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Abstract

For non-Gaussian stochastic dynamical systems, mean exit time and escape probability are
important deterministic quantities, which can be obtained from integro-differential (nonlocal)
equations. We develop an efficient and convergent numerical method for the mean first exit time
and escape probability for stochastic systems with an asymmetric Lévy motion, and analyze the
properties of the solutions of the nonlocal equations. We also investigate the effects of different
system factors on the mean exit time and escape probability, including the skewness parameter,
the size of the domain, the drift term and the intensity of Gaussian and non-Gaussian noises. We
find that the behavior of the mean exit time and the escape probability has dramatic difference
at the boundary of the domain when the index of stability crosses the critical value of one. Key

words: Stochastic dynamical systems Asymmetric Lévy motion Integro-differential equation
First exit time Escape probability

1 Introduction

Non-Gaussian stochastic dynamical systems are found in many applications such as economics,

telecommunications and physics [12,13,19]. As a special non-Gaussian stochastic process, α-stable

Lévy process (or often called α-stable Lévy motion) attracts more and more attentions of mathe-

maticians due to the properties which the Gaussian process does not have. For example, the tail of a

Gaussian random variable decays exponentially which does not fit well for modeling processes with

high variability or some extreme events, such as earthquakes or stock market crashes. However,

the stable Lévy motion has a ‘heavy tail’ that decays polynomially and could be useful for these

applications. For example, financial asset returns could present heavier tails relative to the normal

distribution, and asymmetric α-stable distributions are proper alternatives for modeling them [17].

Others considered the applications in financial risks, physics, and biology [7, 9, 20].
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Recently, many researchers begin to pay attention to the stochastic dynamical systems with

asymmetric stable Lévy motion due to the demand from applications [2, 7, 30]. For instance,

Lambert [14] considers the first passage time and leapovers with an asymmetric stable Lévy motion.

In this present work, we consider the following scalar stochastic differential equation (SDE)

dXt = f(Xt)dt+ dLt, (1.1)

where the initial condition is X0 = x, f is a drift term (vector field), and Lt is a Lévy process

with the generating triplet (0, d, ǫνα,β) (when d is taken zero, it is just an asymmetric stable Lévy

motion). Here, να,β is an asymmetric Lévy jump measure on R \ {0}, to be specified in the next

section. The well-posedness of SDE driven by Lévy motion is discussed recently. The existence and

uniqueness of solutions under the standard Lipschitz and growth conditions driven by Brownian

motion and independent Poisson random measure were given, for example, Applebaum [1] . Lü et

al. [16] obtained a unique solution for stochastic quasi-linear heat equation driven by anisotropic

fractional Lévy noises under Lipschtz and linear conditions. Chen et al. [4] showed the SDE with

a large class of Lévy process had a unique strong solution for Hölder continuous drift f . Priola

et al. [22] showed the pathwise uniqueness for SDE driven by nondegenerate symmetric α-stable

Lévy process. We focus on the macroscopic behaviors, particularly the mean exit time and escape

probability, for the SDE (1.1) with an asymmetric stable Lévy motion.

There are numerous works discussing the symmetric α-stable Lévy motion and the correspond-

ing infinitesimal generator, which is a nonlocal operator and is also called the fractional Laplacian

operator (−△)
α
2 . It is equivalent to fractional derivative as follows,

(−△)
α
2 u(x) =

−LD
α
xu(x) + xD

α
Lu(x)

2 cos πα
2

for α 6= 1,

where −LD
α
xu(x) and xD

α
Lu(x) are left and right Riemann-Liouville fractional derivatives [11, 31].

Various numerical methods are developed for the fractional Laplacian and the fractional derivative

operators. To name a few, Li et al. [15] considered the spectral approximations to compute the frac-

tional integral and the Caputo derivative. Mao et al. [18] developed an efficient Spectral-Galerkin

algorithms to solve fractional partial differential equations(FPDEs). Du et al. [5] considered the

general nonlocal integral operator and provide guidance for numerical simulations. Qiao et al. [23]

used asymptotic methods to examine escape probabilities analytically. Gao et al. [8] developed a

finite difference method to compute mean exit time and escape probability in the one-dimensional

case. Our previous work [29] proposed a method to compute the mean exit time and escape

probability for two-dimensional stochastic systems with rotationally symmetric α-stable type Lévy

motions.

For stochastic systems with the asymmetric Lévy motion, research on macroscopic quantities,

such as mean exit time and escape probability, is still at its initial stage. A couple of papers [2,14]

considered the exit problem of the completely asymmetric Lévy motion (corresponding to β = 1

or −1 in the jump measure να,β). A few of people have studied the processes for their basic

properties. Considering a completely asymmetric Lévy process that has absolutely continuous

transition probabilities, Bertoin [3] proved the decay and ergodic properties of the transition

probabilities while Lambert [14] established the existence of the Lévy process conditioned to stay

in a finite interval. Koren et al. [13] investigated the first passage times and the first passage

leapovers of symmetric and completely asymmetric Lévy stable random motions.

The paper is organized as follows. In Section 2, we review the concepts of asymmetric Lévy

motion, mean exit time and escape probability, and show the symmetry of solutions to the exit

problem. A numerical method and simulation results for mean exit time and escape probability are

presented in Section 3 and 4, respectively. Finally, Section 5 presents the conclusion of our paper.
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2 Concepts

2.1 Asymmetric Lévy motion

Stable distribution, denoted by Sα(σ, β, µ), is a four-parameter family of distributions with α ∈
(0, 2], σ ≥ 0, β ∈ [−1, 1] and µ ∈ R. Usually α is called the index of stability (or non-Gaussianity

index), σ is the scale parameter, β is the skewness parameter and µ is the shift parameter. It is

said to be completely asymmetric if β = ±1 [1, 26, 27]. Stable distribution and its profile help us

understand the behavior of the process governed by the SDE (1.1), because L1 is a random variable

with the probability density functions(PDFs) of Sα(1, β, 0). The corresponding generating triplet

is (Kα,β, 0, να,β), where the constant Kα,β and the jump measure να,β are defined below in (2.7)

and (2.4) respectively. Some examples of Sα(1, β, 0) are shown in Figure 1.
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Figure 1: Probability density functions Sα(1, β, 0) of L1 for different values of α and β.

For the α-stable Lévy motion, we have the corresponding Lévy-Khinchin formula [10,21,27]

E(eiλLt) =

{

exp{−σα|λ|αt(1− iβsgnλ tan πα
2 ) + iµλt}, for α 6= 1,

exp{−σ|λ|t(1 + iβ 2
π sgnλ log |λ|) + iµλt}, for α = 1.

(2.2)

For every ϕ ∈ H2
0 (R), we can obtain the generator for the solution to the SDE (1.1) with the
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asymmetric α-stable Lévy motion Lt from the above formula (2.2) as [6, 27]

Lϕ(x) =(f(x) + ǫKα,β)ϕ
′(x) +

d

2
ϕ′′(x)

+ ǫ

∫

R\{0}

(

ϕ(x+ y)− ϕ(x) − 1B yϕ′(x)
)

να,β(dy), (2.3)

where the measure να,β is given by

να,β(dy) =
C11{0<y<∞}(y) + C21{−∞<y<0}(y)

|y|1+α
(dy) (2.4)

with

C1 = Cα
1 + β

2
, C2 = Cα

1− β

2
, −1 ≤ β ≤ 1, (2.5)

and

Cα =

{

α(1−α)
Γ(2−α) cos (πα

2
) , α 6= 1;

2
π , α = 1.

(2.6)

In Eq. (2.3) the constants d and ǫ represent the intensities of Gaussian and Lévy noises respectively.

The constant Kα,β in (2.3) is given by

Kα,β =

{

C1−C2

1−α , α 6= 1;

(
∫∞
1

sin(x)
x2 dx+

∫ 1
0

sin(x)−x
x2 dx)(C2 − C1), α = 1.

(2.7)

Furthermore, we note that β = C1−C2

C1+C2
, and the symmetries C1(−β) = C2(β) and Kα,−β =

−Kα,β. We point out that when α 6= 1 the stable distribution is strictly α-stable, while it is strictly

α-stable when α = 1 if and only if its Lévy measure is symmetric.

We remark that, for people who are not too familiar with stable distributions, the non-solid

curves in Fig. 1(b) and (c) might be counter intuitive. After all, in both figures, the skewness

parameter β is positive in all these case and thus there is a bigger tendency of jumping to the right,

and yet these curves are shifted to left near the origin. This is due to the compensation which

produces a linear drift with coefficient Kα,β given by (2.7). In all these cases, Kα,β is negative.

2.2 Mean exit time and escape probability

The exit time problem is important in many fields, such as physiscs, finance and economics. The

first exit time starting at x from a bounded domainD is defined as τ(ω) := inf{t ≥ 0,Xt(ω, x) /∈ D},
and the mean first exit time (MET) is u(x) = E[τ(ω)].

Assume that f(x) satisfies Lipschitz condition and linear growth condition for the existence and

uniqueness of solution [1]. Due to the Dynkin’s formula, the MET u satisfies the following nonlocal

partial differential equation [6]

L u(x) = −1, for x ∈ D, (2.8)

subject to the Dirichlet-type exterior condition,

u(x) = 0, for x ∈ Dc, (2.9)

where L is the generator defined in (2.3) and D is open.
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Consider the escape probability of the process Xt in the SDE (1.1). The escape probability

from D to E is the likelihood that Xt with the initial location X0 = x, exits from D and first lands

in E which belong to Dc, denoted as PE(x) = P{Xτ ∈ E}. The escape probability satisfies the

following nonlocal partial differential equation [6, 24]

L PE(x) = 0, x ∈ D,

PE |x∈E = 1, PE |x∈Dc\E = 0. (2.10)

2.3 Symmetry and non-dimensionalization

For the domain D = (−b, b), the MET u satisfies Eq. (2.8). We replace the I{|y|<1}(y) in Eq. (2.8)

to I{|y|<b}(y) and get [27]

d

2
u′′(x) + c(x)u′(x) + ε

∫

R\{0}
[u(x+ y)− u(x)− I{|y|<b}(y) yu

′(x)] (2.11)

[

C11{0<y<∞} + C21{−∞<y<0}

|y|1+α

]

dy = −1,

where

c(x) =

{

f(x) + ǫKα,β + ε(C1 − C2)
b1−α−1
1−α , α 6= 1;

f(x) + ǫKα,β + ε(C1 − C2) ln b, α = 1.
(2.12)

Next, we show the solution to the MET problem has the following symmetry when f is an

odd function. However, the numerical method presented in the work does not require f be odd.

Because of the application in dynamical systems, we focus on the O-U potential(f(x) = −x) later.

Proposition 2.1 (Symmetry of Solutions). If f(x) is an odd function and the domain D

is symmetric about the origin (D = (−b, b)), then the MET u (or, equivalently, the solution u

to Eq. (2.11)) is symmetric about the origin if β changes the sign, i.e. u−β(−x) = uβ(x) for all

x ∈ (−b, b) where uβ and u−β denote the solutions corresponding to β and −β respectively.

Proof. Since Eq. (2.11) is valid for all −1 6 β 6 1 and −b 6 x 6 b, u−β(−x) satisfies the following

equation,

d

2
u′′−β(−x) + c(−x)u′−β(−x)

+ ε

∫

R\{0}
[u−β(−x+ y)− u−β(−x)− I{|y|<b}(y) yu

′
−β(−x)]να,−β(dy) = −1.

Define ū(x) = u−β(−x). We can see ū′(x) = −u′−β(−x). Taking y′ = −y, we have

∫

R\{0}
[u−β(−x+ y)− u−β(−x)− I{|y|<b}(y) yu

′
−β(−x)]να,−β(dy)

=

∫

R\{0}
[ū(x− y)− ū(x) + I{|y|<b}(y) yū

′(x)]

[

C21{0<y<∞} + C11{−∞<y<0}

|y|1+α

]

dy

=

∫

R\{0}
[ū(x+ y′)− ū(x)− I{|y′|<b}(y

′) y′ū′(x)]

[

C11{0<y′<∞} + C21{−∞<y′<0}

|y′|1+α

]

dy′.
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When f(−x) = −f(x), we have

c(−x) =

{

−f(x) + ǫKα,β + εCαβ
b1−α−1
1−α , α 6= 1;

−f(x) + ǫKα,β + εCαβ ln b, α = 1.

Thus c−β(−x) = −cβ(x) if f is an odd function, where cβ and c−β denote the function c corre-

sponding to β and −β respectively.

Using
d

2
u′′−β(−x) + c−β(−x)u′−β(−x) =

d

2
ū′′(x) + cβ(x)ū

′(x),

we get,

d

2
ū′′(x) + c(x)ū′(x) + ε

∫

R\{0}
[ū(x+ y′)− ū(x)− I{|y′|<b}(y

′) y′ū′(x)]

[

C11{0<y′<∞} + C21{−∞<y′<0}

|y′|1+α

]

dy′ = −1.

Thus, we have shown ū(x) satisfies the same Eq. (2.11) if f(−x) = −f(x). Due to uniqueness of

the solution, we have u−β(−x) = uβ(x). �

To keep the computational domain fixed as [−1, 1], we perform the change of variable

s = x/b, and v(s) := u(bs). (2.13)

Then,
du

dx
=

1

b

dv

ds
,
d2u

dx2
=

1

b2
d2v

ds2
. Let y = br, we have

∫

R\{0}
[u(x+ y)− u(x)− I{|y|<b}(y) yu

′(x)]

[

C11{0<y<∞} + C21{−∞<y<0}

|y|1+α

]

dy

= b−α

∫

R\{0}
[v(s+ r)− v(s)− I{|r|<1}(r) rv

′(s)]

[

C11{0<r<∞} + C21{−∞<r<0}

|r|1+α

]

dr

Finally, the equation for the MET (2.11) becomes

d

2b2
d2v

ds2
+

c(bs)

b

dv

ds

+ εb−α

∫

R\{0}
[v(s + r)− v(s)− I{|r|<1}(r) rv

′(s)]

[

C11{0<r<∞} + C21{−∞<r<0}

|r|1+α

]

dr

= −1. (2.14)

3 Numerical methods

In this section, we describe the numerical methods for solving the MET v(s) in Eq. (2.14) on the

fixed computational domain s ∈ (−1, 1). The solution for the MET u in the original equations (2.8)

and (2.9) for the symmetric domain D = (−b, b) is obtained from u(x) ≡ v(x/b).

3.1 Reformulation

Before we present our numerical schemes, we first reformulate the integral in (2.14), denoted by

I :=

∫

R\{0}
[v(s + r)− v(s)− I{|r|<1}(r) rv

′(s)]
C11{0<r<∞}(r) + C21{−∞<r<0}(r)

|r|1+α
dr. (3.15)
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We decompose I = C1I1 + C2I2, where

I1 =

∫

R+

v(s + r)− v(s)− I{|r|<1}(r) rv
′(s)

|r|1+α
dr, (3.16)

I2 =

∫

R−

v(s+ r)− v(s)− I{|r|<1}(r) rv
′(s)

|r|1+α
dr. (3.17)

Using the condition (2.9) exterior to the domain D, i.e., v(s) vanishes when |s| ≥ 1, we obtain

I1 = −v(s)

α
(1− s)−α − v′(s)g(s) +

∫ 1−s

0

v(s+ r)− v(s)− rv′(s)

r1+α
dr, (3.18)

for s > 0;

I1 = −v(s)

α
(1− s)−α +

∫ 1−s

1

v(s + r)− v(s)

r1+α
dr

+

∫ 1

0

v(s + r)− v(s)− rv′(s)

r1+α
dr, (3.19)

for s < 0, where

g(s) =

{

1−(1−|s|)1−α

1−α , α 6= 1;

− ln(1− |s|), α = 1.
(3.20)

Similarly,

I2 =

∫ 1+s

1

v(s − y)− v(s)

y1+α
dy − v(s)

α
(1 + s)−α

+

∫ 1

0

v(s − y)− v(s) + yv′(s)

y1+α
dy, (3.21)

for s > 0;

I2 = −v(s)

α
(1 + s)−α + v′(s)g(s) +

∫ 1+s

0

v(s − y)− v(s) + yv′(s)

y1+α
dy, (3.22)

for s < 0.

Now, combining the above results (3.18)–(3.22), we rewrite (2.14) as following

d

2b2
v′′(s) +

(

c(bs)

b
− εb−αC1g(s)

)

v′(s)− εb−α v(s)

α

[

C1(1− s)−α + C2(1 + s)−α
]

+ εb−αC1

∫ 1−s

0

v(s+ r)− v(s)− rv′(s)

r1+α
dr + εb−αC2

∫ 1+s

1

v(s − y)− v(s)

y1+α
dy

+ εb−αC2

∫ 1

0

v(s − y)− v(s) + yv′(s)

y1+α
dy = −1, (3.23)

for s ≥ 0, while

d

2b2
v′′(s) +

(

c(bs)

b
+ εb−αC2g(s)

)

v′(s)− εb−α v(s)

α

[

C1(1− s)−α + C2(1 + s)−α
]

+ εb−αC1

∫ 1

0

v(s+ r)− v(s)− rv′(s)

r1+α
dr + εb−αC1

∫ 1−s

1

v(s+ r)− v(s)

r1+α
dr

+ εb−αC2

∫ 1+s

0

v(s − y)− v(s) + yv′(s)

y1+α
dy = −1, (3.24)
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for s < 0.

For completeness, we provide the equations for finding the escape probability in Eq. (2.10).

They are different than those for the MET due to the difference in the exterior condition. To be

specific, we take D = (−b, b) and E = [b,∞), then the Eq. (2.10) becomes

d

2b2
v′′(s) +

(

c(bs)

b
− εb−αC1g(s)

)

v′(s)− εb−α v(s)

α

[

C1(1− s)−α + C2(1 + s)−α
]

+ εb−αC1

∫ 1−s

0

v(s + t)− v(s)− tv′(s)

t1+α
dt+ εb−αC2

∫ 1+s

1

v(s − y)− v(s)

y1+α
dy

+ εb−αC2

∫ 1

0

v(s− y)− v(s) + yv′(s)

y1+α
dy = −εb−αC1

α
(1− s)−α, (3.25)

for s ≥ 0, and

d

2b2
v′′(s) +

(

c(bs)

b
+ εb−αC2g(s)

)

v′(s)− εb−α v(s)

α

[

C1(1− s)−α + C2(1 + s)−α
]

+ εb−αC1

∫ 1

0

v(s + t)− v(s)− tv′(s)

t1+α
dt+ εb−αC1

∫ 1−s

1

v(s + t)− v(s)

t1+α
dt

+ εb−αC2

∫ 1+s

0

v(s− y)− v(s) + yv′(s)

y1+α
dy = −εb−αC1

α
(1− s)−α, (3.26)

for s < 0.

3.2 Discretization

We are ready to describe our discretization based on the formulation in the equations (3.23) and

(3.24). We divide the computational domain [−1, 1] by 2J subintervals: sj = jh,−J ≤ j ≤ J with

each subinterval having the size h = 1/J . Denote the numerical solution to the unknown MET v

by the vector V = V−J :J , where the component Vj approximates vj ≡ v(sj) for −J ≤ j ≤ J . Note

that V−J = VJ = 0 from the exterior condition (2.9).

The singular integrals in Eqs. (3.23) and (3.24) need special quadrature rules. Following the

quadrature error analysis of Sidi and Israeli [28], we have the following leading-order error for the

”punch-hole” trapezoidal rule for the weakly singular integrals in (3.23)

C1

∫ 1−s

0

v(s+ r)− v(s)− rv′(s)

r1+α
dr + C2

∫ 1

0

v(s− r)− v(s) + rv′(s)

r1+α
dr

= h

J1−s
∑

j=1

′G1(rj) + h

J
∑

k=1

′G2(rk) + Cp. (3.27)

where G1(r) =
v(s + r)− v(s)− rv′(s)

r1+α
, G2(r) =

v(s− r)− v(s) + rv′(s)

r1+α
and the leading-order

errors are

Cp = −Cαζ(α− 1)
v′′(s)

2
h2−α − βCαζ(α− 2)

v
′′′

(s)

6
h3−α

−[C1G
′
1(1− s) + C2G

′
2(1)]

B2

2
h2 +O(h4−α). (3.28)

We denote
J
∑

k=1

′ as the summation where the term with the upper limit k = J is multiplied by 1/2

and J1−s is the index corresponding to 1− s. ζ is the Riemann zeta function.
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Define

Ch =
d

2b2
− εb−αCαζ(α− 1)

2
h2−α. (3.29)

Using central differencing for the derivatives and modifying the ”punched-hole” trapezoidal rule

with the leading order term O(h2−α) in (3.28), we get the j-th equation discretizing the right-hand

side(RHS) of (3.23)

Lj,:V :=Ch
Vj+1 − 2Vj + Vj−1

h2
+

(

c(bsj)

b
− εb−αC1g(sj)

)

Vj+1 − Vj−1

2h

− εb−αVj

α

[

C1(1− sj)
−α + C2(1 + sj)

−α
]

+ εb−αC1h

J
∑

k=j+1

′Vk − Vj − (sk − sj)
Vj+1−Vj−1

2h

(sk − sj)α+1
+ εb−αC2h

−J+j
∑

k=−J

Vk − Vj

(sj − sk)1+α

+ εb−αC2h

j−1
∑

k=−J+j

′′Vk − Vj − (sk − sj)
Vj+1−Vj−1

2h

(sj − sk)α+1
(3.30)

for 0 ≤ j ≤ J − 1 where the summation symbol
∑

means the terms of both end indices are

multiplied by 1
2 ,

∑

′′ means that only the term of the bottom index is multiplied by 1
2 . Similarly,

Lj,:V :=Ch
Vj+1 − 2Vj + Vj−1

h2
+

(

c(bsj)

b
+ εb−αC2g(sj)

)

Vj+1 − Vj−1

2h

− εb−αVj

α

[

C1(1 − sj)
−α + C2(1 + sj)

−α
]

+ εb−αC1h

J+j
∑

k=j+1

′Vk − Vj − (sk − sj)
Vj+1−Vj−1

2h

(sk − sj)α+1
+ εb−αC1h

J
∑

k=J+j

Vk − Vj

(sk − sj)1+α

+ εb−αC2h

j−1
∑

k=−J

′′Vk − Vj − (sk − sj)
Vj+1−Vj−1

2h

(sj − sk)α+1
(3.31)

for −J + 1 ≤ j ≤ −1.

We can write the discretized equations (3.30) and (3.31) simply as L V−J+1:J−1 = −~1, where L
is the (2J − 1) by (2J − 1) coefficient matrix, ~1 is the vector of ones with dimension 2J − 1. The

dense system of linear equations is solved by the Krylov-subspace iterative method GMRES [25].

We point out that, for 0 < α ≤ 1, we use one-sided finite difference formula for derivatives of u

at the grid points that are closest to the end points s = ±1, because our results show that the

solutions could be discontinuous at the end points in this case.

4 Numerical results

4.1 Validation

Since we are not aware of any explicit exact solution for β 6= 0, we let u(x) = (1 − x2)+, i.e.

u(x) = 1 − x2 for x ∈ (−1, 1) and u(x) = 0 otherwise, together with d = 0, f ≡ 0, ε = 1 and the

domain D = (−1, 1). We compute L u where the operator L is defined in (2.3) or equivalently the

left-hand side(LHS) of Eq. (2.11) and obtain

L (1− x2)+ = C1

[

−(1− x)2−α

2− α
− 2x((1 − x)1−α − 1)

1− α
− (1 + x)(1 − x)1−α

α

]

(4.32)

+C2

[

−(1 + x)2−α

2− α
− 2x(1− (1 + x)1−α)

1− α
− (1− x)(1 + x)1−α

α

]

,
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Figure 2: The error of the numerical solutions to the constructed equation L u = L (1+x2)+ with
the RHS given in Eqs. (4.32) (for α 6= 1) or (4.33) (for α = 1), as a function of the resolution J .
The errors evaluated at x = −0.5 are shown for the different values of α = 0.5, 1, 1.5 but the fixed
value of β = 0.5, d = 0, f ≡ 0, ε = 1.

for α 6= 1;

L (1− x2)+ = −2(C1 + C2)− 2x[C1 ln(1− x)− C2 ln(1 + x)], (4.33)

for α = 1.

Replacing the RHS −1 of the MET equation (2.8) by L (1 + x2)+ given in (4.32) and (4.33),

we have created a known solution u(x) = (1 − x2)+. We compare the numerical solutions using

our discretizations (3.30) and (3.31) (with the new RHS) against the analytical expression u(x) =

(1 − x2)+ for different resolutions J = 20, 40, 80, 160. Figure 2 shows that the numerical order of

convergence based on the computed errors is close to two for all three values of α = 0.5, 1, 1.5 tested

at the fixed point x = −0.5. The convergence order is two, expected from the error analysis of our

numerical method. In the verification, we have chosen β = 0.5, d = 0, f ≡ 0, ε = 1.

As a second verification, we compare our numerical solutions to the MET problem (2.8) and

(2.9) with those obtained from solving the SDE (1.1) directly using Monte Carlo method. Both

MET solutions are shown in Fig. 3 for β = 0.5 or 1 and α = 0.5, 1, 1.5 with f ≡ 0, d = 0 and

the domain D = (−1, 1). To obtian the Monte Carlo solutions, we have taken 10, 000 sample

paths and the time step size ∆t = 0.001 for each starting point x within D. The results in Fig. 3

show that the numerical solutions obtained from two different methods agree well. This numerical

experiment demonstrates that our numerical method for computing the macroscopic quantities
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Figure 3: Comparison between the two numerical solutions of the MET for f ≡ 0, d = 0, ε = 1 and
domain D = (−1, 1), one from our numerical method (labeled ’FD’) and the other from the direct
Monte Carlo simulation (labeled ’MC’). The results are compared for different combinations of α
and β values.

such as the MET is much more computational efficient than the Monte Carlo method, because our

numerical error decreases quickly as the number of subintervals J increases but the Monte Carlo

solution converges slowly as the number of sample paths increases as expected. For comparing the

computational costs of the two methods, we show the CPU time in Table 1 for the Monte Carlo

method for the case we know the analytic solution for the MET: α = 1.5, β = 0, f ≡ 0, d = 0, ǫ = 1.

Table 1 shows that, in order to achieve the two-significant-digit accuracy in MET, one needs more

than 8000 sample paths and the CPU time for the Monte Carlo simulations is about 890 seconds

for one starting point x = 0 while our method needs only 1.3 seconds for 40 starting positions and

the error is less than 1.4× 10−3.

Table 1: The CPU times and the errors in the Monte Carlo simulation with α = 1.5, β = 0, f ≡
0, d = 0, ǫ = 1, x = 0.

sample paths 1000 2000 4000 8000

time(s) 95.9 163 320.6 891.8

Error(10−2) 4.12 1.64 1.03 0.81

To estimate the convergence orders for computing the MET, we take the numerical solution for

the high resolution J = 1280 as the ”true” solution. Figure 4 shows the errors of the solutions at
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Figure 4: Errors for the numerical solutions to the MET for different resolutions J = 10, 20, 40, 80
and 160 and α = 0.5, 1, 1.5 with β = 0.5, f ≡ 0, d = 0 and D = (−1, 1).

x = −0.5 as J increases from 10 to 160 by doubling, for different values of α = 0.5, 1, 1.5, β = 0.5,

f ≡ 0, d = 0 and D = (−1, 1). According to the results, we find that our numerical method can

only reach first-order accuracy and the numerical error for α = 1.5 is smaller than those in the

cases of α = 0.5, 1. Unlike the previous solution (1 − x2)+, the MET solution is known to have

divergent derivatives at the boundary points. [8] Consequently, the error analysis in (3.28) does not

apply as the derivatives of the solution are unbounded.

4.2 Mean exit time

For processes that are affected by asymmetric Lévy noise, little is known about the effects of the

different factors in the Lévy noise on the MET. In this section, we examine the effects of the index

of stability α, the skewness parameter β, the size of the domain (−b, b), the drift f , the intensity

of Gaussian part d and non-Gauassian part ε of the noise. For odd drift functions f(x), as shown

in Proposition 2.1, the solutions are symmetric when β changes sign, i.e. u−β(−x) = uβ(x). Thus,

we will only present the results for β ≥ 0.

4.2.1 Effects of the skewness parameter β and the index of stability α

Figure 5 shows that the MET solutions for different values of β = 0, 0.5, 1 for each of α = 0.5, 1 and

1.5. In all cases shown, the domain is D = (−1, 1) and there is no drift f ≡ 0 and no Gaussian part

d = 0. When β = 0, the MET u is known, given by u(x) =

√
π

2αΓ(1 + α/2)Γ((1 + α)/2)
(1− x2)α/2,

symmetric about x = 0 just like the PDF Sα(1, 0, 0) displayed in Fig. 1. When β 6= 0, the MET is

not symmetric about x = 0 even when the domain is symmetric. Furthermore, the larger β is, the

more asymmetric MET is. There are significant differences on the MET due to the effect of β for
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Figure 5: The effect of the skewness parameter β on the MET u(x) with pure jump Lévy
measure(d = 0, ε = 1, and f ≡ 0), domain D = (−1, 1), for different α (α = 0.5(part(a)),
α = 1(part(b)), α = 1.5(part(c))) and β (β = 0 (solid line), β = 0.5 (dashdot line), β = 1 (dashed
line)).
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different values of α. For α = 0.5 and β = 0.5 or 1, we find that the METs u(x) are discontinuous

at the left boundary x = −1, implying that the MET is nonzero once the starting point is insider

the domain. The MET is smaller for larger value of β if the starting point x is positive, while the

MET is much larger for bigger β when the starting point is close to the left boundary. In contrast,

the behavior changes for α = 1 or 1.5, as shown in Fig. 5(b) and (c): the MET is mostly smaller

for larger value of β for most of the starting points except when the starting point is close to the

right boundary. These behaviors can be explained by examining the corresponding PDFs shown

in Fig. 1. For example, the PDFs S0.5(1, β, 0) in Fig. 1(a) show that it has almost zero probability

moving to the left for β = 1, while the PDFs of S1.5(1, β, 0) in Fig. 1(c) indicate that the stochastic

process has larger probability moving to its immeadiate left when β is larger.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

X

u(
X

)

β = 0.5

 

 
α = 0.5

α = 1.5

Figure 6: The MET u(x) with d = 0, f ≡ 0, ε = 1 and domain D = (−1, 1) for β = 0.5 and
different values of α = 0.5, 1.5.

To show the effect of index of stability α directly, Fig. 6 plots the METs for the fixed skew

parameter β = 0.5 but two different values of α = 0.5 and 1.5 in one graph. For all starting point

x, the MET is smaller, skewed toward to the right and a continuous function of x when α = 1.5,

while that of α = 0.5 is skewed toward the left and discontinuous at the left boundary. Compared

with the PDFs of Sα(1, 0.5, 0) in Fig.1(b), the process for α = 0.5 has much smaller chance to move

to the left, thus it takes longer time to exit the domain for the initial starting position in the left

part of the domain.
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Figure 7: The MET u(x) for the larger domain D = (−4, 4) with pure jump Lévy measure(d = 0,
ε = 1 and f ≡ 0) for different values of β. (a) α = 0.5; (b) α = 1; (c) α = 1.5.
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4.2.2 Effect of domain size

Next, we increase the domain size to D = (−4, 4) and keep the other factors the same as in Fig. 5,

i.e. d = 0, ε = 1 and f ≡ 0 for α = 0.5, 1, 1.5. Comparing the results corresponding to the different

domain sizes (the smaller size in Fig. 5 and the larger size in Fig. 7), we find that behaviors of the

MET for different values of β are similar for α = 0.5 and α = 1.5. However, the profiles of the

METs for α = 1 are dramatically different when the domain D changes from (−1, 1) to (−4, 4). For

the larger domain, the process starting from the most of the left-half of the domain takes longer

time to exit the domain when β increases, while the opposite is true for the smaller domain. For

the same value of β, the shapes of the MET skewed toward the left for D = (−4, 4) instead of

toward to the right for D = (−1, 1).

4.2.3 Effect of noises
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Figure 8: The effect of Gaussian noise. The METs are plotted for d = 0(blue solid line), d = 0.1(red
dashed line), d = 1(green dashdot line) with the domain D = (−1, 1), the skewness parameter
β = 0.5, the drift term f ≡ 0 and ε = 1 for α = 0.5(part(a)) and α = 1.5(part(b)).
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Now, let’s consider the effect of the intensities of the Gaussian noise, d, and the non-Gaussian

noise, ε. Figure 8 shows the METs for different values of d = 0, 0.1, 1 with the domain D = (−1, 1),

ε = 1, f ≡ 0 and β = 0.5. The role of the Gaussian noises play on MET is obvious: when the

noise is stronger, the MET is shorter for any α, similar to the results for the symmetric Lévy cases

shown in [8]. If we add any amount of Gaussian noise (even for the low intensity d = 0.1), the MET

becomes continuous at the left end point when α = 0.5. As the intensity of Gaussian increases, the

MET is more symmetrical about the center of the domain x = 0.
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Figure 9: The effect of the non-Gaussian noise on the MET with pure asymmetric Lévy motion(f ≡
0, d = 0). (a) The METs with the domainD = (−1, 1), α = 0.5 and the skewness parameter β = 0.5
for different values of ε = 0.5 (the dashed line) and ε = 1 (the dash-dotted line); (b) The same as
(a) except α = 1.5.

Figure 9 shows the effect of the intensity of the non-Gaussian noise. From the METs for

ε = 0.5, 1 with domain D = (−1, 1), β = 0.5, f ≡ 0 and α = 0.5 and α = 1.5, the MET gets smaller

when ε increases and the shape profile of the MET does not change much as we ε changes.

4.2.4 Effect of drift term f

Last, we examine the effect of the O-U potential, i.e., having the drift term f(x) = −x on the

MET. Figure 10 shows the METs with the drift f(x) = −x and without the drift f ≡ 0 for the

case of pure non-Gaussian noise (d = 0 and ε = 1). In the presence of the O-U potential, the MET

increases as expected. For α = 0.5, the MET u(x) becomes discontinuous at both the boundary

points of the domain, x = 1,−1 when the O-U potential is added to the system. In contrast, the
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MET stays continuous for α = 1.5 when the drift term is present. Again, our numerical results

demonstrate that the regularity of the solution appears to be dependent on whether α is greater

than 1 or less than 1. It would be interesting research topic to investigate it theorectically.
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Figure 10: The effect of the drift term on the MET with the domain D = (−1, 1) d = 0, ε = 1 and
the skewness parameter β = 0.5. (a) The METs for α = 0.5 with the drift f(x) = −x (the solid
line) and without the drift f ≡ 0 (the dash-dotted line). (b) The same as (a) except α = 1.5.

4.3 Escape probability

First, we validate our equations (3.25) and (3.26) and the numerical implementation by comparing

with analytical result for the special case of f ≡ 0, d = 0, ε = 1 and β = 0 [8]

PE(x) =
(2b)1−αΓ(α)

[Γ(α2 )]
2

∫ x

−b
(b2 − y2)

α
2
−1dy. (4.34)

Figure 11(a) and (b) show our numerical results match the analytical solution well for different

domains, which verifies that our equations and the computer programs are correct.
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Figure 11: The escape probability from D first landing in E for d = 0, f ≡ 0 and ε = 1. (a)
Symmetric Lévy motion(β = 0) and domain D = (−1, 1), E = (1,∞) for different α. (b) The same
as (a) except D = (−4, 4) and E = (4,∞). (c) α = 0.5 and domain D = (−1, 1), E = (1,∞) for
the different values of β = −0.5, 0, 0.5. (d) The same as (c) except α = 1.5.
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Figure 11(c) and (d) tell us the effect of the skewness parameter β on the escape probability

of a process starting from the domain D = (−1, 1), exiting the domain and landing first to the

right E = (1,∞). Here, we consider the pure jump Lévy process: d = 0, f ≡ 0 and ε = 1. The

results show that, when α = 0.5, the escape probability is a sensitive function of β and increases

dramatically as β changes from −0.5 to 0 then to 0.5. In the contrast, when α = 1.5, the process

has less chance to escape the domain D and first land in E. The results are consistent with the plots

of the probability density functions S0.5(1, β, 0) and S1.5(1, β, 0) shown in Fig. 1(a,c) and those of

METs in Fig. 5. Here we note that, when α = 0.5, the escape probability seems to be discontinuous

at the left boundary point of the domain for β = 0.5 and at the right boundary point for β = −0.5.

However, the probability is a continuous function of the initial position x when α = 1.5, agreeing

with the results of MET presented earlier in the section.
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Figure 12: The effect of the Gaussian noise (d = 0, 0.1, 1) on the probability of escaping from
D = (−1, 1) first landing in E = (1,∞). (a) α = 0.5, β = 0.5, ε = 1, f ≡ 0. (b) Same as (a) except
α = 1.5.

Next, we consider the effect of the intensity of the Gaussian noise and the drift term on the
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Figure 13: The effect of the drift term f on the escape probability from D = (−1, 1) first landing
in E = (1,∞) for d = 0, ε = 1, β = 0.5, α = 0.5 with for two different f ≡ 0 and f(x) = −x.

escape probability in the case of asymmetric Lévy noise with β = 0.5. For α = 0.5, Fig. 12(a) shows

that, with any amount of the Gaussian noise, the escape probability becomes a smoother function

eliminating any discontinuities at the boundary and it has larger effect for negative starting position

x than that for positive x. The impact of the Gaussian noise is relatively small for α = 1.5 as shown

in Fig. 12(b). Figure 13 shows that the difference in the drift term f has a great influence on the

escape probability. Recall that the drift term f(x) = −x drives the process toward the globally

stable point x = 0. Comparing with zero drift f ≡ 0, we find that the probability with the drift

term is smaller for the starting position x > −0.3, while the escape probability with the drift is

larger than that without the drift for the starting position x < −0.5. Similar to the results of MET,

the presence of the O-U potential f(x) = −x causes that the escape probability be discontinuous

at both end points of the domain.

5 Conclusions

For asymmetric Lévy motions, there are important applications in many fields, such as physics,

mathematical finance and insurance risks. In addition, it attracts the attention of mathematicians

because it is closely related to the nonlocal partial differential equations. In this work, an effective

and convergent numerical algorithm has been developed for solving the mean first exit time and

escape probability for one-dimensional stochastic systems with asymmetric Lévy motion. The

convergence of the numerical method is verified numerically and the pointwise convergence order is

closed to first-order. The numerical analysis predicts that the method is of second-order accuracy for

smooth solutions. However, the numerical solutions have divergent derivatives or are discountinous

at the boundary and therefore the convergence order suffers.
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We also consider the influence of different parameters of the system on the mean exit time and

the escape probability. For certain deterministic drift and symmetric domains, we find that the

MET has a symmetry with respect to the skew parameter β. Thus we focus on the case of β > 0

and have seen that the profile of the MET becomes more asymmetric as β is larger. From our

numerical results, we find that, for 0 < α < 1, the MET and the escape probability appear to be

discontinous at the boundary of the domain but they are continuous for α > 1. This interesting

behavior of the solution worths further theoretical investigation.

6 Acknowledgements

The research is partially supported by the grants China Scholarship Council (X.W.), NSF-DMS

#1620449 (J.D. and X.L.), and Simons Foundation #429343 (R.S.).

References
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