (In − PAk)]A[Ad + Z −QAZPA]A[A† + (In −QAk)V ]

= [A† +W (In − PAk)]AAdA[A† + (In −QAk)V ]

= QAA
dA[A† + (In −QAk)V ]

= QAA
dPA +QAA

dA(In −QAk)V

= Ac,†.

(c) ⇐⇒ (d) First, we write Z by means of an block partition:

Z = U

 Z11 Z12

Z21 Z22

U∗,
with appropriate sizes. From (2.2) we obtain

PA = U

 Ir 0

0 0

U∗, QA = U

 K∗K K∗L

L∗K L∗L

U∗.
In consequence, it is clear that X = Ad +Z −QAZPA is valid if and only if (4.1) holds after renaming

adequately some blocks.

On the other hand, as in (3.7) we have

PAk = Ak(Ak)† = U

 (ΣK)k−1((ΣK)k−1)† 0

0 0

U∗.
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Now, partitioning adequately

W = U

 W11 W12

W21 W22

U∗,
some direct calculations show that the expression Y = A†+W (In−PAk) can be rewritten as in (4.2).

Finally, as in the proof of Theorem 2.2 the expression T = A† + (In −QAk)V can be rewritten as in

(4.3).

Remark 4.2. Similarly to Remark 2.5, conditions (c) and (d) in Theorem 4.1 are equivalent to:

(c’) X = Ad + Z − QAZPA, Y = A† + W (In − PAk), and T = A† + (In − QAk)V , for some

Z,W, V ∈ Cn×n;

(d’) X, Y , and T can be expressed as in Theorem 4.1 for some X11, X12, X21, X22, Y11, Y12, Y21,

Y22, T11, T12, T21, T22.

Remark 4.3. (a) Since the Drazin inverse Ad belongs to A{5, 6k}, and the Moore-Penrose inverse

A† belongs to A{1}, the above theorem recovers (1.6) as a particular case.

(b) Under the assumptions of Theorem 4.1, we notice that if k = 1 then X ∈ A{1}. So, [9, Theorem

2.4] implies that A† = Ac,† = Y AXAT = Y AT with Y, T ∈ A{1}. On the other hand, if

Z ∈ (AA∗){1} and W ∈ (A∗A){1}, it is well known that A∗Z ∈ A{1} and WA∗ ∈ A{1} by

applying the rank cancellation rule [12, p. 145]. In consequence, setting Y = A∗Z and T = WA∗

we obtain A† = A∗ZAWA∗, which is a representation for the Moore Penrose inverse known as

the Decell’s formula as indicated in (1.8). Further, also we derive the Urquhart’s formula, that

is A† = A(1,4)AA(1,3) as indicated in (1.7). In fact, it is easy to see that A∗Z ∈ A{1, 4} and

WA∗ ∈ A{1, 3}, again by the rank cancellation rule.
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