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Abstract

The Swift-Hohenberg equation is a nonlinear partial differential equation of fourth

order that models the formation and evolution of patterns in a wide range of phys-

ical systems. We study the 1D Swift-Hohenberg equation in order to demonstrate

the utility of the reproducing kernel method. The solution is represented in the

form of a series in the reproducing kernel space, and truncating this series rep-

resentation we obtain the n-term approximate solution. In the first approach, we

aim to explain how to construct a reproducing kernel method without using Gram-

Schmidt orthogonalization, as orthogonalization is computationally expensive. This

approach will therefore be most practical for obtaining numerical solutions. Gram-

Schmidt orthogonalization is later applied in the second approach, despite the in-

creased computational time, as this approach will prove theoretically useful when

we perform a formal convergence analysis of the reproducing kernel method for the

Swift-Hohenberg equation. We demonstrate the applicability of the method through

through various test problems for a variety of initial data and parameter values.
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1 Introduction

The Swift-Hohenberg equation is a nonlinear partial differential equation of fourth

order which has been widely used as a model for the study of pattern formation.

It was first put forward by Swift and Hohenberg [25] as a simple model for the

Rayleigh-Bernard instability of roll waves. Since then, the Swift-Hohenberg equation

has proved an effective model equation for a variety of phenomena in physics and

mechanics. Setails of the physics of the Swift-Hohenberg equation can be found in

[8,9,24,26]. The Swift-Hohenberg equation is defined as [2]

∂u

∂t
= λu−

(

1 +
∂2

∂x2

)2

u− u3, (1)

where λ ∈ R is a parameter. The Swift-Hohenberg equation is a model equation for

a large class of higher-order parabolic model equations. It has a great deal of appli-

cation, such as the extended Fisher-Kolmogorov equation in statistical mechanics

[2,14,32] and a sixth-order equation introduced by Caginalp and Fife [7] in phase

field models [15]. Writing equation (1) in a more conventional form, we have

∂u

∂t
+

∂4u

∂x4
+ 2

∂2u

∂x2
+ (1− λ)u+ u3 = 0. (2)

We choose the problem domain x ∈ [0, 1] and t > 0, along with the boundary and

initial conditions

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0, u(x, 0) = f(x). (3)

Reproducing kernels appeared in the work of Zaremba on boundary value problems

involving harmonic and biharmonic functions [31]. Bergman attempted to provide

a fundamental framework for the theory of reproducing kernels [5,6], while Aron-

szajn produced a systematic reproducing kernel space method based on Bergman’s

works [3,4]. Reproducing kernel methods have proven useful in many areas, in-

cluding statistics and machine learning, and they play a valuable role in complex

analysis, nonlinear system of boundary value problems, nonlinear initial value prob-

lems, singular nonlinear two-point periodic boundary value problems and singularly

perturbed turning point problems, probability, group representation theory, and the

theory of integral operators [1,11–13,16,17,19–21,28,29].

The aim of this paper is to introduce a numerical technique based on reproducing
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kernel Hilbert space methods in order to solve the Swift-Hohenberg initial-boundary

value problem (2)-(3). This remainder of this paper is organized as follows. In Sec-

tion 2, we give a brief introduction to reproducing kernel Hilbert spaces. In Section

3, we present two specific reproducing kernel methods to solve the Swift-Hohenberg

initial-boundary value problem. In the first method, we employ non-orthogonal basis

functions, while in the second method we using orthogonal basis functions by way

of Gram-Schmidt orthogonalization. In Section 4, we provide a convergence anal-

ysis of reproducing kernel methods for the Swift-Hohenberg initial-boundary value

problem, using the second method. Numerical examples are provided in Section 5

to demonstrate the effectiveness of the proposed method. Concluding remarks, and

suggestions for future work, are given in Section 6.

2 Reproducing kernel method preliminaries

To solve the boundary value problem (2)-(3) using the reproducing kernel theory,

we need to first discuss some preliminary results.

In order to use the reproducing kernel space to solve (2)-(3), we need to first homog-

enize the problem. To begin, we define u(x, t) = ϑ(x, t) + f(x), and consequently

we can rewrite (2)-(3) as

∂ϑ

∂t
+

∂4ϑ

∂x4
+ f (4)(x) + 2

∂2ϑ

∂x2
+ 2f ′′(x) + (1− λ)(ϑ(x, t) + f(x)) + [ϑ(x, t) + f(x)]3 = 0 ,

ϑ(0, t) = ϑ(1, t) = 0, ϑxx(0, t) = ϑxx(1, t) = 0, ϑ(x, 0) = 0 .

(4)

We shall consider the problem domain Φ = [0, 1]× [0,∞).

We now present some necessary definitions and theorems in the theory of repro-

ducing kernel spaces. A Hilbert space ω of functions is called a reproducing kernel

Hilbert space if there exists a reproducing kernel R of ω. The existence of the re-

producing kernel of a Hilbert space is due to the Riesz Representation Theorem,

which states that any continuous linear functional can be represented by an inner

product with a unique element of space. Therefore, it is known that the reproducing

kernel is unique. Note that the reproducing kernel, R, has the following reproducing

property

u(·) = 〈u(x), R(x, ·)〉ω for all u ∈ ω. (5)
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Consider the following reproducing kernel space 0ω2
2([0,∞)), which is defined as

0ω2
2([0,∞)) = {υ(t) | υ(t), υ′(t) are absolutely continuous functions,

υ, υ′(t), υ′′(t)) ∈ L2([0,∞)), υ(0) = 0}.

The name reproducing kernel is motivated by the reproducing property, which is

evident in the action of taking the inner product. The inner product and norm for
0ω2

2([0,∞)) are given by

〈υ1, υ2〉0ω2
2[0,∞) =

∫ ∞

0
{4υ1(t)υ2(t) + 5υ′

1(t)υ
′
2(t) + υ′′

1(t)υ
′′
2(t)} dt

and

‖υ‖ω2
2
=
√

〈υ, υ〉ω2
2
,

respectively. By using the definition of the inner product and the reproducing prop-

erty (5), we can write the following reproducing kernel [11]:

Kη(t) =















1
12

(

e−2η−2t − 1
12
e2t−2η − e−η−t

6
+ et−η

6

)

, t ≤ η,

1
6

(

(eη − e−η) e−t − 1
12
(e4η − 1) e−2η−2t

)

, t > η.

Similarly, we define the reproducing kernel space ω5
2([0, 1]) by

ω5
2([0, 1]) = {υ(x) | υ(4)(x) is an absolutely continuous, υ(5)(x) ∈ L2([0, 1])}.

The inner product and norm for ω5
2([0, 1]) are given by

〈υ1, υ2〉ω5
2
=

4
∑

i=0

υ
(i)
1 (0)υ

(i)
2 (0) +

∫ 1

0
υ
(5)
1 (x)υ

(5)
2 (x)dx

and

‖υ‖ω5
2
=
√

〈υ, υ〉ω5
2
,

respectively. By the definition of inner product and according to the the reproducing
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property (5), it follows that its reproducing kernel is [11]:

Rζ(x) =



































































































































































































































































































































1
12004600204800

(

− 362880ζ(x − 1)x(x(x(x(x(x(91(x − 8)x+ 1588)

+664) − 8030) − 51500) + 59380) + 59380)3360ζ3x((x(x(x(x(33(x − 9)x x > ζ,

+91723) − 636517) + 1905393) + 9526965) − 22862340)x2 + 11975040)

+210ζ4x((x(x(x(x(207(x − 9)x− 176498) + 1270262) − 3836868)

+80060040) − 152431440)x2 + 75116160 + 42ζ5x((x(x(x(x(207(x − 9)x

−176498) + 1270262) − 3836868) + 80060040) − 152431440)x2 + 75116160)

+28x(11975040 + x2(−22862340 + x(9526965 + x(1905393 + x(−636517

+x(91723 + 33(−9 + x)x))))))ζ6 − 4ζ7(x− 1)x(x(x(x(x(x(579(x − 8)x

+100987) − 541074) + 1312155) + 10578300) + 87625620) − 210107520+

+9ζ8(x− 1)x(x(x(x(x(x(91(x − 8)x+ 1588) + 664) − 8030) − 51500)

+59380) + 59380) + ζ9(−91x9 + 819x8 − 2316x7 + 924x6 + 8694x5

+43470x4 − 110880x3 − 33022080x + 33081460)
)

,

1
12004600204800

(

x((−91ζ9 + 819ζ8 − 2316ζ7 + 924ζ6 + 8694ζ5 + 43470ζ4

−110880ζ3 − 33022080ζ + 33081460)x8 − 3360ζ((ζ(ζ(ζ(ζ(33(ζ − 9)ζ

+91723) − 636517) + 1905393) + 9526965) − 22862340)ζ2 + 11975040)x2 x ≤ ζ.

+28ζ((ζ(ζ(ζ(ζ(33(ζ − 9)ζ + 91723) − 636517) + 1905393) + 9526965)

−22862340)ζ2 + 11975040)x5 + 210ζ((ζ(ζ(ζ(ζ(207(ζ − 9)ζ − 176498)

+1270262) − 3836868) + 80060040) − 152431440)ζ2 + 75116160)x3

+42ζ((ζ(ζ(ζ(ζ(207(ζ − 9)ζ − 176498) + 1270262) − 3836868)

+80060040) − 152431440)ζ2 + 75116160)x4 − 362880(ζ − 1)ζ

×(ζ(ζ(ζ(ζ(ζ(91(ζ − 8)ζ + 1588) + 664) − 8030) − 51500)

+59380) + 59380) + 9(ζ − 1)ζ(ζ(ζ(ζ(ζ(ζ(91(ζ − 8)ζ + 1588) + 664)

−8030) − 51500) + 59380) + 59380)x7 − 4(ζ − 1)ζ(ζ(ζ(ζ(ζ(ζ(579(ζ − 8)ζ

+100987) − 541074) + 1312155) + 10578300) + 87625620) − 210107520)x6
)

,

We next define the binary function space 0ω
(4,2)
2 (Φ) by

0ω
(5,2)
2 (Φ) = ω5

2([0, 1])×
0 ω2

2([0,∞))

=

{

u(x, t) |
∂5u(x, t)

∂x4∂t
is completely continuous inΦ,

∂7u(x, t)

∂x5∂t2
∈ L2(Φ),

u(0, t) = u(1, t) = 0, uxx(0, t) = uxx(1, t) = 0, u(x, 0) = 0
}

.
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Before continuing on to the numerical method, we shall need two results.

Theorem 2.1 [11] 0ω
(5,2)
2 (Φ) = ω5

2([0, 1])×
0ω2

2([0,∞)) is a reproducing kernel

space which has reproducing kernel

Ω(ζ,η)(x, t) = Rζ(x)κη(t) , (6)

where Rζ(x), κη(t) are the reproducing kernels of ω5
2([0, 1]) and 0ω2

2([0,∞)), such

that for any u(x, t) ∈ 0ω
(5,2)
2 (Φ) we have

u(ζ, η) = 〈u(x, t),Ω(ζ,η)(x, t)〉0ω(5,2)
2

.

It is easy to define the reproducing kernel space ω
(1,1)
2 (Φ) such as 0ω

(5,2)
2 (Φ). There-

fore, we can certainly assume that Υ(ζ,η)(x, y) is the reproducing kernel space

ω
(1,1)
2 (Φ). Moreover, the linear operator L :0 ω

(5,2)
2 (Φ) −→ 0ω

(1,1)
2 (Φ) is bounded

and defined by

(Lϑ) (x, t) ≡
∂

∂t
ϑ(x, t) +

∂4

∂x4
ϑ(x, t) + 2

∂2

∂x2
ϑ(x, t) , (7)

where

F(x, t, ϑ(x, t)) ≡ (λ− 1)(ϑ(x, t) + f(x))− [ϑ(x, t) + f(x)]3 − f (4)(x)− 2f ′′(x). (8)

Hence, Eq. (4) is converted to

Lϑ(x, t) = F(x, t, ϑ(x, t)),

ϑ(0, t) = ϑ(1, t) = 0, ϑxx(0, t) = ϑxx(1, t) = 0, ϑ(x, 0) = 0.
(9)

We then set ϕi(x, t) = Υ(xi,ti)(x, t), in which {(xi, ti)}
∞
i=1 is dense on Φ. Further, we

suppose that

Ψi(x, t) = L∗ϕi(x, t), (10)

where L∗ is the adjoint operator of L.

In the following theorem, the main characteristics of the above concepts are sum-

marized.

Theorem 2.2 [11] If {(xi, ti)}
∞
i=1 is dense on Φ, then {Ψi(x, t)}

∞
i=1 is a complete

system of 0ω
(5,2)
2 Φ.
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3 Numerical solution method for the Swift-Hohenberg equation

In this section, we provide two numerical methods for the solution of the Swift-

Hohenberg equation. The first of these will not employ orthogonalization, while the

second will. The first method is therefore less computationally demanding (resulting

in faster computation time), while the second method is more useful for convergence

analysis (which is considered in the next section). We shall outline both methods

here. Since the methods only differ based on the orthogonality of the base functions

used in their respective approximations, either method can be used to solve the

Swift-Hohenberg equation.

3.1 Solution approach for Eq. (9) without orthogonalization

In this section, we propose an iterative algorithm for solving Eq. (9), using the

reproducing kernel space. We avoid the use of the Gram-Schmidt orthogonalization

process in this method. One benefit to this is that the computational time can be

lowered. The solution method of (9) is given in the following theorem.

Theorem 3.1 Let {(xi, ti)}
∞
i=1 be a dense set on Φ. If Equation (9) has a unique

solution, then then it can be represented as

ϑ(x, t) =
∞
∑

i=1

αiΨi(x, t), (11)

where the coefficients αi are determined by solving the following semi-infinite system

of linear equations Bα = F , in which

B = [LΨi(xj , tj)] , i, j = 1, 2, . . . , α = [α1, α2, . . . ]
T
,

and

F = [F(x1, t1, ϑ(x1, t1)),F(x2, t2, ϑ(x2, t2)), . . . ]
T
.

Proof 3.1 Since {(xi, ti)}
∞
i=1 is dense set on Φ, then Ψi(x, t) is a complete system

in 0ω
(5,2)
2 , see e.g. [11]. So the analytical solution can be represented as Eq. (11).
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Since

〈Ψj(x, t),Ψi(x, t)〉0ω(5,2)
2

= 〈L∗ϕj(x, t),Ψi(x, t)〉0ω(5,2)
2

= 〈ϕj(x, t),LΨi(x, t)〉0ω(1,1)
2

= LΨi(xj , tj)

and

〈ϑ(x, t),Ψj(x, t)〉0ω(5,2)
2

= 〈ϑ(x, t),L∗ϕj(x, t)〉0ω(5,2)
2

= 〈Lϑ(x, t), ϕj(x, t)〉0ω(1,1)
2

= F(xj , tj, ϑ(xj , tj)).

According to the best approximation principle in Hilbert spaces [22], the coefficients

αi are determined by solving the semi-infinite system of linear equations Bα = F ,

and the proof is complete.

3.2 Solution approach for Eq. (9) with orthogonalization

Despite the fact that we can easily obtain solutions as discussed in the previous

subsection, we note that by working with orthonormal basis elements, there will be

some numerical advantages, particularly for the convergence analysis in the follow-

ing section. Therefore, we shall derive an orthonormal basis system
{

Ψ̄i(x, t)
}∞

i=1
of

0ω
(5,2)
2 from the Gram-Schmidt process applied to {Ψi(x, t)}

∞
i=1. To do so, consider

basis elements

Ψ̄i(x, t) =
i
∑

k=1

ρikΨk(x, t), (12)

where ρik are orthogonalization coefficients.

Regarding the solution method of Eq. (4), we have the following theorem.

Theorem 3.2 Let {(xi, ti)}
∞
i=1 be dense on Φ. If Equation (9) has a unique so-

lution, then the solution satisfies the form

ϑ(x, t) =
∞
∑

i=1

i
∑

k=1

ρikF(xk, tk, ϑ(xk, tk))Ψ̄i(x, t). (13)

Proof 3.2 Assume that ϑ(x, t) is the solution of Eq. (9). By Theorem 2.2, ϑ(x, t)
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can be expanded in Fourier series as follows:

ϑ(x, t) =
∞
∑

i=1

〈

ϑ(x, t), Ψ̄i(x, t)
〉

0ω
(5,2)
2

Ψ̄i(x, t)

=
∞
∑

i=1

i
∑

k=1

ρik 〈ϑ(x, t),Ψk(x, t)〉0ω(5,2)
2

Ψ̄i(x, t)

=
∞
∑

i=1

i
∑

k=1

ρik 〈ϑ(x, t),L
∗ϕk(x, t)〉0ω(5,2)

2
Ψ̄i(x, t)

=
∞
∑

i=1

i
∑

k=1

ρik 〈Lϑ(x, t), ϕk(x, t)〉0ω(1,1)
2

Ψ̄i(x, t)

=
∞
∑

i=1

i
∑

k=1

ρikF(xk, tk, ϑ(xk, tk))Ψ̄i(x, t) ,

and the proof is complete.

By truncating the series (11), we define the m-term approximation to ϑ(x, t) by

ϑm(x, t) =
m
∑

i=1

κiΨ̄i(x, t), (14)

where

κi =
i
∑

k=1

ρikF(xk, tk, ϑ(xk, tk)). (15)

Eq. (14) gives the m-term approximate solution.

4 Convergence analysis of the method

In this section, convergence properties are discussed for the second algorithm. Since

this method gives a rather convenient truncated representation for the approximate

solution in terms of orthogonal base functions, we choose to work with this second

numerical approach. However, we note that one could orthogonalize any base func-

tions used in the approximate solution obtained using the first method, and hence

the convergence results we obtain could be obtained for the first method, as well.

Convergence of the sequence ϑm(x, t) of approximate solutions is established by the

following theorem.
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Theorem 4.1 If ϑ(x, t) ∈ Φ, then there exists a constant C > 0 such that

|ϑ(x, t)| 6 C ‖ϑ(x, t)‖0ω
(5,2)
2

,

|ϑt(x, t)| 6 C ‖ϑ(x, t)‖0ω
(5,2)
2

,

|ϑx(x, t)| 6 C ‖ϑ(x, t)‖0ω
(5,2)
2

.

Proof 4.1 For any (x, t) ∈ Φ, we have

|ϑ(x, t)| =
∣

∣

∣

〈

ϑ(ζ, η),Υ(x,t)(ζ, η)
〉∣

∣

∣

0ω
(5,2)
2

6 ‖ϑ(ζ, η)‖0ω
(5,2)
2

∥

∥

∥Υ(x,t)(ζ, η)
∥

∥

∥

0ω
(5,2)
2

,

therefore, there exists a constant C1 > 0 such that

|ϑ(x, t)| 6 C1 ‖ϑ(ζ, η)‖0ω
(5,2)
2

.

Also, we have

|ϑx(x, t)| =

∣

∣

∣

∣

∣

〈

ϑ(ζ, η),
∂

∂x
Υ(x,t)(ζ, η)

〉∣

∣

∣

∣

∣

0ω
(5,2)
2

6 ‖ϑ(x, t))‖0ω
(5,2)
2

∥

∥

∥

∥

∥

∂

∂x
Υ(x,t)(ζ, η)

∥

∥

∥

∥

∥

0ω
(5,2)
2

,

then there exists a constant C2 > 0 such that

|ϑx(x, t)| 6 C2 ‖ϑ(ζ, η)‖0ω
(5,2)
2

.

In a similar manner, there exist constant C3 > 0 such that |ϑt(x, t)| 6 C3 ‖ϑ(x, t)‖0ω
(5,2)
2

.

Let C = max{C1, C2, C3}, then the proof is completed.

As a direct consequence of the above theorem, we have the following result.

Theorem 4.2 If ϑm(x, t)
‖·‖

0ω
(5,2)
2−−−−−→ ϑ̄(x, t) as m → ∞, (xm, tm) −→ (x, t) as

m → ∞, ‖ϑm(x, t)‖0ω
(4,2)
2

is bounded, and F(x, t, ϑ(x, t)) is continuous, then

F(xm, tm, ϑm−1(xm, tm)) −→ F(x, t, ϑ̄(x, t)), m → ∞.

Proof 4.2 Since

∣

∣

∣ϑm−1(xm, tm)− ϑ̄(x, t)
∣

∣

∣ =
∣

∣

∣ϑm−1(xm, tm)− ϑm−1(x, t) + ϑm−1(x, t)− ϑ̄(x, t))
∣

∣

∣

6 |∂xϑm−1| |xm − x| + |∂tϑm−1| |tm − t|+
∣

∣

∣ϑm−1(x, t)− ϑ̄(x, t)
∣

∣

∣

from the given condition ϑm

‖·‖
0ω

(5,2)
2−−−−−→ ϑ̄ as m → ∞, and by the boundedness of

‖ϑm‖0ω
(5,2)
2

and Theorem 4.1, for any (x, t) ∈ Φ, we get

∣

∣

∣ϑm−1(xm, tm)− ϑ̄(x, t)
∣

∣

∣→ 0, m → ∞.

10



The continuation of F(x, t, ϑ(x, t)) implies that

F(xm, tm, ϑm−1(xm, tm)) −→ F(x, t, ϑ(x, t))

as m → ∞, which completes the proof.

Theorem 4.3 Suppose that ‖ϑm(x, t)‖ is bounded in (14). If {(xi, ti)}
∞
i=1 is

dense on Φ, then the m-term approximate solution ϑm(x, t) derived from the above

method converges to the exact solution ϑ(x, t) of Eq. (9), and

ϑ(x, t) =
∞
∑

i=1

κi Ψ̄i(x, t), (16)

where κi is given by Eq. (15).

Proof 4.3 First, we will prove the convergence of ϑm. By Eq. (14), we infer that

ϑm+1(x, t) = ϑm(x, t) + κm+1Ψ̄m+1(x, t). (17)

From the orthogonality of
{

Ψ̄i(x, t)
}∞

i=1
, we conclude that

‖ϑm+1‖0ω
(5,2)
2

= ‖ϑm‖0ω
(5,2)
2

+ κ2
m+1. (18)

Hence it holds that ‖ϑm+1‖0ω
(5,2)
2

> ‖ϑm‖0ω
(5,2)
2

. By the boundedness of ‖ϑm‖0ω
(5,2)
2

,

‖ϑm‖0ω
(5,2)
2

is convergent and there exists a constant c such that

∞
∑

i=1

κ2
i = c.

This implies that κi ∈ l2, i = 1, 2, . . . . If n > m, then using the orthogonality of

ϑm+1(x, t)− ϑm(x, t) we have

‖ϑn(x, t)−ϑm(x, t)‖
2
0ω

(5,2)
2

= ‖ϑn(x, t)− ϑn−1(x, t) + ϑn−2(x, t) + · · ·+ ϑm+1(x, t)− ϑm(x, t)‖
2
0ω

(5,2)
2

= ‖ϑn(x, t)− ϑn−1(x, t)‖
2
0ω

(5,2)
2

+ · · ·+ ‖ϑm+1(x, t)− ϑm(x, t)‖
2
0ω

(5,2)
2

=
n
∑

i=m+1

κ2
i −→ 0, m −→ ∞.

The completeness of 0ω
(5,2)
2 shows that ϑm

‖·‖
0ω

(5,2)
2−−−−−→ ϑ̄ as m −→ ∞. Second, we
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will prove that ϑ̄ is the solution of Eq. (9). To this end, we conclude from (14) that

ϑ̄(x, t) =
∞
∑

i=1

κiΨ̄i(x, t).

Since

(Lϑ̄)(xm, tm) =
∞
∑

i=1

κi

〈

LΨ̄i, ϕm

〉

0ω
(5,2)
2

=
∞
∑

i=1

κi

〈

Ψ̄i,Ψm

〉

0ω
(5,2)
2

, (19)

it follows that

m
∑

j=1

ρmj(Lϑ̄)(xm, tm) =
∞
∑

i=1

κi

〈

Ψ̄i,
m
∑

j=1

ρmjΨj

〉

0ω
(5,2)
2

=
∞
∑

i=1

κi

〈

Ψ̄i, Ψ̄m

〉

0ω
(5,2)
2

= κm.

(20)

If m = 1, then

(Lϑ̄)(x1, t1) = F(x1, t1, ϑ0(x1, t1)).

Also, for m = 2, we have

ρ21(Lϑ̄)(x1, t1) + ρ22(Lϑ̄)(x2, t2) =ρ21F(x1, t1, ϑ0(x1, t1)) + ρ22F(x2, t2, ϑ0(x2, t2)).

It is clear that

(Lϑ̄)(x2, t2) = F(x2, t2, ϑ0(x2, t2)).

By induction, we conclude

(Lϑ̄)(xj , tj) = F(xj, tj, ϑj−1(xj , tj)). (21)

For any (µ, ̺) ∈ Φ, there exists a subsequence
{

(xmj
, tmj

)
}∞

j=1
converging to (µ, ̺)

since {(xi, ti)}
∞
i=1 is dense in Φ. Thus, by the convergence of ϑm and Theorem 4.2,

we conclude that

(Lϑ̄)(µ, ̺) = F(µ, ̺, ϑ̄(µ, ̺)). (22)

That is, ϑ̄(x, t) is the solution of Eq. (9) and

ϑ(x, t) =
∞
∑

i=1

κiΨ̄i(x, t).

The proof is complete.

Theorem 4.4 Assume ϑ(x, t) is the solution of Eq. (9) and τm(x, t) is the ap-

proximate error between ϑm(x, t) and ϑ(x, t). Then the error τm(x, t) is monotone

decreasing in the sense of ‖ · ‖0ω
(5,2)
2

.

12



Proof 4.4 From (16) and according to the proof of Theorem 4.3, it follows that

‖τm‖
2
0ω

(5,2)
2

= ‖
∞
∑

i=m+1

κi Ψ̄i(x, t)‖
2
0ω

(5,2)
2

=
∞
∑

i=m+1

κ2
i . (23)

Eq. (23) shows that the error τm is monotone decreasing in the sense of ‖ · ‖0ω
(5,2)
2

.

5 Numerical experiments

To verify the applicability and accuracy of the proposed numerical method outlined

in Section 3, we choose various initial conditions and parameter values λ, and per-

form several numerical experiments. For a sufficient number of iterations, we show

that the results converge for both methods, in agreement with the theoretical results

of Section 4. In order to minimize computational time, we employ the first method.

We find that taking approximate numerical solutions with n = 20 is sufficient to

give solutions with low error, so we choose n = 20 for the numerical experiments.

Let E(x, t) denote the residual error at the point (x, t) ∈ Φ. In Tables 1-2, we provide

E(x, t) and the values of the approximate solution un(x, t). We choose the initial

condition u(x, 0) = f(x) so that it satisfies the boundary conditions f(0) = f(1) = 0

and f ′′(0) = f ′′(1) = 0. We find low values of the residual error for various choices of

λ and initial conditions, which demonstrates that the numerical approach is rather

accurate, and with relatively few terms needed to ensure such a high degree of

accuracy.

We may compare our results with those of [26]. In particular, comparing our Table

1 results for λ = −0.7 with their corresponding results, we find that the minimum

residual error of the optimal values of parameters in [26] is 1.16711 × 10−7, while

our approach gives much smaller residual errors of the order 10−14 to 10−12.

The effects of the initial condition and the parameter λ on the solution of the

problem (2)-(3) are displayed graphically through Figures 1-6. We give plots of

approximate numerical solutions for various initial conditions specific values of λ,

corresponding to the selections used in Tables 1-??. The solutions retain the uni-

modal properties of the initial conditions for small time, maintaining the overall

envelope of the initial conditions. As time increases, the dynamics away from the

initial condition will be determined by the value of λ selected.

13



6 Conclusions

In this work, we have proposed two numerical solution approaches for the 1D Swift-

Hohenberg equation on the basis of the reproducing kernel Hilbert space. For either

approach given in Section 3, the solution is represented using a series contained in

the reproducing kernel space, and a truncated approximate solution is obtained.

The two approaches differ in that the first does not require orthogonalization of the

base functions (thereby saving on computational time), while the second approach

employs an orthogonalization procedure so that the base functions are mutually

orthogonal. Despite the increased computational time, the second approach is the-

oretically useful, as it allows for a more straightforward convergence analysis. This

convergence analysis was given in Section 4. Therefore, there are benefits to both

approaches. The results of our numerical experiments demonstrate that the present

method is an accurate and reliable numerical technique for the solution of the 1D

Swift-Hohenberg equation, and could be extended for use in solving other nonlinear

partial differential equations.

One possible extension of our approach would be to consider the solution of 2D or

3D Swift-Hohenberg equations, since it is such higher dimensional equations which

permit the formation of interesting patterns [10,18]. Explicit construction of the

reproducing kernels in higher dimensional space will be much more complicated,

but in principle the numerical approach should be similar [11,30]. One approach is

to construct the higher dimensional reproducing kernel space as a direct product

of lower dimensional or 1D reproducing kernel spaces [4]. Recent applications of

reproducing kernel methods in 2D spatial domains have been discussed in [23,27].

References

[1] S. Abbasbandy, R.A. Van Gorder, P. Bakhtiari, Reproducing kernel method for the

numerical solution of the Brinkman-Forchheimer momentum equation, J. Comput.

Appl. Math., 311 (2017) 262–271.

[2] F. T. Akyildiz, D. A. Siginer, K. Vajravelu, R. A. Van Gorder, Analytical and

numerical results for the Swift–Hohenberg equation, Appl. Math. Comput., 216 (2010)

221–226.

14



[3] N. Aronszajn, The theory of reproducing kernels and their applications, Cambridge

Philosophy Society Proceedings, 39 (1943) 133–153.

[4] N. Aronszajn, Theory of reproducing kernels, Transactions of the American

Mathematical Society, 68 (1950) 337–404.

[5] S. Bergman, Uber Kurvenintegale von Funktionen zweier komplexen Veranderlichen,

die Differential gleichungen befriedigen, Math. Z., 32 (1930) 386–406.

[6] S. Bergman, The approximation of functions satisfying a linear partial differential

equation, Duke Math. J., 6 (1940) 537–561.

[7] G. Caginalp, P.C. Fife, Higher order phase field models and detailed anisotropy, Phys.

Rev. B., 34 (1986) 4940–4943.

[8] J. Chaparova, L.A. Peletier, S. Tersian, Existence and nonexistence of nontrivial

solutions of semilinear sixth order ordinary differential equations, Appl. Math. Lett.,

17 (2004) 1207–1212.

[9] J. Chaparova, L.A. Peletier, S. Tersian, Existence and nonexistence of nontrivial

solutions of semilinear fourth- and sixth-order ordinary differential equations, Adv.

Diff. Eqns., 8 (2003) 1237–1258.

[10] M. C. Cross, P. C. Hohenberg, Pattern formation outside of equilibrium, Rev. Mod.

Phys., 65 (1993) 851.

[11] M.G. Cui, Y.Z. Lin, Nonlinear Numerical Analysis in Reproducing Kernel Space,

Nova Science Pub. Inc., Hauppauge, 2009.

[12] M.G. Cui, F.Z. Geng, Solving singular two-point boundary value problem in

reproducing kernel space, J. Comput. Appl. Math., 205 (2007) 6–15.

[13] M.G. Cui, F.Z. Geng, A computational method for solving third-order singularly

perturbed boundary-value problems, Appl. Math. Comput., 198 (2008) 896–903.

[14] G.T. Dee, W. van Saarloos, Bistable systems with propagating fronts leading to

pattern formation, Phys. Rev. Lett., 60 (1988) 2641–2644.

[15] R.A. Gardner, C.K.R.T. Jones, Traveling waves of a perturbed diffusion equation

arising in a phase field model, Indiana Univ. Math. J., 38 (1989) 1197–1222.

[16] F.Z. Geng, M.G. Cui, Solving singular nonlinear two-point boundary value problems

in the reproducing kernel space, J. Korean Math. Soc., 45 (2008) 631–644.

15



[17] F. Z. Geng, S. P. Qian, S. Li, A numerical method for singularly perturbed turning

point problems with an interior layer, J. Comput. Appl. Math., 255 (2014) 97–105.

[18] H. S. Greenside, W. M. Coughran Jr., Nonlinear pattern formation near the onset of

Rayleigh-Bénard convection, Phys.l Rev. A, 30 (1984) 398.

[19] X.Y. Li, B.Y. Wu, Error estimation for the reproducing kernel method to solve linear

boundary value problems, J. Comput. Appl. Math., 243 (2013) 10-15.

[20] X.Y. Li, B.Y. Wu, A novel method for nonlinear singular fourth order four-point

boundary value problems, Comput. Math. Appl., 62 (2011) 27–31.

[21] X.Y. Li, B.Y. Wu, A continuous method for nonlocal functional differential equations

with delayed or advanced arguments, J. Math. Anal. Appl., 409 (2014) 485–493.

[22] M. Mohammadi, R. Mokhtari, A reproducing kernel method for solving a class of

nonlinear system of PDEs, Math. Model. Anal., 19 (2014) 180–198.

[23] M. Mohammadi, R. Mokhtari, H. Panahipour, A Galerkin-reproducing kernel method:

Application to the 2D nonlinear coupled Burgers’ equations, Engineering Analysis

with Boundary Elements, 37 (2013) 1642–1652.

[24] S. S. Perez-Moreno, S. R. Chavarria, G. R. Chavarria, Numerical Solution of

the Swift–Hohenberg Equation, Experimental and Computational Fluid Mechanics,

Environmental Science and Engineering, (2013) 409–416.

[25] J.B. Swift, P.C. Hohenberg, Hydrodynamic ffuctuations at the convective instability,

Phys. Rev. A 15 (1977) 319–328.

[26] K. Vishal, S. Das, S. H. Ong, P. Ghosh, On the solutions of fractional Swift Hohenberg

equation with dispersion, Appl. Math. and Comput., 219 (2013) 5792–5801.

[27] W. Wang, M. Yamamoto, B. Han, Two-dimensional parabolic inverse source

problem with final overdetermination in reproducing kernel space, Chinese Annals

of Mathematics, Series B, 35 (2014) 469–482.

[28] Y.L. Wang, L. Chao, Using reproducing kernel for solving a class of partial differential

equation with variable-coefficients, Appl. Math. Mech. Engl. Ed., 29(1) (2008) 129–

137.

[29] Y.L. Wang, X.J. Cao, X.N. Li, A new method for solving singular fourth-order

boundary value problems with mixed boundary conditions, Appl. Math. Comput.,

217 (2011) 7385–7390.

16



[30] H. Wendland, Scattered data approximation. Vol. 17. Cambridge University Press

(2004).

[31] S. Zaremba, Sur le calcul numerique des founctions demandness dans le problems de

dirichlet et le problems hydrodynamique, Bulletin International de I Academie des

Sciences de Cracovie, 68 (1908) 125-195.

[32] W. Zimmerman, Propagating fronts near a Lifschitz point, Phys. Rev. Lett., 66 (1991)

1546.

17



E(x, t) E(x, t) E(x, t) E(x, t)

(x, t) for λ = −0.7 for λ = 0.3 for λ = 1.0 for λ = 8.0

(0.1, 0.1) 3.06577 × 10−13 4.42522 × 10−13 3.93843 × 10−13 2.51455 × 10−14

(0.2, 0.2) 6.70665 × 10−14 1.10906 × 10−13 1.54844 × 10−13 3.59431 × 10−14

(0.3, 0.3) 8.16245 × 10−13 8.19524 × 10−13 7.92034 × 10−13 3.47283 × 10−13

(0.4, 0.4) 5.3667 × 10−13 6.55282 × 10−13 6.19716 × 10−13 2.84722 × 10−13

(0.5, 0.5) 1.21825 × 10−12 1.27512 × 10−12 1.23951 × 10−12 7.10487 × 10−13

(0.6, 0.6) 6.22051 × 10−13 7.56301 × 10−13 6.9298 × 10−13 3.39517 × 10−13

(0.7, 0.7) 1.20544 × 10−14 1.32987 × 10−12 1.22743 × 10−12 6.05743 × 10−13

(0.8, 0.8) 1.13173 × 10−13 1.24659 × 10−12 1.1751 × 10−12 5.70221 × 10−13

(0.9, 0.9) 1.34524 × 10−12 1.48586 × 10−12 1.40536 × 10−12 7.08918 × 10−13

Table 1

Residual error values E(x, t) for the solution of the initial-boundary value problem (2)-(3)

at a collection of points (x, t) in the problem domain. We have taken the initial condition

to be u(x, 0) = f(x) = sin(πx) and have considered various values of the parameter λ.
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E(x, t) E(x, t) E(x, t)

(x, t) for λ = 0.3 for λ = 1.0 for λ = 8.0

(0.1, 0.1) 1.21098 × 10−11 1.39757 × 10−11 9.31578 × 10−12

(0.2, 0.2) 1.7906 × 10−11 2.15371 × 10−11 2.30782 × 10−11

(0.3, 0.3) 4.60745 × 10−11 5.14205 × 10−11 1.14156 × 10−12

(0.4, 0.4) 6.31725 × 10−11 6.99688 × 10−11 1.14303 × 10−11

(0.5, 0.5) 7.38272 × 10−11 8.18388 × 10−11 1.62139 × 10−11

(0.6, 0.6) 7.6835 × 10−11 8.56434 × 10−11 2.74148 × 10−11

(0.7, 0.7) 8.60242 × 10−11 9.58326 × 10−11 3.12081 × 10−11

(0.8, 0.8) 1.09004 × 10−12 1.20004 × 10−10 2.17772 × 10−11

(0.9, 0.9) 1.14691 × 10−11 1.26796 × 10−11 2.93794 × 10−11

Table 2

Residual error values E(x, t) for the solution of the initial-boundary value problem (2)-(3)

at a collection of points (x, t) in the problem domain. We have taken the initial condition

to be u(x, 0) = f(x) = x3(1− x)3 and have considered various values of the parameter λ.
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Fig. 1. Plot of a 20-term reproducing kernel method approximation to the initial-boundary

value problem (2)-(3). We have taken the initial condition to be u(x, 0) = f(x) = sin(πx),

while the parameter is chosen as λ = 0.3.
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Fig. 2. Plot of a 20-term reproducing kernel method approximation to the initial-boundary

value problem (2)-(3). We have taken the initial condition to be u(x, 0) = f(x) = sin(πx),

while the parameter is chosen as λ = 1.
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Fig. 3. Plot of a 20-term reproducing kernel method approximation to the initial-boundary

value problem (2)-(3). We have taken the initial condition to be u(x, 0) = f(x) = sin(πx),

while the parameter is chosen as λ = 8.

t=0.1

t=0.3

t=0.5

t=0.7

t=1

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

x

u
(x
,t
)

Fig. 4. Plot of a 20-term reproducing kernel method approximation to the ini-

tial-boundary value problem (2)-(3). We have taken the initial condition to be

u(x, 0) = f(x) = x3(1− x)3, while the parameter is chosen as λ = 0.3.
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Fig. 5. Plot of a 20-term reproducing kernel method approximation to the ini-

tial-boundary value problem (2)-(3). We have taken the initial condition to be

u(x, 0) = f(x) = x3(1− x)3, while the parameter is chosen as λ = 1.
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Fig. 6. Plot of a 20-term reproducing kernel method approximation to the ini-

tial-boundary value problem (2)-(3). We have taken the initial condition to be

u(x, 0) = f(x) = x3(1− x)3, while the parameter is chosen as λ = 8.
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