1607.07607v3 [cs.LG] 29 Aug 2019

arxXiv

Adaptive Nonnegative Matrix Factorization and Measure
Comparisons for Recommender Systems

Gianna M. Del Corso* Francesco Romani*

August 30, 2019

Abstract

The Nonnegative Matrix Factorization (NMF) of the rating matrix has shown to be an effective
method to tackle the recommendation problem. In this paper we propose new methods based on the
NMF of the rating matrix and we compare them with some classical algorithms such as the SVD and
the regularized and unregularized non-negative matrix factorization approach. In particular a new
algorithm is obtained changing adaptively the function to be minimized at each step, realizing a sort
of dynamic prior strategy. Another algorithm is obtained modifying the function to be minimized
in the NMF formulation by enforcing the reconstruction of the unknown ratings toward a prior
term. We then combine different methods obtaining two mixed strategies which turn out to be
very effective in the reconstruction of missing observations. We perform a thoughtful comparison
of different methods on the basis of several evaluation measures. We consider in particular rating,
classification and ranking measures showing that the algorithm obtaining the best score for a given
measure is in general the best also when different measures are considered, lowering the interest in
designing specific evaluation measures. The algorithms have been tested on different datasets, in
particular the 1M, and 10M MovieLens datasets containing ratings on movies, the Jester dataset
with ranting on jokes and Amazon Fine Foods dataset with ratings on foods. The comparison of
the different algorithms, shows the good performance of methods employing both an explicit and an
implicit regularization scheme. Moreover we can get a boost by mixed strategies combining a fast
method with a more accurate one.

Keywords: Recommender Systems - Nonnegative Matrix Factorization - ANLS - Regularization - Analysis of
measures

1 Introduction

Consumers are literally submerged by large selections of products and choices. Recommender Systems
are tools designed to help retailers to find the most appropriated products that meet the needs and
tastes of their users. Content filtering and collaborative filtering are two alternative approaches to this
interesting problem. The content-based filtering approaches try to recommend items that are similar to
those that a user liked in the past [30], whereas systems designed according to the collaborative filtering
paradigm identify users whose preferences are similar to those of the given user and recommend items
they have liked [I].

Some of the most effective approaches to collaborative filtering are the so called Latent Factor Mod-
els [7, 9] 125, [37, 25, [38]. These models try to view the expressed ratings as characterized by a low number
of factors inferred from the rating patterns to reduce the dimension of the space of the users and of the
items. Mathematically, this corresponds in approximating the matrix containing the known ratings with
a low-rank matrix and use the latter to infer the unknown ratings. Two popular numerical methods

*Dipartimento di Informatica, Universita di Pisa. gianna.delcorso@unipi.it, francesco.romani@unipi.it. This re-
search was partially supported by GNCS projects “Metodi numerici avanzati per equazioni e funzioni di matrici con
struttura” and by University of Pisa under the grant PRA-2017-05.

http://arxiv.org/abs/1607.07607v3

used in this context are the Singular Value Decomposition (SVD) [7] and the Nonnegative Matrix Fac-
torization (NMF) [25]. The power of the SVD in fields such as machine learning and data analysis is
well known, and, as well explained in [I3], the NMF shares many of these positive aspects and it is
particularly well suited for features extraction and reconstruction of missing observations. Both these
factorizations can be formulated as minimization problems that, in the case of NMF, is non-convex. The
usual approach for computing the NMF is based on an alternating non-linear least square scheme, where
at each step we have to solve two convex subproblems. This approach has shown to lead to optimal
solutions [23] 28].

In this paper we propose new methods based on the Nonnegative Matrix Factorization (NMF) of the
rating matrix and we compare them with some classical algorithms such as the SVD and the regularized
and unregularized non-negative matrix factorization approach. In particular an algorithm is obtained
modifying the function to be minimized in the NMF formulation by enforcing the reconstruction of the
unknown ratings toward a prior term. Another algorithm is obtained changing adaptively the function
to be minimized at each step, realizing a sort of dynamic prior strategy. We then combine different
methods obtaining two mixed strategies which turn out to be very effective in the reconstruction of
missing observations.

Recommendation systems have been designed with different goals in mind. For example they have
been used to predict missing ratings in order to make personalized recommendations [25], to generate a
ranked list of items to submit to each user [2,[7], or to classify items as interesting/not-interesting for each
user. To capture these multiple goals, many different measures (metrics) for recommender systems have
been introduced in the literature [7, [10] 34, [40]. In this paper we compare old and new algorithms with
respect to many different measures, considering rating, classification and ranking metrics for addressing
all the different scenarios for which recommender system are designed.

The extensive testing shows a number of interesting properties: for example the optimal number
of latent factors is independent of the metric but is specific of the algorithm. Moreover, comparing
the results for many problem instances we discovered that the different metrics correlate very well. For
example, the Spearman correlation between ranking metrics is never lower than 94%, raising some doubts
about the need of so many different measures, at least in general.

Our experiments on four different datasets show that the new methods proposed in this paper outper-
forms the classical schemes. In particular the method combining a static prior and regularized method
makes consistently better prediction with respect to most of the metrics. We also observed, that, in
order to make good predictions, it is sufficient to consider a relatively small number of latent factors.

The paper is organized as follows: The recommendation problem based on Matrix factorization is
formally presented in Section 2] while the algorithms proposed and analyzed in the paper are introduced
in Section [l Section] describes the different evaluation metrics considered in this paper, dividing them
into rating, classification and ranking metrics. Section [0l contains the experimental results, addressing
both the question of comparison of the measures as well as of the performance of the different methods.
In Section [6l we draw some conclusions.

1.1 Related works

Numerical techniques have proven to be very useful to design effective algorithms in many areas related to
information searching, ranking and retrieval [5, [8, [IT], (14} 16, BT}, [41]. In particular, the idea of factorizing
a matrix to linearly reduce the dimensionality of the problem is a well known technique widely used in
image processing [27], text mining [36], classifications [4] but also in design of effective recommender
systems [7, @ 25 [37]. The literature on this subject is wide, we refer to [6] and to the references therein
for a survey on the matrix factorization models in collaborative filtering.

In [7], the authors compare collaborative filtering algorithms and propose both neighborhood models
and Latent Factor models algorithms based on the Singular Value Decomposition (SVD). We included
the latter algorithm in our experiments denoting it PSVD. In [33] the authors proved that it is possible
to reformulate the PSVD algorithm as the computation of an eigendecomposition of a cosine similarity
matrix. A whole family of methods, which the authors called EigenRec, can be obtained choosing different
similarity measures such as the Pearson-Correlation and the Jaccard Similarity measures, and different

scaling functions. An efficient method, based on the Lanczos algorithm is proposed to build the latent
space. The SVD approach is considered also in [39], but in that case the missing evaluations are filled
using the average ratings for a user or the average ratings for an item instead of the zero value. Despite
the filled rating matrix is dense, one can take advantage from the special structure of the additional
entries and used a suitably modified sparse SVD routine to factorize the rating matrix. The authors
found that a small number of latent parameters (14 for the MovieLens dataset of 100K ratings) is the
most suitable respect to the MAE error measure (defined in Section[]). Despite our testing methodology
is slightly different we obtained similar results on the number of latent factors.

An different approach is the one pursued in [9], where the authors assume that it is more likely for
an unknown item to be weakly rated because a user is generally interested in a limited list of items
compared with the total number of existing items. For capturing this aspect, the authors propose to
incorporate in the optimization problem a prior term which drives the unknown ratings toward a prior
estimate o. We include this model in our experimentation (see model (), but we noted that forcing
the reconstruction of missing values toward the values zero is not satisfactory and better results can be
obtained with a different value of a.

Ning and Karypis [34] propose a sparse Linear Model algorithm for the top-N recommendation prob-
lem (see Section M]). The recommendation scores are computed learning a positive weighting matrix W
and solving regularized least squares problem. In [35] and [20] Weighted Regularized Matrix Factoriza-
tion (WRMF) methods are formulated as a Least-Squares problem. The weighting matrix is used to
differentiate the contributions from observed activities and unobserved ones. In [45] the authors for-
mulate the optimization problem in terms of the Rj-norm instead of the usual Frobenius or Ly norm.
Their interest is in designing a NMF-based method robust to malicious attacks where users inject fake
profiles to manipulate the recommender system. Liu and Wu [29] propose a latent factor model trans-
forming the recommendation problem into a nearest neighbor search problem. To this end, users and
items are projected into the latent space, and similarities between items and users are then computed to
provide recommendations. It was not possible a direct comparison of all the above approaches with our
algorithms because of different testing methodologies and the use of different error measures.

2 Matrix factorizations for recommender systems

Formally, we use the following notation. Let U = {u1,us,...,umn} denote a set of users, Z = {i1,...,in}
denote a set of items, and V C [Umin, Umax] denote the set of possible votes that a user can assign
to an item. Define Vy = V U {?} the set of possible votes plus the value ? corresponding to the
undefined or missing evaluation. Let A € VJ"*" be the Utility Matriz (also called rating matrix), and
let Q CU X T, Q={(u,i)|ay; € V}. Each element (u,i) € Q represents that user u has evaluated item

1, the corresponding vote (or rating) is stored in entry a,; of A. Let us denote by €2, the complement of
Q, the set containing missing evaluations, i.e. Q = {(u,)| ay; =7}

Latent Factor Models [9, 25, [37] try to view the expressed ratings as characterized by a low number
of factors inferred from the rating patterns to reduce the dimension of the space of the users and of
the items. Low-rank matrix factorization of the rating matrix is a common technique for discovering
the latent factors and represent items and users in terms of a few vectors. The available data are
used to compute the latent factors which are later employed to predict ratings for items not yet rated
by a user. This approach for predicting unknown ratings relies on the fact that a model accurately
predicting observed ratings generalizes well to unknown ratings. In the following we propose some
common approaches that will be the starting tool to present old and new algorithms in Section Bl

Given the utility matrix A, and the set of expressed ratings Q C U x Z, we denote by Ag the matrix
obtained from A replacing 7 with 0. More in general, given a set X C U x Z and a matrix M, we use
the notation Mx to represent the matrix obtained applying to M a projection operator that only retains
the entries lying in the set X, i.e.

MX_{ 0 if(i,)) & X. (1)

In the following we will denote by e; the i-th column vector of the canonical basis, that is the vector
with all components equal to zero except for the i-th that is equal to 1.

2.1 The SVD approach

When latent factor models were first proposed the SVD approach was the natural choice [25]. In this
case we look for a matrix B of rank at most k such that

min [Aq — Bl . 2)
rank(B)<k

That minimum is achieved for the SVD truncated at the k-th term, B = PkaQg, being Aq, that is
Aq = PYQ7T. Since the columns of P, and @, are orthogonal vectors, in general matrix B will have some
negative entries that should be somehow interpreted when the set V does not allow negative ratings. For
this reason many authors argue that SVD approach is not adequate for this problem.

An idea for partially avoiding this phenomenon, when working with nonnegative ratings, is to shift
each entry of matrix Aq with a fixed v > 0, and then apply SVD. Denoting by u,, and u,, the vectors
with entries equal to one and length equal to m, the number of users, and n, the number of items, we
get

Pi¥iQj = argmin [|Ag — v (unuy)o — Clr (3)
rank(C)<k
where PYXQ is the SVD decomposition of Ag — 7 (u,ul)q. We have then to shift back the values of
matrix PkaQf adding the value v to each entry, that is set B = PkEkQZ +yunpul. In this case we
have to choose both a suitable value for k and the parameter v. Note that for moderate values of k a
sparse SVD can be carried out efficiently using packages such as SVDPACK [3] or PROPACK [26].

2.2 The Nonnegative matrix factorization approach

When we are interested in a rank-k approximation with non negative entries it is more convenient to
consider the Nonnegative Matrix Factorization (NMF). In the case the set V allows negative votes,
we can simply shift the values to have an utility matrix containing only nonnegative entries. The
Nonnegative Matrix Factorization problem can be mathematically formulated as follows [24]. Given a
matrix M € R™*™ in which each element is nonnegative, i.e. ,m;; > 0, and an integer k£ < min{m,n},
NMF aims to find two factors W € R™** and H € R"** with nonnegative elements such that WH7” is
the closest matrix to M with respect to a suitable norm. A common choice is to consider the Frobenius
norm, and the problem can be formulated as an optimization problem where W and H are found solving
the non-convex optimization problem

: _ 1 T2
ppin FHW) = S||M = WH . (4)

Since problem (@) is non-convex we can reasonably expect to find only a local minimum. Many algo-
rithms have been devised to solve this problem inside an Alternating Nonnegative Least Square (ANLS)
framework, where the non-convex minimization problem is formulated as a two coordinate descent prob-
lem [23]. Given an integer k < n one of the factors, say W is initialized with non-negative entries, and

then an alternating constrained least square scheme is iterated until certain convergence criteria are met.
The general ANLS algorithm can be described as follows

Procedure ANLS

Input: M, W,

i:=0;

repeat
Hiiq:=argmings, F(X, W;);
Wit1:=argminy, -, F(Hit1,X);
=141

until stopping condition

Output:
Wi7 HZ

where F is the function to be minimized that could be (@), or another one containing regularizing or
prior terms as we will see.

It can be proved that every limit point generated from the ANLS framework is a stationary point for
the non-convex original problem [24]. To solve the least square problems inside the ANLS framework we
can use one of the many methods developed such as the Active-set method [22], the projected gradient
method [28], or the projected quasi-Newton method [21I]. In this paper we use the greedy coordinate
descent method [19] which we describe in detail in Section This method is particularly well suited
when the matrix to be factorized is sparse as in the case of recommender systems because we can take
advantage from the sparse structure to implement it in a convenient way.

In out setting, if we apply the NMF directly to Aqg we force the reconstruction of the missing
evaluations towards zero. Instead, since we are interested in a NMF that closely approximate the
expressed ratings and returns a estimate of the missing ratings we formulate the optimization problem
as follows

; _1 T (|2
min | GUH,W) = 2l Aa — (WH ol)
Usually regularization terms are added to avoid overfitting of data. Using the 1-norm, which, with a
slight abuse of notation we define as || M| = |[vec(M)|[1 = >_,; [m;|, the model becomes
. _1 T |2
win LH,W) = Sllde — (WH allr + A(IH 1 + [[Wll)- (6)

In general other norms can be used for the regularization parameter, but the advantage of working with
the 1-norm is that it favors sparsity and it is very easy to implement.

Another kind of regularization can be obtained looking for terms W and H such that they agree with
a prior term a on unknown ratings. The function to be minimized becomes

: _ 1 T 2 T Ty_ 112
i P(H,W) = [Ag = (WHT)al[f + (o unul = WH) 5. ™

In this model the same scalar value of « is assumed to be a good prediction for all the unknown ratings.

2.3 Greedy coordinate descent algorithm

The Greedy Coordinate Descent (GCD) algorithm was proposed in [19] to solve the least square problem
inside an ANLS scheme. In the original paper the algorithm is presented for full matrices but, as we will
see in the following, it can exploit easily both sparsity and one-norm regularization, so that it turns out
to be particularly suitable for recommender systems where the observed votes are only a small portion
respect to the entries of the matrix. Its speed features and guaranteed convergence makes it a reasonable
choice inside a recommender system based on an ANLS method.

In our framework, denoting by F(H, W) the function to be minimized, that in our case is one among
G(H,W) @) and L(H,W) (@), and choosing a pair (u, i), coordinate descent solves the following one-
variable subproblem to get s such that

min fu,.(s)V = F(H,W + sE,,), (8)

S:Wqr+5>0
where E,,,. is an m x k matrix with all entries zero except the (u,r) element equal to one, i.e. E,,. = e el.
In the case of the formulation given in (B), denoting by R = Rgq the sparse residual matrix, i.e.

R=Aq — (WHT)q, we have
1 1
fuT(S)W = 552 Z h?T - Z Tujlur + 9 Z TZJ"
JEQu JEQu JEQ,

where Q,, = {j| a,; € V}, is the set of items voted by user u. Since f,.(s)" is a degree two polynomial
in s, the minimum is achieved for

> ruihar | /| D 1,

JEQu JEQ,

w|
I

Hence, because of the nonnegative constraint, we get

N if wy, +5>0
5= — Wy if Wy + 35 < 0.

The gain in the objective function results

*\2
F(H,W) —F(H,W + s*Ey,) = _&) S hh A5 > ruihar,

2 ;
JEQ JEQ

and we can update the residual matrix as follows
Tuj = Tuj — S huj, forall j e Q.

The formulation for the GCD algorithm is slightly modified when regularization in the one-norm is
introduced as in problem (@]). In this case the function to be minimized is

1
L(H,W) = S| Rl + AlH[x + AW

and the value of the parameter s minimizing f,.(s)" is given by

§=(A+ Z Tujhur) /(Z h’?r)'

JEQu JEQ

As we will see in Section Bl using the ideas presented in [9] for dealing with the priors while
maintaining the sparsity of the matrix, we can reformulate the GCD algorithm also for P(H, W) in ().

Paper [19] describes how to embed this inner step into an iterative method that reduces the objective
function of a prescribed quantity. Note that the GCD algorithm does not solve exactly the convex
constrained minimization problems but it stops when the error has reduced of a factor . If € is not
too small, this procedure turns out, once embedded into an ANLS scheme, to be much faster than
other solutions such as the active-set method which at each step solves completely the convex problem.
For further reference we denote by GCD;(F(X, W),) the algorithm that given the function F(X, W)
and the tolerance e, returns the matrix which is an approximation depending on the parameter € of
argmin y~o (X, W). Similarly we denote by GCDy(F(H, X), ¢) the algorithm returning a nonnegative
approximation of arg min y~, F(H, X). A detailed description of these algorithms is given by Algorithm
1 (steps 1-8) in [I9], where the authors provide also a detailed analysis of the cost.

3 The tested Algorithms

In this Section we introduce the algorithms we implemented and tested respect to the evaluation metrics
we are going to describe in Section @l For each algorithm we mention the parameters involved and how
regularization is realized.

e PSVD is the pure SVD approach of (). Regularization is achieved taking a moderate value of k.

e SSVD(~) Is the shifted SVD approach of [@). The shift is considered to overcome the problem
of the negative entries in the reconstructed matrix. Again regularization is obtained with a fairly
low value of k. An adequate value of v should be chosen so that the matrix B contains mostly
nonnegative entries. Taking v = 0 we obtain the PSVD approach above (see ([2)). Regularization
is automatically realized keeping a low the value of the rank k.

e NMTF Is the un-regularized Nonnegative matrix factorization approach described by (&). Since we
employ the Greedy Coordinate Descent algorithm described in Section 23] the tolerance & becomes
an input parameter as well as the number of iterations it of the ANLS scheme. The algorithm
becomes

Procedure NMF
Input: A, k,it,e

WO:: Omxk;
for i = 1:it
Hi: = GCDl(G(X, Wi_l),{f);
Wiii GCDQ(G(Hi,X>,€>;
endfor

Output:
Wit, Hit.

e RNMF () Is the Regularized Nonnegative matrix factorization approach described by (). Beside
the choice of k we have to choose A\, € and it . RNMF coincides with NMF when A = 0, and
the algorithmic formulation is the same as procedure NMF calling the GCD algorithms using as
parameter function L rather than G .

In addition to the above known algorithms, in this paper we propose and test some new algorithms
which use a prior term to improve the quality of the reconstruction. Within the framework of equation (),
we propose different strategies for selecting the parameter «.

e PR(«) The algorithmic scheme is similar to that of Procedure NMF but using function P inside
the GCD calls. The prior term « acts also as a regularizing term which avoids the uncontrolled
growth of the values of W and H. If we set a = 0, we assign to all the unknown values the value
zero, and the model forces the reconstruction of missing values toward this solution. This is the
original proposal of [9], since they claim that, in general, items not rated will be likely to receive a
weak rating. However, this does not apply when, for example, there are many items and a user is
unlikely to visit all of them. For this reason, we also tested the algorithm with o = (Vimin +Vmax)/2,
which represent the neutral rating.

e PRD (short for Dynamic with prior). The idea is to use a scheme with an evolving prior factor. In
particular at each iteration we assign to the unknown values the estimate obtained by the previous
iteration. Denoting by

1 1
RXWH) = 54~ (WX)allf + 3 IWH" = WX")5% (9)

1 1
BHX,W) = 54~ (XH)o|% + 3 IWHT — XHT)q|l%

the formulation in the ANLS scheme becomes

Procedure PRD
Input: A k,it, e

WO:: Omxk;
for ¢ = 1:4t
Hi = GCDl(Fl(X, Wifl,Hifl),E);
Wi = GCDQ(FQ(Hi,X, Wifl),é‘);
endfor

Output:
Wi, H;

This correspond to apply the standard NMF to an evolving matrix B; = Aq+ (W;_1HYL |)q. Note
that although B; is a full matrix, we can adapt the GCD scheme (8)) to efficiently deal with the
rank-k term without building B;. The evolving prior term, a moderate value of k and a low number
of iterations of the GCD scheme, contribute together to the regularization of the solution.

Finally we tested also some mixed strategies, setting a,;, = (Umin + Ymax)/2,
e MIXR(h) where we start with h steps of PR(a,,) and then we continue with RNMF ().
e MIXD(h) where we start with h steps of PR(a,,) and then we continue with PRD.

Other mixed strategies, as well a full scheme using both regularization and prior terms are possible, but
the results obtained do not seem worth of reporting.

3.1 Considerations about the complexity

To analyize the computational complexity of the different algorithms, let us denote by s the number of
nonzeros of the matrix Aq, that is s = [Q|. Then the overall cost of PSVD and SSVD(v) is O(k T}, 1t +
(m+mn)k?) floating point operations [I7], where T}, ;)¢ denotes the cost of a matrix-vector multiplication
and hence in out setting T, .11 = O(s).

The cost of each step of the algorithms based on nonnegative matrix factorization is given by
(Tgep, (Fse) + Tgep, (F:€)), where F is either G, L, P or the function defined by (). From the
analysis carried on in [19] we know that the cost of the GCD scheme depends on s = ||, on the number
t = t(e) of subproblems (8) we have to solve, as well as on the value of k. In our experiments, ¢t turns
out to be increasing with k£ and m or n depending on the fact we are updating W or H, but always
t < mk?. For this reason (see for the details [19]), in our case we get Tgep, (F.e) = O(mk?) + Tipjt and
Taep, (Fre) = O(nk?) 4+ Tipip, where Tipj = O(sk+k%) is the time for the initialization of the matrices
in the algorithm. Hence the asymptotic complexity of both NMF and RNMF () is O ((n + m)k® + sk)
per iteration.

Under the reasonable assumptions s > k2, the asymptotic cost per iteration is the same also for
procedures PR(a) and PRD. The only difference could be the cost of the initialization phase of GCD;, i =
1,2. However, as explained in [9], for the function P in (1) we can exploit the rank-1 structure of the
matrices involved to perform initialization in O(sk + (m + n)k) operations. The same reasoning can be
applied for the PRD method, where the matrix involved is a rank-k modification of a sparse matrix.

4 Evaluation metrics

Metrics for evaluating the performance of recommender systems can be classified in three main classes [40]
depending on the final goal of the recommender system: rating metrics, classification metrics or ranking

metrics. Since we can only measure the quality of an algorithm by comparing the algorithm estimates
with actual data, in each experiment we partition the set of expressed ratings (2 in a training set 7 and
test set R with TUR = Q and 7T N'R = (. Then, we apply the algorithms to matrix A7 producing a
prediction matrix B and evaluate the algorithm performance comparing Ax with Bg.

4.1 Rating metrics

Rating metrics [40] try to estimate how close the estimated ratings Br are to the true user rating Ag:
they are used when it is important to predict the rating of all items. In this class we consider the Mean
Absolute Error (MAE),

1
MAE = — > Jaui = buil, (10)
| | (u,i)ER
and the Root Mean Square Error (RMSE),

1
RMSE = | —||Ax — Br|[2.
%w r

Other popular rating metrics are the Mean Square Error (MSE), the Normalized Mean Absolute Error
(NMAE), and the Constrained Mean Absolute Error (CMAE).

4.2 Classification metrics

These metrics [40] are used when ratings are interpreted as a binary judgment (like/unlike). They are
based on the comparison of Ax and Bgr using two thresholds 04 and op. These thresholds depend
on the data, and on the maximum vote vyax. For example, if votes are on a scale 1-5, a reasonable
choice for o4 is 4. Depending on the algorithm used to retrieve missed votes, we can set op = g4 but
a different threshold can be used, for example if the range of values returned in B is different. The
principal measures can be defined on the basis of the two sets below:

e Relevant: Rel = {(i,j) € R|ai; > 04},

e Predicted: Pre = (i,5) € R|bi; > oB}.

The perfect prediction is when the two classes coincides. Since perfect algorithms are unlikely, it is
customary to define the following sets, pictorially represented in Figure [l

True positive: tp = RelNPre,

False positive: fp = Pren(Rel N R),
True negative: tn = (Rel NR)\fp,
False negative: fn = Rel\tp,

and the following measures:

ol il

P = Prel ~ Tiol + 1l Precision
R = (e T e

= R " e
Fl = %, F1-score

A = W, Accuracy.

fi
Rel 7

Pre

R//—’/
Q

Figure 1: Pictorial representation of the sets used for defining the different metrics. Note that = RUT.

4.3 Ranking metrics

Ranking (prediction) metrics measure how accurate an algorithm is in predicting recommendations in
the right preference order for the users. These measures are preferred when it is not important the exact
values of the prediction but only their relative ranking.[40] .

Let us define the set of relevant items for the user u as I,.*) = {i € Z|(u,i) € R, aw; > oa}. Note that
it is possible for a given user, to have that I,(") = (). The set of users which have a non empty relevant

item list, will be denoted as U, = {u e U] It (Z)}. In the following let R, = {i € Z|(u,i) € R}, and

let #*) be the permutation of the indices in R, induced by ordering the entries of the u-th row of Ag
in a non increasing way, that is

y >a i=2,...,|Rul-
1

D, = ug(

The analogues sequence for matrix By is denoted by 7(*", i.e.

buﬂgi)l > buﬂgu),l =2,..., |Ru|

For a given user u, we define the precision for that user as the number of items actually relevant for that
user, among the top N items recommended to u. We get

priy) = {h < N | e 1},

that is, prg\?) is the set of the relevant items for user w in the top N positions. The Average Precision
for user w is then defined as

M1 ()
|pri |

1
APy = —5 ;
L7 =

and averaging over all the users with a non empty relevance list we get the Mean Average Precision
(MAP)

1
MAP = — Z AP,.
|UT| uelU,

This metric, as similar others we can define taking the geometric, harmonic or the quadratic mean
instead of the arithmetic one, emphasizes true positives which appear at the top of the list.

10

Accuracy can be also estimated by the ROC curve (Receiver Operating Characteristic) [10] which
provides a graphical representation for the performance of a recommender system. The ROC curve plots
for different set sizes, recall versus fallout. The ideal recommender system will go straight to a recall of
1 and a fallout of 0 and then remain at that value until all the size of the set of recommendations equals
the set of relevant items. A single measurement of the quality of recommendation is given by the AUC
(Area Under the Curve) [43]: the better the recommender system, the higher is the AUC.

Another measure which has received much attention is the Normalized Discounted Cumulative Gain [28]
which rewards methods for which the permutations 7 agrees with ¢ for the top positions, while relevant
items ranked at low positions of the ranking contribute less to the final score than relevant items at top
positions.

For some authors [7], [34] the goal of a recommender system is to find a few specific number of items
which are supposed to be most interesting for a user. Some of the ranking measures above can be defined
to account only for the first N positions, so we get the PQN, RQN and F1@N where the measure is
computed on the first N positions of ¢(*) and 7(*). The NDCG@N can be defined similarly.

5 Numerical Experiments

We compared the algorithms and the metrics on four different datasets, whose characteristics are summa-
rized in Table[ll In particular we used the 1M, and 10M MovieLens datasets [18] containing evaluations
on movies, the Jester dataset containing continuous ratings on 100 jokes [I5] and the Amazon Fine Foods
dataset [32] with reviews on foods. We removed from the Fine Foods dataset users with less than 5 evalu-
ations and items which have been evaluated by only one user. The datasets have different characteristics,
such as the ratio between users and items, which is high for Jester, moderate for the MovieLens datasets,
and smaller than one for the Fine Foods dataset. Also the densities are very different, for example in
Jester we have that more than half of the ratings are expressed, where the Fine Foods dataset has less
than 4 expressed ratings over 10,000 entries in the utility matrix.

Dataset #Users | #Items | #Ratings | Density Rating Scale
Movielens 1M 6,040 3952 1,000,209 | 4.19 % 1-5 discrete
Movielens 10M | 71,567 | 65,133 | 10,000,054 0.21% 0.5-5 discrete
Jester 73,421 100 | 4,136,360 | 53.34% | [-10, 10] continuous
Fine Foods 11,985 72,551 316,010 0.04% 1-5 discrete

Table 1: Different datasets used in the paper. We have datasets with different characteristics, for example
with more users than items, or viceversa, or with very different densities. Moreover we have continuous
or discrete ratings.

As typically done in the literature, we adopt the ¢-fold cross validation methodology [12][Chapter 5].
This approach consists in partitioning the ratings into ¢ groups of approximately equal size. One group
is used as test set and the remaining ¢t — 1 groups are used to train the model. Each metric is then
computed on the data in the test set. This procedure is repeated t times, each time using a different
group as test set. The final ¢-fold cross validation estimate is computed averaging the ¢ values obtained
on the t different test sets. Usually the value of t = 5 is used meaning that the test set-training set ratio
is 20%-80%. This seems a good compromise between reducing the error due to bias and the error of
the data. Using a small value of ¢, we can overestimate the error because the training set contains not
enough observations to predict the model. On the contrary, using a high value of ¢ the error due to the
variance of the data becomes large, since the ¢ values to be averaged are likely less correlated due to the
smaller overlap between the training sets in each sample. However, as we report in Section for the
datasets considered, we do not have significate changes in the behavior of the error measures with any ¢
between 3 and 6.

In addition to the algorithms described in Section Bl we measured the performance of a RANDOM
algorithm that assigns random evaluations to the pairs (u,) in the test set R. The rationale of this

11

experiments is that the scores produced by different measures have different distributions, so the compar-
ison with a random algorithm is necessary to assess the quality of the proposed algorithms. For example,
for the NDCG measure, it has been empirically observed and theoretically understood [44] that NDCG
converges to 1 almost surely as the size of the dataset increases even for random evaluations.

5.1 Measure correlations and comparisons

As we described in Section Ml recommender systems can be designed with different purposes; for this
reason different evaluation metrics have been proposed in the literature. A first contribution of our
analysis is to compare the metrics reviewed in Section [4] to see if they are somehow equivalent or if they
highlight different features.

RMSE MAE | F A MAP AUC NDCG F,@Q10 NDCGQ10
RMSE 100 90.2 75.3 83.8 | 91.7 92.9 88. 91. 89.6
MAE 90.2 100 93.4 98.1 | 86.5 88.6 80.2 88.6 83.8
F 75.3 93.4 100 96.5 | 69.6 72.7 61.8 73.1 66.4
A 83.8 98.1 96.5 100 79.9 82.2 72.4 84.3 77.5
MAP 91.7 86.5 69.6 79.9 | 100 99.3 98.2 97.9 99.1
AUC 92.9 88.6 727 822 | 99.3 100 96.8 97.6 97.7
NDCG 88. 80.2 61.8 72.4 | 98.2 96.8 100 94.5 98.9
@10 91. 88.6 73.1 84.3 | 97.9 97.6 94.5 100 97.7
NDCG@10 | 89.6 83.8 66.4 77.5 | 99.1 97.7 98.9 97.7 100

Table 2: Spearman ranks correlations for the different measures. We see that measures of the same kind
correlate very well, but also rating metrics and ranking metrics are well correlated, while classification
metrics such as F; and A have a good correlation with rating metrics but not so good with ranking
metrics.

To test the correlation of the different metrics we performed an experiment on the MovieLens 1M
dataset. We selected 500 runs of the different algorithms proposed in Section [varying the methods
and the parameters involved such as the rank k, the number of iterations inside the ANLS scheme, and
the value of the regularization or prior parameters. For each of the metrics MAE, RMSE, F1, A, MAP,
AUC, NDCG, F1@10 and NDCG@10, we obtain a vector of length 500, with the values of the metric for
each run. We then computed the Spearman rank correlation [42] of each metric against the others and
we report the results in Table

We see that the correlations between ranking metrics is higher than 94%, suggesting that these metrics
behaves similarly. Also classification and rating metrics are well correlated inside their respective class.
Moreover, from Table 2l we note that rating and ranking metrics are not so badly correlated as claimed
in [7], for example the correlation between RMSE and all the ranking measures is never lower than 88%.
The correlation between MAE and A is as high as 98%.

These considerations suggest us to introduce some cumulative measures, one for each kind of eval-
uation metrics, obtained averaging over the different scores. We obtain, for a particular setting of the
parameters and for algorithm .4

MAP(A) + AUC(A) + NDCG(A) + F;@10(A) + NDCGQ10(A)
5

RankScore(A) =

Similarly
Fi(A)+ A(A)
—

The RatingScore is defined similarly, but we have to rescale the measures in the range [0, 1] to have a
measure homogeneous with the others.

To analyze more in detail the correlation of the different metrics and their dependence on the rank
k and on the number of iterations, we report in Figure 2] (top), for algorithm PRD, the behavior of the
ranking, classification, and rating metrics on the MovieLens 1M dataset for different values of k£ and the

ClassScore(A) =

12

Ranking Classification Rating

NN

5 10 15 20 ‘25 30 5 10 15 20

k k
25° Y %30 ARV

Ranking Classification

20 40 60 80 100" 20 a0 60 80 100" % w0 e s 100"
Figure 2: Normalized measures for ranking, classification and rating metrics on the MovieLens 1M
dataset with algorithm PRD. The top plots show the dependence on k, the bottom plots the behavior
of the measures as the number of iterations increases. In each plot, in black are reported the cumulative
scores, respectively RankScore(PRD), ClassScore(PRD) and RatingScore(PRD), while the colored lines
represent one of the measures in the correspondent class. We see that all the measures approximately
behave similarly achieving the best performance for the same value of k, in this case for k = 15.

best number of iterations. We have different plots for the normalized ranking, classification metrics, and
rating metrics. Black lines show the trend of the cumulative scores RankScore(PRD), ClassScore(PRD)
and RatingScore(PRD). As we can see the different metrics have a very similar behavior and an optimal
value of £k = 15 can be clearly identified independently of the metric adopted. We note, moreover that
we can consider the cumulative measures instead that the single ones since they exhibit the same trend.
Figure 2 (bottom) shows the trend of the same measures running the algorithm with the best value of
k,i.e. k = 15. We plot the different measures as the number of iterations of the ANLS increases. We
see that all the scores improve performing more iterations but that with a moderate number of steps the
scores are already very good.

5.2 Comparison of the different methods

In this section we analyze in details the performance of the different algorithms proposed in Section [Bl
We preliminary asses whether the choice of the parameter ¢ = 5 in the t-cross validation methodology is
appropriate. Figure Bl shows the trend of the RankScore metric as a function of & for two representative
algorithms using values of ¢ ranging from 3 to 6. A value ¢t = 3 means that we are using approximately
66% of the ratings for the training set and a value t = 6 means that the percentage of ratings in the
training set is roughly 83%. From the plots on three datasets we see that there is not significant change
in the relative performance of the methods and the optimal value of k is independent of ¢. For this
reason, in the following experiments we always use t = 5.

We perform a first comparison of the different methods using the cumulative RankScore metrics to
discard some clearly inferior algorithms; then the best version of the remaining algorithms are compared
on all proposed measures.

In Figure @ for the MovieLens 1M dataset, we report the trend of the normalized RankScore with
respect to k. We note that different methods may have a different optimal k, in particular for RNMF
with A = 0.2 it is sufficient to take a value of k as small as 5, while for other methods larger values,
but never larger than 22, give better results. Although the value of k should denote the number of
latent factors in the data, and hence be independent on the algorithm, we note that k contributes to the
regularization of the problem. In the light of this observation, it is not surprising that the optimal k is
lower for methods with an explicit regularization term, namely RNMF(A) and MIXR.

13

MovieLens 1M Fine Foods

------- - PRD-6 sma=mem== RNMF(0.2)-6

PRD-5 ———— RNMF(0.2)-5
------- PRD-4 ——mm=== RNMF(0.2)-4
---------- PRD-3 mmmmmmaaa RNMF(0.2)-3

Figure 3: For the two algorithms PRD and RNMF(0.2) we plot the RankScore values versus k, parti-
tioning the data into training and test set of different sizes. We consider the t¢-fold cross validation with
t ranging from 3 to 6. We see that the trend of the RankScore in relation to the value of k is the same
for the different partitioning of the data into training and test set.

Some authors [7] pursuing the SVD approach on the MovieLens 1M dataset, suggest to use k as large
as 150. Our tests however suggest that a value k& = 10 suffices for both for PSVD and SSVD(3) methods.
The optimal value of k for the RankScore measure is moderate also for the MovieLens 10M dataset. Note
that the use of a smaller k is an obvious computational advantage since the cost of all the algorithms
grows linearly with k. We investigated whether it is possible to predict for each algorithm a “good” value
of k given the density of the rating matrix. To this end we summarize in Table Bl the optimal values of
k for different algorithms and datasets. However we could not discern any clear indication based on the
density of the matrix and we can only observe that regularized methods works well also with a small k.

NMF SSVD(3)

........... MIXD(20) PSVD
PRD emeeeeeee MIXR(20)
PR() — RNMF(0.2)

___________ PRO) RNMF(0.1)

Figure 4: For the optimal value of iterations we show the trend of the normalized RankScore, plotted for
the MovieLens 1M dataset. Each algorithm is represented by a specific color.

Another interesting observation is that methods without explicit regularization work well only if a
prior term is used. In Figure[Bwe plot the maximum value obtained in the reconstructed recommendation
matrix B. The plot on the left of Figure[H shows that algorithms incorporating prior terms such as PR(0),
PR(3), PRD and MIXD(20) are stable since the maximum is never higher than 10. When using a mild

14

Dataset Density | SSVD(a.,) | PR(aw,) | PRD | RNMF(0.2) | MIXD(20) | MIXR(20)
FineFoods 0.04% 40 20 20 2 20 2
Movielens 10M | 0.21% 10 10 20 8 20 10
Movielens 1M 4.19% 10 15 15 6 10 8

Jester 53.34% | 10 10))))

Table 3: Optimal values of k for different datasets and different algorithms.

30F
25} \\/

20

700 |
600 |
500 |

400 £
300 |
T TTTTTTrrisrsszszzszszza::s 200 F
5¢ - 100 F

Lot n n n n i
100 20 40 60 80 100

20 40 60 80
Figure 5: For different algorithms and the optimal value of k£ we show the maximum value obtained in
matrix B. In plot (a) using a regularized method (solid blue) or methods with prior. In plot (b) the
comparison between NMF (solid pink) — which is a method with no explicit regularization or prior term
— and regularized methods such as RNMF with A = 0.1 and A = 0.2.

regularization parameter A = 0.2 we still have acceptable values of the maximum, even if it tends to be
around 25. In the plot on the right we see that if no regularization or prior are used, as in the NMF
method, the maximum increases to unacceptable levels. Using the regularized method RNMF with a
tiny value of A, such as A = 0.1, we get a very good control of the growth of the entries of B. For this
reason we can rule out, as observed in the literature [I9] the simple NMF algorithm used without a prior
or a regularization term.

In Figure [6] the direct comparison of the methods respect to the cumulative measure RankScore is
plotted for all four datasets. The plots of this figure are relative to the best value of k for that method.
These values are summarized in Table Bl and reported also in Tables @l Bl [l I We see that mixed
methods are in general superior respect to the corresponding method, except for the Jester dataset
where the PRD outperforms MIXD(20) and RNMF(0.2) is better than MIXR/(20). We note that mixed
techniques perform very well with a moderate value of k, and that in general RankScore increases with
the number of iterations. For mixed methods such as MIXD(20) and MIXR(20) we see a rapid growth
after the first 30-40 iterations, this is implicit in the nature of mixed methods. In fact, we first use a fast
but less accurate method and then we refine adaptively the provided solution with a more accurate one.
These initial steps help in achieving a better performance. In fact, if we compare MIXD(20) with PRD
(with coincides with MIXD(0)) or MIXR(20) with RNMF(0.2) (corresponding to MIXR(0)), we clearly
see a better performance of those mixed strategies.

As observed in Section [B.] the value of the best k is specific of a method but it is invariant for all
the measures considered, while the performance increases with the number of iterations. Tables (] 5]
and [show, for all the interesting algorithms and evaluation metrics, the values achieved for the best
value of k£ and the largest number of iterations it. As expect mixed methods perform very well, but
also RNMF(0.2) appears to be a valid choice. Another observation is that there is a big improvement in
performance for classification metrics by using more complex methods such as a dynamical prior scheme

15

MovieLens 1M MovieLens 10M

0851

0.84

0.83

0821

0.81

. . . L
20 40 60 80 100 7 20 40 60 80 100
Jester Fine Foods

0.780 -

0.775

0.770

. . . . Lt I
20 40 60 80 100 20 40 60 80 100

Figure 6: For the different dataset we show the trend of RankScore as the number of iterations increases.
Each algorithm is tested using its own best value of k, which is reported in Table B

Ak, it RMSE MAFE | Fy A MAP AUC NDCG F,@l0 NDCGQ10
RANDOM,-,- 2.181 1.765 | 0.483 0.487 | 0.685 0.527 0.827 0.667 0.663
PSVD,10,- 2.77 2.508 | 0.067 0.443 | 0.786 0.681 0.888 0.791 0.785
SSVD(a,),10,- 1.077 0.881 | 0.351 0.534 | 0.820 0.734 0.905 0.827 0.817
PR(0),10,10 2.825 2.567 | 0.059 0.440 | 0.781 0.674 0.886 0.785 0.780
PR(ay),15,100 1.072 0.876 | 0.365 0.540 | 0.821 0.735 0.905 0.829 0.818
PRD,15,100 0.926 0.715 | 0.762 0.731 | 0.832 0.753 0.909 0.839 0.827
RNMF(0.2),6,100 | 0.871 0.680 | 0.779 0.742 | 0.834 0.761 0.910 0.843 0.829
MIXD(20),10,100 | 0.861 0.677 | 0.775 | 0.743 | 0.843 0.743 0.916 0.850 0.839
MIXR(20),8,50 0.872 0.679 | 0.779 0.743 | 0.835 0.761 0.910 0.844 0.830

Table 4: Comparisons of the different algorithms on the MovieLens 1M dataset. In gray are highlighted
the best performances respect to the error measures. We see that MIXD(20) has the best performance for
every measure except for the F7 score where achieves the second best performance. Also the performance
of MIXR/(20) is always very good. The results obtained using a random matrix are shown for comparison.

(PRD) with respect to a static prior scheme such as PR(0) or PR(ay,). In Table [we do not report the
results for PSVD and PR(0) which have proved to be less accurate already with the smaller dataset.

The direct comparison of the results provided in this paper with those reported in other papers such
as [7, 34, B8] is not possible also for the same datasets. In fact, the testing methodology is in general
different and sometimes alternative error measures are employed. We hope that the use of testing
methodologies well established in Information Retrieval, such as