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Abstract

We present new explicit exponential stability conditions for the linear scalar neutral equation with
two variable coefficients and delays

(x(t)− a(t)x(g(t)))′ = −b(t)x(h(t)),

where |a(t)| < 1, b(t) ≥ 0, h(t) ≤ t, g(t) ≤ t, in the case when the delays t − h(t), t − g(t) are
bounded, as well as an asymptotic stability condition, if the delays can be unbounded.
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1. Introduction

Investigation of linear neutral delay differential equations has a long history. The term “neu-
tral equation” was introduced by G. Kamenskii, and the first results were obtained by Russian
mathematicians in the 60ies, the review of them can be found in [25]. Since then, many papers
and monographs on the theory and applications of neutral equations appeared, see, for example,
[8, 9, 10, 11, 12, 19, 20].

In this paper we consider the equation

(x(t)− a(t)x(g(t)))′ + b(t)x(h(t)) = 0, (1.1)

and call it “the neutral differential equation in the form of Hale”, due to essential results on this
class of equations obtained by J. Hale [12]. Another class of neutral equations including several
delayed terms with a derivative was studied in [3, 18]. In [12] and many other papers, the authors
study linear and nonlinear equations in the Hale form under the assumption that all the parameters
of equations and solutions are continuous functions.

In [12], the solution of (1.1) was assumed to satisfy the integral equation

x(t)− a(t)x(g(t)) +

∫ t

t0

b(s)x(h(s))ds = 0, (1.2)

which allowed to consider continuous a, b, h, g. We study equation (1.1), where all the functions
involved in the equation, as well as solutions, are Lebesgue measurable functions, and (1.2) holds.
Such equations were investigated in the recent monograph [9], where in particular existence and

Preprint submitted to Elsevier February 25, 2019

http://arxiv.org/abs/1902.08252v1


uniqueness results were established. We will use these results without further discussion. The aim
of the present paper is to obtain explicit asymptotic stability tests for equation (1.1).

The main method to study stability for neutral equations is the construction of Lyapunov-
Krasovskii functions and functionals, see [10, 18, 19, 22]. Propositions 1.1 and 1.2 below are
obtained by this method.

The results of [10, Theorem 5.1.1] can be applied to an autonomous neutral equation

(x(t)− ax(t− σ))′ = −b0x(t)− bx(t− τ) (1.3)

where b0 > 0, τ ≥ 0, σ ≥ 0, bτ 6= 0, aσ 6= 0.

Proposition 1.1. [10, Theorem 5.1.1] Assume that b0 > 0, b + b0 > 0, |b|τ < 1 − |a|. Then all
solutions of (1.3) satisfy lim

t→∞
x(t) = 0.

Consider (1.3) with variable coefficients

(x(t) + a(t)x(t− σ))′ + b0(t)x(t) + b(t)x(t− τ) = 0, (1.4)

where σ ≤ τ , a, b0, b ∈ C([t0,∞), [0,∞)).

Proposition 1.2. [1] Assume that there exist constants p1, p2, q1, q2, a0, A such that

0 ≤ p1 ≤ b0(t) ≤ p2, 0 ≤ q1 ≤ b(t) ≤ q2, 0 ≤ a(t) ≤ a0 < 1, |a′(t)| ≤ A,

σ ≤ τ , a, b0, b ∈ C([t0,∞), [0,∞)), and c is differentiable with a locally bounded derivative.
If at least one of the following conditions
a) p1 + q1 > (p2 + q2)(a0 + q2τ);
b) p1 > q2 + a0(p2 + q2)

holds then every solution of (1.4) satisfies lim
t→+∞

x(t) = 0.

The next two stability results are based on a deep analysis of neutral equation (1.1) with
constant delays

(x(t)− a(t)x(t− σ))′ + b(t)x(t− τ) = 0. (1.5)

Proposition 1.3. [24] Let τ, σ > 0, a, b ∈ C([t0,∞), IR), b(t) ≥ 0. If

∫ ∞

t0

b(s)ds = +∞, |a(t)| ≤ a0 < 1, lim sup
t→∞

∫ t

t−τ

b(s)ds <
3

2
− 2a0(2− a0)

then equation (1.5) is asymptotically stable.

Proposition 1.3 is a nice result, since in the non-neutral case a(t) ≡ 0 it leads to a sharp stability
test with the famous constant 3

2 .
There are several improvements and extensions of Proposition 1.3, in particular, the following

result from [23].

Proposition 1.4. [23] Let

∫ ∞

t0

b(s)ds = +∞ and |a(t)| ≤ a0 < 1. Assume that at least one of the

following conditions holds:
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a) a0 <
1

4
, lim sup

t→∞

∫ t

t−τ

b(s)ds <
3

2
− 2a0;

b)
1

4
≤ a0 <

1

2
, lim sup

t→∞

∫ t

t−τ

b(s)ds <
√

2(1− 2a0).

Then equation (1.5) is asymptotically stable.

Every method used to investigate stability has its advantages and limitations. Some stability
tests were obtained by an advanced analysis of specific equations, such as Propositions 1.3 and 1.4.
Such results usually have conditions close to the best possible ones, but, generally, this method
fails for equations with time-dependent delays.

The method of Lyapunov-Krasovskii functions and functionals works for most known classes of
functional differential equations. Unfortunately, it is not easy to apply this method for equations
with variable, in particular with unbounded, delays.

Equations with proportional delays g(t) = µt, h(t) = λt and, more generally, unbounded delays
are usually called pantograph or generalized pantograph equations. One of the first and nice results
for this class of equations was obtained in [17].

Proposition 1.5. [17] Equation

ẋ(t) = ax(t) + bx(λt), 0 < λ < 1,

is asymptotically stable if and only if a < 0, |b| < |a|.

Various other results on asymptotic stability and asymptotic behavior of solutions for neutral
pantograph equations were obtained in [7, 13, 14, 15, 16, 21]. A good review on stability theory for
pantograph neutral equations can be found in the monograph [4].

In the present paper, we consider scalar linear non-autonomous pantograph neutral equations.
Using the Bohl-Perron theorem, stability tests for all classes of linear functional differential

equations can be obtained. The advantage of this method is that, instead of studying stability, it is
sufficient to estimate either the norm or the spectral radius of a linear operator in some functional
spaces on the half-line. Explicit stability results were established by this method in [3, 6] and in
the monograph [3] for a linear neutral equation which is different from (1.1). To the best of our
knowledge, this method is applied to equation (1.1) for the first time. The Bohl-Perron theorem
for this class of equations can be found in [9].

The paper is organized as follows. Section 2 presents definitions, assumptions and auxiliary
statements. In Section 3, the main stability results for equation (1.1) are justified. Section 4
contains examples and discussion.

2. Auxiliary Results

We consider (1.1) under the following assumptions:
(a1) a, b, g, h are Lebesgue measurable essentially bounded functions on [0,+∞);
(a2) ess supt≥t0

|a(t)| ≤ a0 < 1 for some t0 ≥ 0, b(t) ≥ 0;
(a3) g(t) ≤ t, lim

t→+∞
g(t) = +∞, mes U = 0 =⇒ mes g−1(U) = 0, where mes U is the Lebesgue

measure of the set U ;
(a4) h(t) ≤ t, lim

t→+∞
h(t) = +∞, mes U = 0 =⇒ mes h−1(U) = 0.
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Together with (1.1) we consider for each t0 ≥ 0 an initial value problem

(x(t)− a(t)x(g(t)))′ + b(t)x(h(t)) = f(t), t ≥ t0, x(t) = ϕ(t), t ≤ t0, (2.1)

where
(a5) f : [t0,+∞) → R is Lebesgue measurable locally essentially bounded, ϕ : (−∞, t0) → R is a
Borel measurable and bounded function.

In some of our main results, we assume that the delays are bounded:
(a6) t− g(t) ≤ δ, t− h(t) ≤ τ for t ≥ t0 and some δ > 0, τ > 0 and t0 ≥ 0.

Definition 2.1. A Lebesgue measurable function x : R → R is called a solution of problem (2.1)
if it is locally essentially bounded on [0,+∞), x(t) − a(t)x(g(t)) is locally absolutely continuous,
x satisfies the equation in (2.1) (i.e. (1.2) with the right-hand side

∫ t

t0
f(s)ds) for almost all t ∈

[t0,+∞), and the initial condition in (2.1) holds for t ≤ t0.

There exists a unique solution of problem (2.1), see [9] for conditions (a1)-(a4) and [12] for
continuous a, b, g, h.

Consider the initial value problem for the equation with one non-neutral delay term

x′(t) + b(t)x(h(t)) = f(t), t ≥ t0, x(t) = 0, t ≤ t0, (2.2)

where b(t), f(t) and h(t) ≤ t are Lebesgue measurable locally bounded functions.

Definition 2.2. For each s ≥ t0 the solution X(t, s) of the problem

x′(t) + b(t)x(h(t)) = 0, t ≥ t0, x(t) = 0, t < s, x(s) = 1 (2.3)

is called a fundamental function of equation (2.2). We assume X(t, s) = 0 for 0 ≤ t < s.

Lemma 2.3. [3] The solution of problem (2.2) can be presented as x(t) =

∫ t

t0

X(t, s)f(s)ds.

Definition 2.4. Equation (1.1) is (uniformly) exponentially stable if there are M > 0, γ > 0
such that the solution of problem (2.1) with f ≡ 0 has the estimate |x(t)| ≤ Me−γ(t−t0) sup

t∈(−∞,t0]
|ϕ(t)|

for t ≥ t0, where M and γ do not depend on t0 ≥ 0 and ϕ.

All our main results are based on the Bohl-Perron theorem which is stated below.

Lemma 2.5. [9, Theorem 6.1] Assume that (a1)-(a4),(a6) hold, and the solution of the problem

(x(t)− a(t)x(g(t)))′ + b(t)x(h(t)) = f(t), t ≥ t0, x(t) = 0, t ≤ t0 (2.4)

is bounded on [t0,+∞) for any essentially bounded function f on [t0,+∞). Then equation (1.1) is
exponentially stable.

Remark 2.6. In Lemma 2.5 we can consider boundedness of solutions not for all essentially
bounded functions f on [t0,+∞) but only for essentially bounded functions f on [t1,+∞) that
vanish on [t0, t1) for any fixed t1 > t0, see [5]. We will further apply this fact in the paper without
an additional reference.
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Consider now a linear equation with a single delay and a non-negative coefficient

x′(t) + b(t)x(h0(t)) = 0, b(t) ≥ 0, 0 ≤ t− h0(t) ≤ τ0, (2.5)

and let X0(t, s) be its fundamental function.

Lemma 2.7. [5] Assume that X0(t, s) > 0 , t ≥ s ≥ t0. Then

∫ t

t0+τ0

X0(t, s)b(s)ds ≤ 1.

Lemma 2.8. [5, 11] Assume that there is t0 ≥ 0 such that

∫ t

h0(t)
b(s)ds ≤ 1

e
for any t ≥ t0. Then

X0(t, s) > 0 for t ≥ s ≥ t0. If in addition b(t) ≥ b0 > 0 then equation (2.5) is exponentially stable.

For a fixed bounded interval I = [t0, t1], consider the space L∞[t0, t1] of all essentially bounded
on I functions with the norm |y|I = ess supt∈I |y(t)|. Denote for an unbounded interval

‖f‖[t0,+∞) = ess sup
t≥t0

|f(t)|,

by E the identity operator. Define the operator S on the space L∞[t0, t1] as

(Sy)(t) =

{
a(t)y(g(t)), g(t) ≥ t0,
0, g(t) < t0.

Lemma 2.9. [2] Let a, g satisfy (a1) and (a3), respectively. If ‖a‖[t0,+∞) ≤ a0 < 1 then E − S is
invertible in the space L∞[t0,+∞), and the operator norm satisfies

‖(E − S)−1‖L∞[t0,+∞)→L∞[t0,+∞) ≤
1

1− ‖a‖[t0,+∞)
. (2.6)

3. Stability Results

Consider initial value problem (2.4) with ‖f‖[t0,+∞) < +∞. First, let us estimate its solution
and the expression under the sign of the derivative.

Lemma 3.1. Suppose (a1)-(a4) hold. A solution of (2.4) and the derivative of y(t) = x(t) −
a(t)x(g(t)) satisfy on any interval I = [t0, t1], t1 > t0,

|x|I ≤ 1

1− ‖a‖[t0,+∞)
|y|I , |y′|I ≤

‖b‖[t0,+∞)

1− ‖a‖[t0,+∞)
|y|I + ‖f‖[t0,+∞). (3.1)

Proof. We have for t ∈ I by Lemma 2.9,

x(t) = (E − S)−1y(t), |x|I ≤ ‖(E − S)−1‖L∞[t0,t1]→L∞[t0,t1]|y|I ≤ 1

1− ‖a‖[t0,+∞)
|y|I ,

|y′(t)| ≤ |b(t)| |x(h(t))| + ‖f‖[t0,+∞)

≤ ‖b‖[t0,+∞)|x|I + ‖f‖[t0,+∞) ≤
‖b‖[t0,+∞)

1− ‖a‖[t0,+∞)
|y|I + ‖f‖[t0,+∞).
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Theorem 3.2. Assume that (a1)-(a4),(a6) hold and there exists t0 ≥ 0 such that for t ≥ t0

0 < b0 ≤ b(t),

∫ t

h(t)
b(s) ds ≤ 1

e
(3.2)

and

‖a‖[t0,+∞) <
1

2
. (3.3)

Then equation (1.1) is exponentially stable.

Proof. We will prove that a solution of (2.4) for any ‖f‖[t0,+∞) < +∞ (satisfying in addition
f(t) = 0 for t ∈ [t0, t0 + τ)) is bounded on [t0,+∞). Let Y1(t, s) be the fundamental function of
the equation

y′(t) + b(t)y(h(t)) = 0. (3.4)

By (3.2) and Lemma 2.8, Y1(t, s) > 0 for any t ≥ s ≥ t0. Also, b(t) ≥ b0 > 0 implies exponential
stability of equation (3.4), and Y1(t, s) has an exponential estimate.

Let y(t) = x(t) − a(t)x(g(t)), then b(t)x(h(t)) = b(t)y(h(t)) + b(t)a(h(t))x(g(h(t))), and (2.4)
can be rewritten in the form

y′(t) + b(t)y(h(t)) = −b(t)a(h(t))x(g(h(t))) + f(t), y(t) = 0, t ≤ t0.

By Lemma 2.3,

y(t) = −
∫ t

t0

Y1(t, s)b(s)a(h(s))x(g(h(s)))ds + f1(t),

where f1(t) =
∫ t

t0
Y1(t, s)f(s)ds. Since Y1(t, s) has an exponential estimate and f is bounded on

[t0,+∞), ‖f1‖[t0,+∞) < +∞.
Denote I = [t0, t1]. By Lemma 2.7, using the fact that x(t) = y(t) = 0 for t ∈ [t0, t0 + τ ] and

the first estimate in (3.1), we get

|y|I ≤ ‖a‖[t0,+∞)|x|I + ‖f1‖[t0,+∞) ≤
‖a‖[t0,∞)

1− ‖a‖[t0,+∞)
|y|I + ‖f1‖[t0,+∞).

By (3.3) we have |y|I ≤ M , where M does not depend on the interval I. Then, also by the first

estimate in (3.1), |x|I ≤ M̃ , where M̃ does not depend on the interval I. Hence |x(t)| ≤ M̃ for
t ≥ t0. By Lemma 2.5, equation (1.1) is exponentially stable.

Let u+ = max{u, 0}.

Theorem 3.3. Assume that (a1)-(a4),(a6) are satisfied, b(t) ≥ b0 > 0 and for some t0 ≥ 0 at least
one of the following conditions holds:

∥∥∥∥
b− β

β

∥∥∥∥
[t0,+∞)

+

∥∥∥∥
b

β

∥∥∥∥
[t0,+∞)

‖a‖[t0,+∞)

1− ‖a‖[t0,+∞)
< 1, where β(t) = min

{
b(t),

1

τe

}
; (3.5)

‖b‖[t0,+∞)

∥∥∥∥∥

(
t− h(t)− 1

‖b‖[t0,+∞)e

)+
∥∥∥∥∥
[t0,+∞)

< 1− 2‖a‖[t0 ,+∞). (3.6)

Then equation (1.1) is exponentially stable.
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Proof. Assume that (3.5) holds. Consider problem (2.4) with ‖f‖[t0,+∞) < +∞ and f(t) = 0

for t ≤ t0 + τ . Denote β(t) := min

{
b(t),

1

τe

}
as in (3.5) and b1 := min

{
b0,

1

τe

}
> 0. Then

0 < b1 ≤ β(t) ≤ b(t) and

∫ t

h(t)
β(s)ds ≤ 1

e
. Similarly to the proof of the previous theorem, (2.4)

can be rewritten as

y′(t) + β(t)y(h(t)) = −(b(t)− β(t))y(h(t)) − b(t)a(h(t))x(g(h(t))) + f(t), y(t) = 0, t ≤ t0.

Let Y2(t, s) be the fundamental function of the equation

y′(t) + β(t)y(h(t)) = 0. (3.7)

By Lemma 2.8, Y2(t, s) > 0 and equation (3.7) is exponentially stable.
Let I = [t0, t1]. We have

y(t) =

∫ t

t0

Y2(t, s)

[
− (b(s)− β(s))y(h(s)) − b(s)a(h(s))x(g(h(s)))

]
ds + f2(t),

where f2(t) =
∫ t

t0
Y2(t, s)f(s)ds and ‖f2‖[t0,+∞) < +∞. Then

|y(t)| ≤
t∫

t0

Y2(t, s)β(s)



∣∣∣∣
b(s)− β(s)

β(s)

∣∣∣∣ |y(h(s))| +
∣∣∣∣
b(s)a(h(s))

β(s)

∣∣∣∣ |x(g(h(s)))|


 ds+ ‖f2‖[t0,+∞).

Hence, first by Lemma 2.7 and then by (3.1),

|y|I ≤
(∥∥∥∥

b− β

β

∥∥∥∥
[t0,+∞)

)
|y|I +

(
‖a‖[t0,+∞)

∥∥∥∥
b

β

∥∥∥∥
[t0,+∞)

)
|x|I +M1

≤
(∥∥∥∥

b− β

β

∥∥∥∥
[t0,+∞)

+
‖a‖[t0,+∞)

1− ‖a‖[t0,+∞)

∥∥∥∥
b

β

∥∥∥∥
[t0,+∞)

)
|y|I +M2

for some finite M1 > 0, M2 > 0. Condition (3.5) implies |y|I < M , where M does not depend on
the interval I. Hence ‖y‖[t0,+∞) < +∞, therefore by (3.1), ‖x‖[t0,+∞) < +∞. Thus by Lemma 2.5,
equation (1.1) is exponentially stable.

Next, assume that (3.6) holds. Denote

h0(t) = max

{
h(t), t− 1

‖b‖[t0,+∞)e

}
.

Then ∫ t

h0(t)
b(s)ds ≤ 1

e
, h0(t) ≥ h(t), |h(t) − h0(t)| =

(
t− h(t)− 1

‖b‖[t0,+∞)e

)+

.

Problem (2.4) can be rewritten as

y′(t) + b(t)y(h0(t)) = b(t)

h0(t)∫

h(t)

y′(s)ds − b(t)a(h(t))x(g(h(t))) + f(t), y(t) = 0, t ≤ t0.
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Let Y3(t, s) be the fundamental function of the equation

y′(t) + b(t)y(h0(t)) = 0, (3.8)

where by Lemma 2.8, Y3(t, s) > 0 and equation (3.8) is exponentially stable.
For I = [t0, t1], we have

y(t) =

∫ t

t0

Y3(t, s)b(s)

(∫ h0(s)

h(s)
y′(ξ)dξ − a(h(s))x(g(h(s)))

)
ds+ f3(t),

where f3(t) =

∫ t

t0

Y3(t, s)f(s)ds and ‖f3‖[t0,+∞) < +∞. Lemma 2.7 and (3.1) imply

|y|I ≤ ‖h0 − h‖[t0,+∞)|y′|I + ‖a‖[t0,∞)|x|I + ‖f3‖[t0,+∞)

≤



∥∥∥∥∥

(
t− h(t) − 1

‖b‖[t0,∞)e

)+
∥∥∥∥∥
[t0,+∞)

‖b‖[t0,+∞)

1− ‖a‖[t0,+∞)
+

‖a‖[t0,+∞)

1− ‖a‖[t0,+∞)


 |y|I +M3

for some M3 > 0. Inequality (3.6) yields that ‖y‖[t0,+∞) ≤ M , where M does not depend on the
interval I, thus ‖x‖[t0,+∞) < +∞, and therefore equation (1.1) is exponentially stable.

Corollary 3.4. Assume that (a1)-(a4),(a6) are satisfied, and at least one of the following conditions
holds for t ≥ t0:

a) b(t) ≥ 1

τe
and τ‖b‖[t0,+∞) <

2

e

(
1− ‖a‖[t0,+∞)

)
;

b) b(t) ≥ b0 > 0, t− h(t) ≥ 1

‖b‖[t0,+∞)e
, τ‖b‖[t0,+∞) < 1 +

1

e
− 2‖a‖[t0 ,+∞).

Then equation (1.1) is exponentially stable.

Proof. Conditions in a) of the corollary yield that, in the proof of Theorem 3.3,

β(t) =
1

τe
, ‖b− β‖[t0,+∞) = ‖b‖[t0,+∞) −

1

τe
.

Hence, after some simple calculations, condition a) of the corollary implies (3.5) of Theorem 3.3.
Next, assume that t− h(t) ≥ 1

‖b‖[t0,+∞)e
. Then

∥∥∥∥∥

(
t− h(t)− 1

‖b‖[t0,+∞)e

)+
∥∥∥∥∥
[t0,+∞)

=

∥∥∥∥t− h(t)− 1

‖b‖[t0,+∞)e

∥∥∥∥
[t0,+∞)

= ‖t− h(t)‖[t0,+∞) −
1

‖b‖[t0,+∞)e
≤ τ − 1

‖b‖[t0,+∞)e
.

The inequality ‖b‖[t0,+∞)

(
τ − 1

‖b‖[t0,+∞)e

)
< 1− 2‖a‖[t0,+∞) in (3.6) is equivalent to the last

inequality in b).
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Considering b(t) ≡ b with the cases t− h(t) ≥ 1

eb
and b ≥ 1

τe
only, we get the following result.

Corollary 3.5. Assume that (a1)-(a4),(a6) are satisfied, b(t) ≡ b > 0, and for some t0 ≥ 0, for

t ≥ t0, either
1

e
≤ bτ <

2

e

(
1− ‖a‖[t0,+∞)

)
or

1

e
≤ b(t− h(t)) ≤ bτ < 1 +

1

e
− 2‖a‖[t0,+∞).

Then equation (1.1) is exponentially stable.

In the following theorem, the delays in equation (1.1) are not assumed to be bounded. Instead
of exponential stability, we deduce integral asymptotic stability conditions.

Theorem 3.6. Let (a1)-(a4) hold, b(t) ≥ 0,

∫ +∞

0
b(s)ds = +∞, b(t) 6= 0 almost everywhere,

lim sup
t→+∞

∫ t

g(t)
b(ξ)dξ < +∞, lim sup

t→+∞

∫ t

h(t)
b(ξ)dξ < +∞ (3.9)

and at least one of the following conditions holds for t ≥ t0:

a)

∫ t

h(t)
b(ξ)dξ ≤ 1

e
, ‖a‖[t0,+∞) <

1

2
;

b)
1

e
<

∫ t

h(t)
b(ξ)dξ < 1 +

1

e
− 2‖a‖[t0,+∞).

Then equation (1.1) is asymptotically stable.

Proof. Let s = p(t) :=

∫ t

t0

b(τ)dτ, z(s) = x(t), where p(t) is a strictly increasing function. Then we

introduce ã(s), h̃(s) and g̃(s) as follows:

ã(s) = a(t), x(h(t)) = z(h̃(s)), h̃(s) ≤ s, h̃(s) =

∫ h(t)

t0

b(τ)dτ, s− h̃(s) =

∫ t

h(t)
b(τ)dτ,

g̃(s) =

∫ g(t)

t0

b(τ)dτ, s− g̃(s) =

∫ t

g(t)
b(τ)dτ, g̃(s) ≤ s.

Then

d

dt

(
x(t)− a(t)x(g(t))

)
=

d

ds

(
z(s)− ã(s)z(g̃(s))

)
ds

dt
= b(t)

d

ds

(
z(s)− ã(s)z(g̃(s))

)
.

Equation (1.1) can be rewritten in the form

(z(s)− ã(s)z(g̃(s)))′ = −z(h̃(s)). (3.10)

By inequalities (3.9), equation (3.10) involves bounded delays. If x(t) is a solution of (1.1) then
z(s) = x(t) is a solution of (3.10).

Theorem 3.2 and condition a) of the theorem, as well as Part b) of Corollary 3.5 and condition
b) of the theorem imply that equation (3.10) is exponentially stable. Hence (1.1) is stable and
lim

s→+∞
z(s) = lim

t→+∞
x(t) = 0, i.e. (1.1) is asymptotically stable.
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As an application of Theorem 3.6, consider the pantograph version of equation (1.1)

(x(t)− a(t)x(µt))′ = −b(t)x(λt), µ, λ ∈ (0, 1). (3.11)

Corollary 3.7. Assume that (a1)-(a2) hold, b(t) ≥ 0,

∫ +∞

0
b(s)ds = +∞, b(t) 6= 0 almost every-

where, and at least one of the following conditions holds for t ≥ t0:

a)

∫ t

λt

b(ξ)dξ ≤ 1

e
, ‖a‖[t0,∞) <

1

2
;

b)
1

e
<

∫ t

λt

b(ξ)dξ < 1 +
1

e
− 2‖a‖[t0,+∞).

Then equation (1.1) is asymptotically stable.
If in addition there exist ν1,ν2, ν2 > ν1 > 0 such that for t ≥ t0 > 0,

ln(ν1t) ≤
∫ t

t0

b(ξ)dξ ≤ ln(ν2t) (3.12)

then there are t1 ≥ t0, M1 > 0 and γ > 0 such that

|x(t)| ≤ M1t
−γ , t ≥ t1. (3.13)

Proof. The only assumption that we have to check is that under either a) or b), (3.9) holds. Both

a) and b) imply

∫ t

λt

b(ξ)dξ < 1 +
1

e
< +∞ for t ≥ t0. The only inequality that we have to justify

is the first inequality in (3.9). If µ ≥ λ then it is obvious. Let µ < λ; as µ, λ ∈ (0, 1), there is an
integer k such that λk < µ. Instead of t0, consider t

∗
0 = t0λ

−k. Then for t ≥ t∗0,

∫ t

µt

b(ξ)dξ ≤
∫ t

λkt

b(ξ)dξ =

∫ λk−1t

λkt

b(ξ)dξ +

∫ λk−2t

λk−1t

b(ξ)dξ + · · ·+
∫ t

λt

b(ξ)dξ ≤ k

(
1 +

1

e

)
,

which immediately implies the first inequality in (3.9).
Let in addition (3.12) hold. Then there exists t1 ≥ t0 such that

ln(νt) ≤ t, t ≥ t1. (3.14)

The assumptions of the corollary imply that z(s) = x(t), with s = p(t) :=

∫ t

t0

b(τ)dτ , is uniformly

exponentially stable, see the proof of Theorem 3.6. Note that p(t0) = 0. Thus there are M > 0,
γ > 0 such that

|x(t)| ≤ Me−γp(t). (3.15)

Since p(t) is monotone increasing and the expression in the right-hand side is decreasing in t,
inequality (3.15) holds for x(r), r ≥ p(t) instead of x(p(t)) in the left-hand side. By (3.12) and
(3.14),

p(t) ≤ ln(ν2t) ≤ t, t ≥ t1.

Thus
|x(t)| ≤ Me−γp(t) ≤ Me−γ ln(ν1t) = M (ν1t)

−γ = M1t
−γ ,

where M1 = Mν−γ
1 , which concludes the proof.

Remark 3.8. Note that (3.12) implies boundedness of
∫ t

λt
b(τ)dτ .
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4. Examples and Discussion

First, we illustrate the results of the present paper with three examples: one for an equation with
constant delays and variable coefficients, one for a pantograph equation and one for an equation,
where one of the delays is growing faster than for any pantograph equation.

Example 4.1. Consider the equation

(x(t)− a(t)x(t− σ))′ = −α(1 + 0.1 cos t)x(t− π), (4.1)

where |a(t)| ≤ a0 <
1
2 . Let a0 = 0.49. Then in Part b) of Proposition 1.4 [23],

lim sup
t→+∞

∫ t

t−π

b(s)ds = α(π + 0.2) < 0.2,

or α < 0.05985, while Theorem 3.2 implies exponential stability whenever
∫ t

t−π

b(s) ds ≤ α(π + 0.2) ≤ 1

e
,

or α ≤ 0.11. For α ∈ (0.05985, 0.11], Theorem 3.2 establishes exponential stability, while Proposi-
tion 1.4 fails.

Next, let a0 = 0.46, then the condition in Proposition 1.4 becomes α(π + 0.2) < 0.4, or α <
α0 ≈ 0.1197. Part b) of Corollary 3.4 implies exponential stability for α > (1.1πe)−1 ≈ 0.1065,
α < (1 + 1

e
− 2a0)/(1.1π) ≈ 0.1296. Thus, for α ∈ (0.1197, 0.1296), Corollary 3.4 works and

Proposition 1.4 fails.
In addition, let us note that Theorem 3.2 and Corollary 3.4 can be applied to the equation

(x(t)− a(t)x(g(t)))′ = −α(1 + 0.1 cos t)x(h(t)), t− π ≤ h(t) ≤ t, t− σ ≤ g(t) ≤ t, (4.2)

leading to the same estimates as above, while Proposition 1.4 deals with constant delays only.

Most known stability results were obtained for pantograph equations involving a non-delay
term. For example, the equation

(x(t)− a(t)x(µt))′ = −c(t)x(t) + b(t)x(µt), µ ∈ (0, 1), (4.3)

where 0 ≤ c(µt)
c(t) a(t) ≤ a0 < 1, c(t) ≥ c0 > 0, is asymptotically stable if |b(t)|

c(t) ≤ α < 1 for some

α > 0, as follows from [4, P.286-287], where the vector case was considered. It means that the
non-delay term dominates over the delay term. This result partially generalizes Proposition 1.5 for
neutral equation (4.3).

In this paper we considered equation (3.11) without a non-delay term (in (4.3) c(t) ≡ 0). Hence
the results of the present paper and known stability tests for pantograph equations are independent.

Example 4.2. The pantograph-type neutral equation
(
x(t)− 1

3
x(0.25t)

)′
= −1

t
x(0.5t), t ≥ 1 (4.4)

is asymptotically stable, since all the assumptions of Part b) of Corollary 3.7 hold. In fact,
∫ t

0.5t

ds

s
= ln 2 ≈ 0.693 >

1

e
, ln 2 < 1 +

1

e
− 2

3
≈ 0.701.

11



Example 4.3. For the equation with unbounded delays

(
x(t)− (0.1 + 0.1 sin t)x(t−

√
t)
)′

= − α

t ln t
x
(√

t
)
, t ≥ 4, α > 0, (4.5)

we have

∫ t

√
t

α ds

s ln s
= α[ln(ln(t))−ln(ln(

√
t))] = α ln 2 ≈ 0.693α. Since t > t−

√
t ≥

√
t for t ≥ 4, also

α

∫ t

t−
√
t

ds

s ln s
≤ α

∫ t

√
t

ds

s ln s
= α ln 2 < +∞, so (3.9) is satisfied. As ‖0.1 + 0.1 sin t‖[4,+∞) = 0.2,

a) in Theorem 3.6 holds for α ln 2 ≤ 1/e, while b) is fulfilled for

1

e
< α ln 2 < 0.6 +

1

e
.

Overall, (4.5) is asymptotically stable for α <
0.6e+ 1

e ln 2
≈ 1.396. To the best of our knowledge, all

known stability tests fail for this equation.

Let us discuss now both known results and new stability tests presented in the paper. Propo-
sition 1.1 assumes existence of a non-delay term and thus cannot be applied to equation (1.1).
Proposition 1.2 contains easily verifiable conditions but implies several unnecessary restrictions,
such as non-negativity and differentiability of a.

Propositions 1.3 and 1.4 in the non-neutral case a(t) ≡ 0 give the best possible asymptotic

stability condition lim sup
t→+∞

∫ t

t−σ

b(s)ds <
3

2
, but only for constant delays. We consider variable

delays t− h(t), t− g(t) which, moreover, can be unbounded.
In all stability results of Propositions 1.2, 1.3, 1.4, it was assumed that all the parameters of con-

sidered neutral equations are continuous functions, and the proofs were based on this assumption.
Thus all these results are not applicable to equations with measurable parameters.

Note that Theorem 3.3 for the case a ≡ 0 implies the best possible known stability condition

τ‖b‖[t0,+∞) < 1 +
1

e
for delay differential equations with one delay and measurable parameters.

Finally, let us suggest several directions in which future research is possible.

1. An interesting question is whether in Theorem 3.2 the condition ‖a‖[t0,+∞) <
1

2
(as in Propo-

sition 1.2) can be relaxed to a less restrictive inequality ‖a‖[t0,+∞) < λ, where λ ∈
(
1

2
, 1

)
.

For a neutral equation in a different form than (1.1), such a result was obtained in [6], under
the assumption that a(t) ≥ 0.

2. Extend the stability result obtained in the paper to equations with several delays, integro-
differential equations and equations with distributed delays.

3. There are many papers on asymptotic formulas for solutions of neutral equations, includ-
ing pantograph equations, see, for example, [4]. However, most results are concerned with
autonomous equations or equations with constant delays. It would be interesting to obtain
similar estimates for non-autonomous equations using the Bohl-Perron theorem or another
approach.

4. Extend the results on the algebraic decay rate for pantograph equations to some other types
of equations with unbounded delays, for example, to h(t) = α

√
t or h(t) = t − α

√
t, t ≥ 1,

α ∈ (0, 1] and give an explicit estimate of this rate.
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