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Differential-recurrence properties of dual Bernstein polynomials
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Abstract

New differential-recurrence properties of dual Bernstein polynomials are given which follow
from relations between dual Bernstein and orthogonal Hahn and Jacobi polynomials. Using
these results, a fourth-order differential equation satisfied by dual Bernstein polynomials has
been constructed. Also, a fourth-order recurrence relation for these polynomials has been
obtained; this result may be useful in the efficient solution of some computational problems.

Keywords: Differential equations; Recurrence relations; Bernstein basis polynomials; Dual
Bernstein polynomials; Jacobi polynomials; Hahn polynomials; Generalized hypergeometric
functions.

1. Introduction

Dual Bernstein polynomials associated with the Legendre inner product were introduced
by Ciesielski in 1987 [4]. Their properties and generalizations were studied, e.g., by Jüttler
[12], Rababah and Al-Natour [19, 20], as well as by Lewanowicz and Woźny [14, 15, 24]. It
is worth noticing that dual Bernstein polynomials introduced in [14], which are associated
with the shifted Jacobi inner product, have recently found many applications in numerical
analysis and computer graphics (curve intersection using Bézier clipping, degree reduction
and merging of Bézier curves, polynomial approximation of rational Bézier curves, etc.).
Note that skillful use of these polynomials often results in less costly algorithms which solve
some computational problems (see [2, 7, 8, 16, 17, 21, 23, 24]).
The main purpose of this article is to give new properties of dual Bernstein polynomials

considered in [14]. Namely, we derive some differential-recurrence relations which allow us to
construct a differential equation and a recurrence relation for these polynomials.
The paper is organized as follows. Section 2 contains definitions, notation and important

properties of dual Bernstein polynomials obtained in [14]. Next, in Section 3, we present
new results which imply: i) the fourth-order differential equation with polynomial coefficients
(see §4); ii) the recurrence relation of order four (see §5), both of which are satisfied by dual
Bernstein polynomials. The latter result may be useful in finding the efficient solution of
some computational tasks, e.g., fast evaluation of dual Bernstein polynomials and their linear
combinations or integrals involving these dual polynomials (see §6).
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2. Dual Bernstein polynomials

The generalized hypergeometric function (see, e.g., [1, §2.1]) is defined by

pFq

(

a1, . . . , ap
b1, . . . , bq

∣

∣

∣

∣

x

)

:=

∞
∑

l=0

(a1)l . . . (ap)l
(b1)l . . . (bq)l

·
xl

l!
,

where p, q ∈ N, ai ∈ C (i = 1, 2, . . . , p), bj ∈ C (j = 1, 2, . . . , q), x ∈ C, and (c)l (c ∈ C; l ∈ N)
denotes the Pochhammer symbol,

(c)0 := 1, (c)l := c(c+ 1) . . . (c+ l − 1) (l ≥ 1).

Notice that if one of the parameters ai is equal to −k (k ∈ N) then the generalized hyperge-
ometric function is a polynomial in x of degree at most k.
For α, β > −1, let us introduce the inner product 〈·, ·〉α,β by

〈f, g〉α,β :=

∫ 1

0
(1− x)αxβf(x)g(x)dx. (2.1)

Recall that shifted Jacobi polynomials R
(α,β)
k (cf., e.g., [13, §1.8]),

R
(α,β)
k (x) :=

(α+ 1)k
k!

2F1

(

−k, k + α+ β + 1

α+ 1

∣

∣

∣

∣

1− x

)

(k = 0, 1, . . .), (2.2)

are orthogonal with respect to the inner product (2.1), i.e.,

〈

R
(α,β)
k , R

(α,β)
l

〉

α,β
= δklhk (k, l ∈ N),

where δkl is the Kronecker delta (δkl = 0 for k 6= l and δkk = 1) and

hk := K
(α+ 1)k(β + 1)k
k!(2k/σ + 1)(σ)k

(k = 0, 1, . . .)

with σ := α+ β + 1, K := Γ(α+ 1)Γ(β + 1)/Γ(σ + 1).
Shifted Jacobi polynomials satisfy the second-order differential equation with polynomial

coefficients of the form (cf. [13, Eq. (1.8.5)])

L(α,β)R
(α,β)
k (x) = λ

(α,β)
k R

(α,β)
k (x) (k = 0, 1, . . .), (2.3)

where

L(α,β) := x(x− 1)D2 + 1
2 (α− β + (σ + 1)(2x − 1))D, λ

(α,β)
k := k(k + σ),

and D :=
d

dx
is a differentiation operator with respect to the variable x.

It is well known that (cf. [1, p. 117])

R
(α,β)
k (x) = (−1)kR

(β,α)
k (1− x). (2.4)
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Moreover, we also use the second family of orthogonal polynomials, namely Hahn polyno-
mials,

Qk(x;α, β;N) := 3F2

(

−k, k + α+ β + 1, −x

α+ 1, −N

∣

∣

∣

∣

1

)

(k = 0, 1, . . . , N ; N ∈ N) (2.5)

(see, e.g., [13, §1.5]).
Hahn polynomials satisfy the second-order difference equation with polynomial coefficients

of the form

L(α,β,N)
x Qk(x;α, β;N) = λ

(α,β)
k Qk(x;α, β;N) (k = 0, 1, . . .), (2.6)

where
L(α,β,N)
x f(x) := a(x)f(x+ 1)− c(x)f(x) + b(x)f(x− 1), (2.7)

and

a(x) := (x−N)(x+ α+ 1), b(x) := x(x− β −N − 1), c(x) := a(x) + b(x).

See, e.g., [13, Eq. (1.5.5)].
Let Πn (n ∈ N) denote the set of polynomials of degree at most n. Bernstein basis

polynomials Bn
i are given by

Bn
i (x) :=

(

n

i

)

xi(1− x)n−i (i = 0, 1, . . . , n; n ∈ N). (2.8)

One can easily check that polynomials Bn
0 , B

n
1 , . . . , B

n
n form a basis of the space Πn.

Bernstein basis polynomials (2.8) have many applications in approximation theory, numer-
ical analysis, as well as in computer aided geometric design (see, e.g., books [3], [6] and papers
cited therein). In view of their applications in computer graphics and numerical analysis, the
so-called dual Bernstein polynomials have become quite popular.

Definition 2.1 ([14, §5]). Dual Bernstein polynomials of degree n,

Dn
0 (x;α, β), D

n
1 (x;α, β), . . . , D

n
n(x;α, β) ∈ Πn,

are defined so that the following conditions hold:

〈

Bn
i ,D

n
j (·;α, β)

〉

α,β
= δij (i, j = 0, 1, . . . , n)

(cf. (2.1)).

For the properties and applications of dual Bernstein polynomials Dn
i (x;α, β), see [2, 7,

8, 14, 16, 17, 21, 23, 24]. Note that in the case α = β = 0 these polynomials were defined
earlier by Ciesielski in [4].

Remark 2.2. We adopt the convention that Dn
i (x;α, β) := 0 for i < 0 or i > n.
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Dual Bernstein polynomials, Hahn polynomials and shifted Jacobi polynomials are related
in the following way [14, Theorem 5.2)]:

Dn
i (x;α, β) = K−1

n
∑

k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
Qk(i;β, α;n)R

(α,β)
k (x) (0 ≤ i ≤ n). (2.9)

Note that
Dn

i (x;α, β) = Dn
n−i(1− x;β, α) (i = 0, 1, . . . , n) (2.10)

(see [14, Corollary 5.3]).
The polynomial Dn

i (x;α, β) can be expressed as a short linear combination of min(i, n−
i) + 1 shifted Jacobi polynomials with shifted parameters:

Dn
i (x;α, β) =

(−1)n−i(σ + 1)n
K (α+ 1)n−i(β + 1)i

i
∑

k=0

(−i)k
(−n)k

R
(α,β+k+1)
n−k (x), (2.11)

Dn
n−i(x;α, β) =

(−1)i(σ + 1)n
K (α+ 1)i(β + 1)n−i

i
∑

k=0

(−1)k
(−i)k
(−n)k

R
(α+k+1,β)
n−k (x),

where i = 0, 1, . . . , n. See [14, Corollary 5.4].

3. Differential-recurrence relations

Let us first find the representation of the polynomial Dn
i (x;α, β) in the basis (1 − x)j

(j = 0, 1, . . . , n). By using (2.2) in (2.11) and doing some algebra, we obtain

Dn
i (x;α, β) =

(−1)n−i(σ + 1)n
K (α+ 1)n−i(β + 1)i

i
∑

k=0

(−i)k
(−n)k

(α+ 1)n−k

(n− k)!
2F1

(

k − n, n+ σ + 1

α+ 1

∣

∣

∣

∣

1− x

)

= A
(α,β)
ni

(α+ 1)n
(n+ 1)!

n
∑

j=0

B
(α,β)
nj 3F2

(

j − n, −i, 1

−n, −n− α

∣

∣

∣

∣

1

)

· (1− x)j , (3.1)

where

A
(α,β)
ni :=

(−1)n−i(n+ 1)(σ + 1)n
K (α+ 1)n−i(β + 1)i

, B
(α,β)
nj :=

(−n)j(n+ σ + 1)j
j!(α + 1)j

. (3.2)

Let us define

F (i, j) := 3F2

(

j − n, −i, 1

−n, −n− α

∣

∣

∣

∣

1

)

(i, j = 0, 1, . . . , n).

Using the Zeilberger algorithm [18, §6], one can prove the following lemma.

Lemma 3.1. Quantities F (i, j) satisfy the first-order non-homogeneous recurrence relation
of the form

(i− n)(n− i+ α)F (i+ 1, j)− (i+ 1)(n+ j − i+ α+ 1)F (i, j) = −(n+ 1)(n+ α+ 1), (3.3)

where 0 ≤ i, j ≤ n and we adopt the convention that F (n + 1, j) := 0.
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Lemma 3.1 allows us to give the first of the mentioned differential-recurrence relations for
dual Bernstein polynomials.

Theorem 3.2. For i = 0, 1, . . . , n, the following formula holds:

(

(1− x)D − (n− i+ α+ 1)I
)

Dn
i (x;α, β)

=
(i− n)(i+ β + 1)

i+ 1
Dn

i+1(x;α, β) −A
(α,β)
ni

n+ α+ 1

i+ 1
R(α,β+1)

n (x), (3.4)

where D :=
d

dx
(cf. p. 2), and I is the identity operator.

Proof. We add up the recurrence relation (3.3), multiplied by B
(α,β)
nj (1−x)j , over all 0 ≤ j ≤ n

and take into account that

R(α,β+1)
n (x) =

(α+ 1)n
n!

n
∑

j=0

B
(α,β)
nj (1− x)j ,

DDn
i (x;α, β) = −A

(α,β)
ni

(α+ 1)n
(n+ 1)!

n
∑

j=1

B
(α,β)
nj F (i, j) · j(1− x)j−1

(cf. (3.2)).

Another relation for Dn
i (x;α, β) can be found by applying symmetry relations (2.4)

and (2.10) in (3.4).

Theorem 3.3. For i = 0, 1, . . . , n, we have

(

xD + (i+ β + 1)I
)

Dn
i (x;α, β)

=
i(n − i+ α+ 1)

n− i+ 1
Dn

i−1(x;α, β) +A
(α,β)
ni

n+ β + 1

n− i+ 1
R(α+1,β)

n (x). (3.5)

The next differential-recurrence relation is more complicated. It relates the second and
first derivative of Dn

i (x;α, β) with the polynomials D
n
i−1(x;α, β), D

n
i (x;α, β), D

n
i+1(x;α, β).

Theorem 3.4. The following relation holds:

(

x(x− 1)D2 + 1
2 (α− β + (σ + 1)(2x− 1))D

)

Dn
i (x;α, β) (3.6)

= (i− n)(i+ β + 1)Dn
i+1(x;α, β) + i(i− α− n− 1)Dn

i−1(x;α, β)

−(i(i − α− n− 1) + (i− n)(i+ β + 1))Dn
i (x;α, β),

where i = 0, 1, . . . , n.

Proof. We use the representation (2.9) of dual Bernstein polynomials, the differential equa-
tion (2.3) for shifted Jacobi polynomials, as well as the difference equation (2.6) satisfied by
Hahn polynomials.
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Observe that

L(α,β)Dn
i (x;α, β) = K−1

n
∑

k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
Qk(i;β, α;n) · λ

(α,β)
k R

(α,β)
k (x)

= K−1
n
∑

k=0

(−1)k
(2k/σ + 1)(σ)k

(α+ 1)k
R

(α,β)
k (x) · λ

(β,α)
k Qk(i;β, α;n)

= L
(β,α,n)
i Dn

i (x;α, β).

4. Differential equation

Using the new properties of dual Bernstein polynomials given in Section 3, one can con-
struct the differential equation for Dn

i (x;α, β).

Theorem 4.1. Dual Bernstein polynomials satisfy the second-order non-homogeneous differ-
ential equation with polynomial coefficients of the form

M
(α,β)
ni Dn

i (x;α, β) = (n+ σ + 1)A
(α,β)
ni R(α+1,β+1)

n (x), (4.1)

where
M

(α,β)
ni := x(x− 1)D2 +

(

(n+ σ + 3)x− i− β − 2
)

D + (n+ σ + 1)I.

Proof. By substituting the expressions forDn
i+1(x;α, β) andD

n
i−1(x;α, β) determined by (3.4)

and (3.5), respectively, into equation (3.6), we obtain

M
(α,β)
ni Dn

i (x;α, β) = A
(α,β)
ni

(

(n+ α+ 1)R(α,β+1)
n (x) + (n+ β + 1)R(α+1,β)

n (x)
)

.

To complete the proof, observe that

(n+ α+ 1)R(α,β+1)
n (x) + (n+ β + 1)R(α+1,β)

n (x) = (n+ σ + 1)R(α+1,β+1)
n (x),

which follows from (2.2) after some algebra.

Notice that by applying the second-order differential operator

N
(α,β)
ni := L(α+1,β+1) − λ(α+1,β+1)

n I

(cf. (2.3)) to both sides of Eq. (4.1), we obtain the homogeneous differential equation for dual
Bernstein polynomials.

Corollary 4.2. Dual Bernstein polynomials Dn
i (x;α, β) (i = 0, 1, . . . , n) satisfy the fourth-

order differential equation with polynomial coefficients of the form

Q4D
n
i (x;α, β) ≡ N

(α,β)
ni M

(α,β)
ni Dn

i (x;α, β) = 0. (4.2)
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Observe that the operator Q4 is a composition of two second-order differential operators.
For the reader’s convenience, we give also the explicit form of the differential equation (4.2):

4
∑

j=0

wj(x)D
jDn

i (x;α, β) = 0,

where

w4(x) := x2(x− 1)2, w3(x) := x(x− 1)[(n + 2σ + 10)x − i− 2β − 6],

w2(x) := [(n+ σ + 3)(σ − n+ 7) + σ + 3]x2

+[(n− 1)2 + αn− 2β − (σ + 3)(i+ 2β + 8)− 5]x+ (β + 2)(i+ β + 3),

w1(x) := −(n+ σ + 2)[(n2 + (n− 2)(σ + 3))x+ (2− n)(i+ β + 2)− 2i],

w0(x) := −n(n+ σ + 1)2.

5. Recurrence relation

In [14, Theorem 5.1], the following recurrence relation, which connects dual Bernstein
polynomials of degrees n+ 1 and n, as well as the shifted Jacobi polynomial of degree n+ 1,
was given:

Dn+1
i (x;α, β) =

(

1−
i

n+ 1

)

Dn
i (x;α, β) +

i

n+ 1
Dn

i−1(x;α, β) + C
(α,β)
ni R

(α,β)
n+1 (x), (5.1)

where 0 ≤ i ≤ n+ 1, and

C
(α,β)
ni := (−1)n−i+1 (2n + σ + 2)(σ + 1)n

K(α+ 1)n−i+1(β + 1)i
.

Let us mention that the case α = β = 0 of this relation was found earlier by Ciesielski in [4].
Now, using the results given in Section 3, we show that it is possible to construct a ho-

mogeneous recurrence relation connecting five consecutive (with respect to i) dual Bernstein
polynomials of the same degree n.
Let Em be the mth shift operator acting on the variable i in the following way:

Emzi := zi+m (m ∈ Z).

For the sake of simplicity, we write I := E0 and E := E1.

For example, the operator L
(α,β,N)
i (cf. (2.7) and the proof of Theorem 3.4) can be written

as:
L
(α,β,N)
i = a(i)E − c(i)I + b(i)E−1.

The following theorem holds.

Theorem 5.1. Dual Bernstein polynomials satisfy the second-order non-homogeneous recur-
rence relation of the form

M
(α,β,n)
i Dn

i (x;α, β) = G
(α,β)
ni (x), (5.2)
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where i = 0, 1, . . . , n, and

M
(α,β,n)
i := (i)2(n− i+ α+ 1)(x− 1)E−1 − (n− i)2(i+ β + 1)xE

+(i+ 1)(n − i+ 1)[(i + β + 1)(1 − x) + (n− i+ α+ 1)x]I,

G
(α,β)
ni (x) := A

(α,β)
ni

(

(i+ 1)(n + β + 1)(1 − x)R(α+1,β)
n (x)

+(n− i+ 1)(n + α+ 1)xR(α,β+1)
n (x)

)

.

Proof. The recurrence (5.2) can be obtained in the following way: we subtract the rela-
tion (3.4), multiplied by x, from the relation (3.5), multiplied by 1− x.

Notice that the quantity H(i) :=
(

A
(α,β)
ni

)

−1
G

(α,β)
ni (x) is a polynomial of the first degree

in variable i. Thus we have (E − I)2H(i) = 0. By applying the operator

N
(α,β,n)
i := E−1(E − I)2

(

A
(α,β)
ni

)

−1
I

to both sides of the equation (5.2), we obtain a fourth-order homogeneous recurrence relation
for the dual Bernstein polynomials.

Corollary 5.2. Dual Bernstein polynomials satisfy the fourth-order recurrence relation of
the form

Q4D
n
i (x;α, β) ≡ N

(α,β,n)
i M

(α,β,n)
i Dn

i (x;α, β) = 0 (0 ≤ i ≤ n). (5.3)

Let us stress that the operator Q4 is a composition of two second-order difference opera-
tors. Below, we also give the explicit form of the simplified recurrence relation (5.3):

2
∑

j=−2

vj(i)D
n
i+j(x;α, β) = 0, (5.4)

where

v−2(i) := (1− x)(i − 1)2(n− i+ α)3,

v−1(i) := −i(n − i+ α)2{(i + β)(n − 3i)

+[n(n− 3i+ α− β + 4) + i(4i − α+ 3β − 4) + 2(α + 2)]x},

v0(i) := (i+ β)(n − i+ α)[z(i)x + (i+ 1)(i+ β + 1)(3i − 2n)],

v1(i) := (i− n)(i+ β)2{(i+ 2)(i + β + 2)

−[n(2n− 5i+ 2α) + i(4i − 3α+ β + 4) + 2(β + 2)]x},

v2(i) := x(i+ β)(i + β + 1)2(n− i− 1)2,

and z(i) := −6i3+3(3n+α−β)i2− [n(5n−6β)+(4n+3)σ+3]i+n[(n+1)(n+α+1)+2β+2].

6. Applications

Now, we point out some possible applications of the obtained recurrence relation. Let us
consider the following task.
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Problem 6.1. Let us fix numbers: n ∈ N, x ∈ C and α, β > −1. Consider the problem of
computing the values

Dn
i (x;α, β)

for all i = 0, 1, . . . , n.

An efficient solution of this problem gives us, e.g., the fast method of evaluating the
polynomial

d(x) :=

n
∑

i=0

diD
n
i (x;α, β), (6.1)

where coefficients d0, d1, . . . , dn are given. Notice that such representation plays a crucial role
in the algorithm for merging of Bézier curves which has been recently proposed in [23].
On the other hand, in many applications, such as least-square approximation in Bézier

form (cf. [15], [16]) or numerical solving of boundary value problems (cf., e.g., report [9]) or
fractional partial differential equations (see [10], [11] and papers cited therein), it is necessary
to compute the collection of integrals of the form

Ik :=

∫ 1

0
(1− x)αxβf(x)Dn

k (x;α, β)dx

for all k = 0, 1, . . . , n and a given function f . Recall that the main reason is that a polynomial

p∗n(x) :=

n
∑

k=0

IkB
n
k (x)

minimizes the value of the least-square error

∫ 1

0
(1− x)αxβ(f(x)− pn(x))

2dx (pn ∈ Πn).

The numerical approximations of the integrals I0, I1, . . . , In involving the dual Bernstein poly-
nomials can be computed, for example, by quadrature rules (see, e.g., [5, §5]). It also requires
the fast evaluation of polynomials Dn

0 (x;α, β),D
n
1 (x;α, β), . . . ,D

n
n(x;α, β) in many nodes.

The solutions of Problem 6.1 which use the representations (2.9), (2.11) or (3.1) of dual
Bernstein polynomials, or the recurrence relation (5.1) satisfied by these polynomials, have
too high computational complexity (notice that one has to compute also shifted Jacobi and/or
Hahn polynomials, cf. (2.2) and (2.5)).
Observe that it is more efficient to use the recurrence relation (5.4) which is not explicitly

related to shifted Jacobi and Hahn polynomials. This recurrence allows us to solve the problem
with the computational complexity O(n). For details, see [22, §7 and §10.2].
Horner’s rule (see, e.g., [5, Eq. (1.2.2)]) for evaluating the nth degree polynomial given in

the power basis also has the computational complexity O(n). Taking into account that the
dual Bernstein basis is much more complicated than the power basis, the algorithms based on
the recurrence (5.1) for evaluating Dn

i (x;α, β) or a polynomial given in the form (6.1) seem
to be interesting.
To show the efficiency of the new recurrence relation for dual Bernstein polynomials, let

us present the following numerical example. The results have been obtained on a computer
with Intel Core i5-661 3.33Hz processor and 8GB of RAM, using computer algebra system
MapleTM 8.
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Recurrence (5.1) Recurrence (5.4)

time error time error

n = 10 α = β = 0 2.453 0.40 · 10−31 0.688 0.40 · 10−31

α = β = −0.5 2.750 0.20 · 10−28 0.953 0.71 · 10−26

α = −0.33, β = 5.66 3.845 0.25 · 10−24 1.563 0.33 · 10−24

n = 15 α = β = 0 5.984 0.35 · 10−25 0.937 0.41 · 10−23

α = β = −0.5 8.000 0.19 · 10−22 1.485 0.11 · 10−22

α = −0.33, β = 5.66 12.391 0.13 · 10−21 2.781 0.44 · 10−20

n = 20 α = β = 0 12.327 0.18 · 10−19 1.329 0.26 · 10−19

α = β = −0.5 17.734 0.72 · 10−19 2.125 0.17 · 10−18

α = −0.33, β = 5.66 27.797 0.41 · 10−19 4.735 0.90 · 10−19

Table 1: Results of numerical experiments (total time in seconds and maximum error for M = 100).

Example 6.2. For n = 10, 15, 20 and α = β = 0 (Legendre’s case), α = β = −0.5 (Cheby-
shev’s case) and α = −0.33, β = 5.66 (non-standard case), the values of dual polynomials
Dn

i (xk;α, β) at all the points xr :=
k
M

(0 ≤ k ≤ M ; M = 100) and for all i = 0, 1, . . . , n have
been computed by recurrence relations (5.1) (computational complexity O(Mn2)) and (5.4)
(computational complexity O(Mn)). Both methods give results of similar numerical quality.
However the algorithm using the new recurrence relation (5.4) is significantly faster. See
Table 1.
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