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Abstract

In this paper, we focus on mean-field anticipated backward stochastic differential equations

(MF-BSDEs, for short) driven by fractional Brownian motion with Hurst parameter H > 1/2.

First, the existence and uniqueness of this new type of BSDEs are established using two different

approaches. Then, a comparison theorem for such BSDEs is obtained. Finally, as an application

of this type of equations, a related stochastic optimal control problem is studied.
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1 Introduction

A centered Gaussian process BH = {BH
t , t ≥ 0} is called a fractional Brownian motion (fBm, for

short) with Hurst parameter H ∈ (0, 1) if its covariance is

E(BH
t B

H
s ) =

1

2
(t2H + s2H − |t− s|2H), t, s ≥ 0.

When H = 1/2, this process becomes a classical Brownian motion. For H > 1/2, BH exhibits the

property of long range dependence, which makes the fBm an important driving noise in many fields

such as finance, telecommunication networks, and physics.

In 1990, the nonlinear backward stochastic differential equations (BSDEs, for short) were in-

troduced by Pardoux and Peng [20]. In the next two decades, BSDEs have been widely used in

different fields of mathematical finance (see [12]), stochastic control (see [25]), and partial differen-

tial equations (see [21]). At the same time, for better applications, BSDE itself has been developed
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into many different branches. For example, Buckdahn et al. [4] and Buckdahn, Li and Peng [5]

introduced the so-called mean-field BSDEs, owing to the fact that mathematical mean-field ap-

proaches have important applications in many domains, such as Economics, Physics and Game

Theory (see Lasry and Lions [17], Buckdahn et al. [6] and the papers therein). Peng and Yang [22]

introduced a new type of BSDEs, called anticipated BSDEs, which can be regarded as a new duality

type of stochastic differential delay equations. Furthermore, BSDEs driven by fractional Brownian

motion, also known as fractional BSDEs, with Hurst parameter H > 1/2 were studied by Hu and

Peng [16]. Then Maticiuc and Nie [18] obtained some general results of fractional BSDEs through

a rigorous approach. Buckdahn and Jing [7] studied fractional mean-field stochastic differential

equations (SDEs, for short) with H > 1/2 and a stochastic control problem. Some other recent

developments of fractional BSDEs can be found in Bender [1], Borkowska [3], Maticiuc and Nie

[18], Wen and Shi [23, 24], etc., among theory and applications.

As another important development of BSDEs, mean-field anticipated BSDEs (MF-ABSDEs, for

short) driven by fBm have significant applications in stochastic optimal control problems with delay.

In [10], Agram, Douissi and Hilbert solved the optimal control problem of mean-field stochastic

delayed differential equations, where they considered the integral with respect to the fBm of the

adjoint BSDE in the Wick sense, (see [2]), they proved the set of necessary and sufficient maximum

principles and gave some applications. In our work, we investigate another approach to solve this

problem. Namely, we focus on MF-ABSDEs driven by fBm when the integral with respect to the

fBm is in the divergence sense, (see Decreusefond and Üstünel [11], and Nualart [19]). Specifically,

we study the following equation,

(1.1)





Yt = g(ηT ) +

∫ T

t
E
′[f(s, ηs, Y

′
s , Z

′
s, Ys, Zs, Y

′
s+δ(s), Z

′
s+ζ(s), Ys+δ(s), Zs+ζ(s))]ds

−
∫ T

t
ZsdB

H
s , t ∈ [0, T ];

Yt = g(ηt), Zt = h(ηt), t ∈ [T, T +K],

where δ(·) and ζ(·) are two deterministic R
+-valued continuous functions defined on [0, T ]. First,

we use two different approaches to prove the existence and uniqueness of solutions of MF-ABSDE

(1.1). Interestingly, the conditions required by the first approach are weaker then the second one,

however, the second approach is more convenient than the first one. Second, as a fundamental

tool, the comparison theorem plays an important role in the theory and applications of BSDEs.

We establish a comparison theorem for this type of MF-ABSDEs. Finally, as an application of

such BSDEs, a stochastic optimal control problem is studied and the related sufficient maximum

principle is obtained.

We organize this article as follows. Some preliminaries about fBm and other required definitions

are presented in Section 2. The existence and uniqueness of fractional MF-ABSDEs are proved by

two different approaches in Section 3. We derive a comparison theorem for such type of equations

in Section 4 and investigate a stochastic optimal control problem in Section 5.
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2 Preliminaries

We recall, in this section, some basic results of fractional Brownian motion and the differentiability

of functions of measures.

2.1 Fractional Brownian motion

In this subsection, some preliminaries about fractional Brownian motion are presented. For a

deeper discussion, the readers may refer to the articles such as Decreusefond and Üstünel [11], Hu

[14] and Nualart [19], etc.

Assume BH = {BH
t , t ≥ 0} is a fBm defined on a complete probability space (Ω,F ,P), and

the filtration F is generated by BH . Let H > 1/2 throughout this paper. Moreover, we denote

φ(x) = H(2H − 1)|x|2H−2, where x ∈ R, and suppose ξ and ψ are two continuous functions defined

in [0, T ]. Define

(2.1) 〈ξ, ψ〉T =

∫ T

0

∫ T

0
φ(u− v)ξuψvdudv, and ‖ξ‖2T = 〈ξ, ξ〉T .

Then 〈ξ, ψ〉T is a Hilbert scalar product. Under this scalar product, we denote by H the completion

of the continuous functions. Besides, denote by PT the set of all polynomials of fBm in [0, T ], i.e.,

every element of PT is of the form

Φ(ω) = h

(∫ T

0
ξ1(t)dB

H
t , ...,

∫ T

0
ξn(t)dB

H
t

)
,

where h is a polynomial function and ξi ∈ H, i = 1, 2, ..., n. In addition, Malliavin derivative

operator DH
s of Φ ∈ PT is defined by

DH
s Φ =

n∑

i=1

∂h

∂xi

(∫ T

0
ξ1(t)dB

H
t , ...,

∫ T

0
ξn(t)dB

H
t

)
ξi(s), s ∈ [0, T ].

Since the derivative operator DH : L2(Ω,F , P ) → (Ω,F ,H) is closable, one can denote by D
1,2 the

completion of PT under the following norm

‖Φ‖21,2 , E|Φ|2 + E‖DH
s Φ‖2T .

Furthermore, we introduce the following derivative

D
H
t Φ =

∫ T

0
φ(t− s)DH

s Φds, t ∈ [0, T ].

Now, let us consider the adjoint operator of Malliavin derivative operator DH . We call this operator

the divergence operator, which represents the divergence type integral and is denoted by δ(·).

Definition 2.1. A process u ∈ L2(Ω × [0, T ];H) is said to belongs to the domain Dom(δ), if

there exists δ(u) ∈ L2(Ω,F ,P) satisfying the following duality relationship

E(Φδ(u)) = E(〈DH
· Φ, u〉T ), for every Φ ∈ PT .

Moreover, if u ∈ Dom(δ), the divergence type integral of u w.r.t. BH is defined by putting∫ T
0 usdB

H
s =: δ(u).
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It should be pointed out that, in this paper, unless otherwise specified, the dBH -integral repre-

sents the divergence type integral.

Proposition 2.2 (Hu [14], Proposition 6.25). Let L
1,2
H be the space of all processes F : Ω ×

[0, T ] → H satisfying E

(
‖F‖2T +

∫ T
0

∫ T
0 |DH

s Ft|2dsdt
)
< ∞. Then, if F ∈ L

1,2
H , the divergence type

integral
∫ T
0 FsdB

H
s exists in L2(Ω,F ,P), and

E

(∫ T

0
FsdB

H
s

)
= 0; E

(∫ T

0
FsdB

H
s

)2

= E

(
‖F‖2T +

∫ T

0

∫ T

0
D
H
s FtD

H
t Fsdsdt

)
.

Proposition 2.3 (Hu [14], Theorem 10.3). Suppose g and f are two deterministic continuous

functions. Let

Xt = X0 +

∫ t

0
gsds+

∫ t

0
fsdB

H
s , t ∈ [0, T ],

where X0 is a constant. Then, if F ∈ C1,2([0, T ] × R), one has

F (t,Xt) = F (0,X0) +

∫ t

0

∂F

∂s
(s,Xs)ds+

∫ t

0

∂F

∂x
(s,Xs)gsds

+

∫ t

0

∂F

∂x
(s,Xs)fsdB

H
s +

1

2

∫ t

0

∂2F

∂x2
(s,Xs)

[
d

ds
‖f‖2s

]
ds, t ∈ [0, T ].

Proposition 2.4 (Hu [14], Theorem 11.1). For i = 1, 2, let gi and fi be two real valued

processes satisfying E
∫ T
0 (|gi(s)|2+|fi(s)|2)ds <∞. Moreover, assume that DH

t fi(s) is continuously

differentiable in its arguments (s, t) ∈ [0, T ]2 for almost every ω ∈ Ω, and E
∫ T
0

∫ T
0 |DH

t fi(s)|2dsdt <
∞. Denote

Xi(t) =

∫ t

0
gi(s)ds+

∫ t

0
fi(s)dB

H
s , t ∈ [0, T ].

Then

X1(t)X2(t) =

∫ t

0
X1(s)g2(s)ds +

∫ t

0
X1(s)f2(s)dB

H
s +

∫ t

0
X2(s)g1(s)ds

+

∫ t

0
X2(s)f1(s)dB

H
s +

∫ t

0
D
H
s X1(s)f2(s)ds +

∫ t

0
D
H
s X2(s)f1(s)ds.

Proposition 2.5 (Wen and Shi [23], Lemma 3.1). Suppose g is a given differentiable function

with polynomial growth and f is a C0,1
pol-continuous function. Then BSDE

Yt = g(ηT ) +

∫ T

t
f(s, ηs)ds−

∫ T

t
ZsdB

H
s

admits a unique solution (Y·, Z·) ∈ Ṽ[0,T ] × ṼH
[0,T ] (see (3.3) for the definition of these spaces).

Moreover, the following estimate holds,

E

(
eβt|Yt|2 +

β

2

∫ T

t
eβs|Ys|2ds+

2

M

∫ T

t
s2H−1eβs|Zs|2ds

)

≤E

(
eβT |g(ηT )|2 +

2

β

∫ T

t
eβs|f(s, ηs)|2ds

)
.

(2.2)

where M > 0 is a suitable constant and β > 0.
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2.2 Differentiability of Functions of Measures

We recall now some definitions related to the differentiability with respect to functions of measures

that we will need in Section 5. Let P(R) be the space of all probability measures on (R,B(R)).
We denote by Pp(R) the subspace of P(R) of order p, which means that Pp(R) , {m ∈ P(R) :∫
R
|x|pm(dx) < +∞}. The notion of differentiability for functions of measures that we will use in

the paper is inspired from the notes of Cardaliaguet [9] and the work of Carmona and Delarue [8].

It’s based on the lifting of functions m ∈ P2(R) 7→ σ(m) into functions ξ′ ∈ L2(Ω;R) 7→ σ′(ξ′), over

some probability space (Ω,F ,P), by setting σ′(ξ′) , σ(Pξ′).

Definition 2.6. A function σ is said to be differentiable at m0 ∈ P2(R), if there exists a

random variable ξ′0 ∈ L2(Ω,F ,P) over some probability space (Ω,F ,P) with Pξ′
0
= m0 such that

σ′ : L2(Ω,F ,P) → R is Fréchet differentiable at ξ′0.

We suppose for simplicity that σ′ : L2(Ω,F ,P) → R is Fréchet differentiable. We denote

its Fréchet derivative at ξ′0 by Dσ′(ξ′0). Recall that Dσ′(ξ′0) : L2(Ω,F ,P) → R is a continuous

linear mapping; i.e. Dσ′(ξ′0) ∈ L(L2(Ω,F ,P),R). With the identification that L(L2(Ω,F ,P),R) ≡
L2(Ω,F ,P) given by Riesz representation theorem, Dσ′(ξ′0) is viewed as an element of L2(Ω,F ,P),
hence we can write

σ(m)−σ(m0) = σ′(ξ′)−σ′(ξ′0) = E[(Dσ′)(ξ′0) · (ξ′− ξ′0)]+o(E[|ξ′− ξ′0|2]1/2), as E[|ξ′− ξ′0|2]1/2 → 0.

where ξ′ is a random variable with law m. Moreover, according to Cardaliaguet [9], there exists

a Borel function hm0
: R → R, such that Dσ′(ξ′0) = hm0

(ξ′0), P-a.s. We define the derivative of

σ with respect to the measure at m0 by putting ∂mσ(m0)(x) := hm0
(x). Notice that ∂mσ(m0)(x)

is defined m0(dx)-a.e. uniquely. Therefore, the following differentiation formula is invariant by

modification of the space Ω where the random variables ξ′0 and ξ′ are defined, i.e.

σ(m)− σ(m0) = E[∂mσ(m0)(ξ
′
0) · (ξ′ − ξ′0)] + o(E[|ξ′ − ξ′0|2]1/2), as E[|ξ′ − ξ′0|2]1/2 → 0.

whenever ξ′ and ξ′0 are random variables with laws m and m0 respectively.

Joint concavity: We will need the joint concavity of a function on (R × P2(R)). A differen-

tiable function b defined on (R×P2(R)) is concave, if for every (x′,m′) and (x,m) ∈ (R×P2(R)),

we have

b(x′,m′)− b(x,m)− ∂xb(x,m)(x′ − x)− E[∂mb(x,m)(X)(X ′ −X)] ≤ 0,

whenever X,X ′ ∈ L2(Ω,F ,P;R) with laws m and m′ respectively.

3 Well-posedness

The existence and uniqueness of mean-field anticipated BSDEs driven by fBm are proved here by

using two different approaches. For simplify the presentation, we only discuss the one dimensional

case in this paper. Let

ηt = η0 +

∫ t

0
bsds+

∫ t

0
σsdB

H
s ,

5



where η0 is a constant, and b and σ are two deterministic differentiable functions such that σt 6= 0

(then either σt < 0 or σt > 0), t ∈ [0, T ]. We recall that (see (2.1))

‖σ‖2t = H(2H − 1)

∫ t

0

∫ t

0
|u− v|2H−2σuσvdudv.

So d
dt(‖σ‖2t ) = 2σ̂tσt > 0 for t ∈ (0, T ], where σ̂t =

∫ t
0 φ(t− v)σvdv.

Now, we denote the (non-completed) product space of (Ω,F ,P) by (Ω̄, F̄ , P̄) = (Ω×Ω,F⊗F ,P⊗
P), and denote the filtration of this product space by F̄ = {F̄t = F ⊗ Ft, 0 ≤ t ≤ T}. A random

variable, originally defined on Ω, ξ ∈ L0(Ω,F ,P;R) is canonically extended to Ω̄: ξ′(ω′, ω) =

ξ(ω′), (ω′, ω) ∈ Ω̄ = Ω × Ω. On the other hand, for every θ ∈ L1(Ω̄, F̄ , P̄), the random variable

θ(·, ω) : Ω → R is in L1(Ω,F ,P), P(dω), a.s., and its expectation is denoted by

E
′[θ(·, ω)] =

∫

Ω
θ(ω′, ω)P(dω′).

Then we have E
′[θ] = E

′[θ(·, ω)] ∈ L1(Ω,F ,P). In addition,

Ē[θ]

(
=

∫

Ω̄
θdP̄ =

∫

Ω
E
′[θ(·, ω)]P(dω)

)
= E

[
E
′[θ]

]
.

In the following, we investigate the existence and uniqueness of BSDE (1.1). And for simplicity

of presentation, we rewrite BSDE (1.1) into a differential form,

(3.1)




−dYt = E

′[f(t, ηt, Y
′
t , Z

′
t, Yt, Zt, Y

′
t+δ(t), Z

′
t+ζ(t), Yt+δ(t), Zt+ζ(t))]dt− ZtdB

H
t , t ∈ [0, T ];

Yt = g(ηt), Zt = h(ηt), t ∈ [T, T +K],

where K ≥ 0 is a constant, δ(·) and ζ(·) are two deterministic R
+-valued continuous functions

defined on [0, T ] satisfying the following two issues:

(i) For all t ∈ [0, T ],

t+ δ(t) ≤ T +K, t+ ζ(t) ≤ T +K.

(ii) There exists a constant L ≥ 0 such that for all nonnegative and integrable m(·),
∫ T

t
m(s+ δ(s))ds ≤ L

∫ T+K

t
m(s)ds,

∫ T

t
m(s+ ζ(s))ds ≤ L

∫ T+K

t
m(s)ds, t ∈ [0, T ].

Remark 3.1. Owing to our notation, we mark that the coefficient of Eq. (3.1) is explained by:

E
′[f(t, ηt, Y

′
t , Z

′
t, Yt, Zt, Y

′
t+δ(t), Z

′
t+ζ(t), Yt+δ(t), Zt+ζ(t))](ω)

=E
′[f(t, ηt(ω), Y

′
t , Z

′
t, Yt(ω), Zt(ω), Y

′
t+δ(t), Z

′
t+ζ(t), Yt+δ(t)(ω), Zt+ζ(t)(ω))]

=

∫

Ω
f(t, ηt(ω), Yt(ω

′), Zt(ω
′), Yt(ω), Zt(ω), Yt+δ(t)(ω

′), Zt+ζ(t)(ω
′), Yt+δ(t)(ω), Zt+ζ(t)(ω))P(dω

′).

From the above remark, combining the definition of expectation, we have the following two

special cases:

(3.2)
E
′[f(t, Y ′

t , Z
′
t, Y

′
t+δ(t), Z

′
t+ζ(t))] = E[f(t, Yt, Zt, Yt+δ(t), Zt+ζ(t))],

E
′[f(t, ηt, Yt, Zt, Yt+δ(t), Zt+ζ(t))] = f(t, ηt, Yt, Zt, Yt+δ(t), Zt+ζ(t)).

Before giving the definition of solutions of BSDE (3.1), we introduce the following sets,

6



• L2(Fr;R) =
{
ξ : Ω → R

∣∣ξ is Fr-measurable, E[|ξ|2] <∞
}
;

• C1,3
pol([0, T ] ×R) =

{
ϕ ∈ C1,3([0, T ]× R), and all derivatives of ϕ are of polynomial growth

}
;

• V[0,T ] =
{
Y = ϕ

(
·, η(·)

)∣∣ϕ ∈ C1,3
pol([0, T ]× R) with ∂ϕ

∂t ∈ C0,1
pol([0, T ]× R), t ∈ [0, T ]

}
.

Moreover, by Ṽ[0,T+K] and ṼH
[0,T+K] we denote the completion of V[0,T+K] under the following norms

respectively,

(3.3) ‖Y ‖ ,

(
E

∫ T+K

0
eβt|Y (t)|2dt

) 1

2

, ‖Z‖ ,

(
E

∫ T+K

0
t2H−1eβt|Z(t)|2dt

) 1

2

,

where β ≥ 0 is a constant. It is easy to see that ṼH
[0,T+K] ⊆ Ṽ[0,T+K] ⊆ L2

F (0, T +K;R).

Definition 3.2. We call (Y,Z) a solution of BSDE (3.1), if they belong to Ṽ[0,T+K]× ṼH
[0,T+K]

and satisfy the equation (3.1).

The setting of our problem is as follows: to find a pair of processes (Y·, Z·) ∈ Ṽ[0,T+K]×ṼH
[0,T+K]

satisfying the BSDE (3.1). In the following, we will use two different approaches to prove the

existence and uniqueness of the equation (3.1).

3.1 The first approach

In this subsection, the first approach, introduced by Maticiuc and Nie [18], is used to establish the

existence and uniqueness of Eq. (3.1). In order to find the solution of BSDE (3.1), the following

assumptions are needed.

(H1) g and h are given elements in C2
pol(R) such that

E

∫ T+K

T
eβt|g(ηt)|2dt < +∞, E

∫ T+K

T
eβtt2H−1|h(ηt)|2dt < +∞.

(H2) Assume that f = f(t, x, y′, z′, y, z, θ′, ζ ′, θ, ζ) : [0, T ]×R
5×L2(Fr′ ,R)×L2(Fr,R)×L2(Fr′ ,R)×

L2(Fr,R) −→ L2(Ft,R) is a C0,1
pol -continuous function, where r′, r ∈ [t, T + K]. Moreover,

there is a constant C ≥ 0 such that, for every t ∈ [0, T ], x, y, ȳ, z, z̄, y′, ȳ′, z′, z̄′ ∈ R, θ·, θ̄·, θ
′
·, θ̄

′
·,

ζ·, ζ̄·, ζ
′
· , ζ̄

′
· ∈ L2

F (t, T +K;R), we have

|f(t, x, y′, z′, y, z, θ′r′ , ζ ′r, θr′ , ζr)− f(t, x, ȳ′, z̄′, ȳ, z̄, θ̄′r′ , ζ̄
′
r, θ̄r′ , ζ̄r)|

≤ C

(
|y′ − ȳ′|+ |z′ − z̄′|+ |y − ȳ|+ |z − z̄|

+E
′

[
|θ′r′ − θ̄′r′ |+ |ζ ′r − ζ̄ ′r|

∣∣∣∣Ft

]
+ E

[
|θr′ − θ̄r′ |+ |ζr − ζ̄r|

∣∣∣∣Ft

])
.

For notational simplicity, we denote f0(t, x) = f0(t, x, 0, 0, 0, 0, 0, 0, 0, 0).
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Theorem 3.3. Under the assumptions (H1) and (H2), BSDE (3.1) admits a unique solution

(Y·, Z·) ∈ Ṽ[0,T+K] × ṼH
[0,T+K]. Moreover, for all t ∈ [0, T ],

(3.4) E

(
eβt|Yt|2 +

∫ T

t
eβss2H−1|Zs|2ds

)
≤ RΘ(t, T,K),

where R is a positive constant which may be different from line to line, and

Θ(t, T,K) = E

(
eβT |g(ηT )|2 +

∫ T

t
eβs|f0(s, ηs)|2ds+

∫ T+K

T
eβs

(
|g(ηs)|2 + s2H−1|h(ηs)|2

)
ds

)
.

Proof. For any given (yt, zt) ∈ Ṽ[0,T+K] × ṼH
[0,T+K], we consider the following simple BSDE:

(3.5)




−dYt = E

′[f(t, ηt, y
′
t, z

′
t, yt, zt, y

′
t+δ(t), z

′
t+ζ(t), yt+δ(t), zt+ζ(t))]dt− ZtdB

H
t , t ∈ [0, T ];

Yt = g(ηt), Zt = h(ηt), t ∈ [T, T +K].

From Proposition 2.5, note that Yt = g(ηt) and Zt = h(ηt) are given when t ∈ [T, T +K], we obtain

that BSDE (3.5) has a unique solution (Y·, Z·) ∈ Ṽ[0,T+K] × ṼH
[0,T+K].

Define a mapping I : Ṽ[0,T+K] × ṼH
[0,T+K] −→ Ṽ[0,T+K] × ṼH

[0,T+K] such that I[(y·, z·)] = (Y·, Z·).

Due to the values of Yt and Zt are given when t ∈ [T, T + K], we essentially only need to prove

(3.1) has a unique solution on [0, T ]. Let n ∈ N and ti =
i−1
n T, i = 1, ..., n + 1. First we solve (3.1)

on [tn, T ]. In order to do this, we show I is a contraction on Ṽ[tn,T+K] × ṼH
[tn,T+K].

For two arbitrary elements (y·, z·) and (ȳ·, z̄·) ∈ Ṽ[tn,T+K] × ṼH
[tn,T+K], set (Y·, Z·) = I[(y·, z·)]

and (Ȳ·, Z̄·) = I[(ȳ·, z̄·)]. We denote their differences by

(ŷ·, ẑ·) = (y· − ȳ·, z· − z̄·), (Ŷ·, Ẑ·) = (Y· − Ȳ·, Z· − Z̄·).

By applying Itô formula (Proposition 2.4), for t ∈ [tn, T ], one has

(3.6)

eβtŶ 2
t + β

∫ T

t
eβsŶ 2

s ds+ 2

∫ T

t
eβsDH

s ŶsẐsds+ 2

∫ T

t
eβsŶsẐsdB

H
s

= 2

∫ T

t
eβsŶsE

′
[
f(s, ηs, y

′
s, z

′
s, ys, zs, y

′
s+δ(s), z

′
s+ζ(s), ys+δ(s), zs+ζ(s))

−f(s, ηs, y′s, z′s, ys, zs, ȳ′s+δ(s), z̄
′
s+ζ(s), ȳs+δ(s), z̄s+ζ(s))

]
ds.

We know (see Hu and Peng [16], Maticiuc and Nie [18]) that DH
s Ŷs =

σ̂s

σs
Ẑs. Moreover, by Remark

6 in Maticiuc and Nie [18], there is a constant M > 0 such that

t2H−1

M
≤ σ̂t
σt

≤Mt2H−1, ∀t ∈ [0, T ].

Without loss of generality, we can choose M > 2 in the following discussion. Then from (3.6) and

Proposition 2.2, we have

(3.7)

E

(
eβtŶ 2

t + β

∫ T

t
eβsŶ 2

s ds+
2

M

∫ T

t
eβss2H−1Ẑ2

sds

)

≤ 2

∫ T

t
eβsŶsE

′
[
f(s, ηs, y

′
s, z

′
s, ys, zs, y

′
s+δ(s), z

′
s+ζ(s), ys+δ(s), zs+ζ(s))

−f(s, ηs, y′s, z′s, ys, zs, ȳ′s+δ(s), z̄
′
s+ζ(s), ȳs+δ(s), z̄s+ζ(s))

]
ds.
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From assumption (H2) and (3.2) we obtain

(3.8)

E

(
eβtŶ 2

t + β

∫ T

t
eβsŶ 2

s ds +
2

M

∫ T

t
eβss2H−1Ẑ2

sds

)

≤ 2CE

∫ T

t
eβs|Ŷs|E′

(
|ŷ′s|+ |ẑ′s|+ E

′

[
|ŷ′s+δ(s)|+ |ẑ′s+δ(s)|

∣∣∣∣Fs

])
ds

+2CE

∫ T

t
eβs|Ŷs|E′

(
|ŷs|+ |ẑs|+ E

[
|ŷs+δ(s)|+ |ẑs+δ(s)|

∣∣∣∣Fs

])
ds

= 4C

∫ T

t
eβsE

(
|Ŷs|

(
|ŷs|+ |ẑs|

))
ds+ 4C

∫ T

t
eβsE

(
|Ŷs|

(
|ŷs+δ(s)|+ |ẑs+δ(s)|

))
ds.

Therefore by choosing β ≥ 1, and using Hölder’s inequality and Jensen’s inequality we get

(3.9)

E

(
eβtŶ 2

t +

∫ T

t
eβsŶ 2

s ds+
2

M

∫ T

t
eβss2H−1Ẑ2

sds

)

≤ 4C

∫ T

t

(
eβsE|Ŷs|2

) 1

2

([
eβsE(|ŷs|+ |ẑs|)2

] 1

2 +
[
eβsE(|ŷs+δ(s)|+ |ẑs+ζ(s)|)2

] 1

2

)
ds.

Denote x(t) =
(
eβtE|Ŷt|2

) 1

2 . From (3.9) we have

x(t)2 ≤ 4C

∫ T

t
x(s)

([
eβsE(|ŷs|+ |ẑs|)2

] 1

2 +
[
eβsE(|ŷs+δ(s)|+ |ẑs+ζ(s)|)2

] 1

2

)
ds.

Applying Lemma 20 in Maticiuc and Nie [18] to the above inequality one has

x(t) ≤ 2C

∫ T

t

([
eβsE(|ŷs|+ |ẑs|)2

] 1

2 +
[
eβsE(|ŷs+δ(s)|+ |ẑs+ζ(s)|)2

] 1

2

)
ds

≤ 2
√
2C

∫ T

t

(
eβsE

(
|ŷs|2 + |ẑs|2

))1

2

ds+ 2
√
2C

∫ T

t

(
eβsE

(
|ŷs+δ(s)|2 + |ẑs+ζ(s)|2

)) 1

2

ds.

Therefore for t ∈ [tn, T ],

x(t)2 ≤ 16C2

(∫ T

t

[
eβsE(|ŷs|2 + |ẑs|2)

] 1

2 ds

)2

+ 16C2

(∫ T

t

[
eβsE(|ŷs+δ(s)|2 + |ẑs+ζ(s)|2)

] 1

2ds

)2

.

Now we compute

(3.10)

∫ T

tn

x(s)2ds ≤ 16C2(T − tn)

(∫ T

tn

[
eβsE(|ŷs|2 + |ẑs|2)

] 1

2ds

)2

+16C2(T − tn)

(∫ T

tn

[
eβsE(|ŷs+δ(s)|2 + |ẑs+ζ(s)|2)

] 1

2 ds

)2

=: A1 +A2.
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For the term A2 of (3.10) we deduce

(3.11)(∫ T

tn

[
eβsE(|ŷs+δ(s)|2 + |ẑs+ζ(s)|2)

] 1

2ds

)2

≤
(∫ T

tn

[
eβsE|ŷs+δ(s)|2

] 1

2ds+

∫ T

tn

[
eβsE|ẑs+ζ(s)|2

] 1

2ds

)2

≤ 2

(∫ T

tn

[
eβsE|ŷs+δ(s)|2

] 1

2 ds

)2

+ 2

(∫ T

tn

[ 1

s2H−1
· eβss2H−1

E|ẑs+ζ(s)|2
] 1

2 ds

)2

≤ 2(T − tn)

∫ T

tn

eβsE|ŷs+δ(s)|2ds+
2(T 2−2H − t2−2H

n )

2− 2H

∫ T

tn

eβss2H−1
E|ẑs+ζ(s)|2ds

≤
(
2(T − tn) +

T 2−2H − t2−2H
n

1−H

)
E

∫ T

tn

[
eβ(s+δ(s))|ŷs+δ(s)|2 + eβ(s+ζ(s))(s+ ζ(s))2H−1|ẑs+ζ(s)|2

]
ds

≤
(
2(T − tn) +

T 2−2H − t2−2H
n

1−H

)
L · E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

In the last inequality, we used the condition (ii) satisfied by δ(·) and ζ(·). Similarly, for A1 of (3.10),

(3.12)

(∫ T

tn

[
eβsE(|ŷs|2 + |ẑs|2)

] 1

2ds

)2

≤
[
2(T − tn) +

T 2−2H − t2−2H
n

1−H

]
E

∫ T

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds

≤
[
2(T − tn) +

T 2−2H − t2−2H
n

1−H

]
E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Combining (3.10-3.12), it follows that

(3.13)

∫ T

tn

x(s)2ds ≤ (T − tn)G · E
∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds,

where G = 16C2(L+ 1)
[
2(T − tn) +

T 2−2H−t2−2H
n

1−H

]
. And similarly one has

(3.14)

∫ T

tn

1

s2H−1
x(s)2ds ≤ G

T 2−2H − t2−2H
n

2− 2H
E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Now from (3.8),

E

(∫ T

tn

eβs|Ŷs|2ds+
2

M

∫ T

tn

eβss2H−1|Ẑs|2ds
)

≤ 4CE

∫ T

tn

eβs
(
1

v
(1 +

1

s2H−1
)|Ŷs|2 + v|ŷs|2 + vs2H−1|ẑs|2

)
ds

+4CE

∫ T

tn

eβs
(
1

v

(
1 +

1

s2H−1

)
|Ŷs|2 + v|ŷs+δ(s)|2 + vs2H−1|ẑs+ζ(s)|2

)
ds

≤ 8C

v
E

∫ T

tn

eβs(1 +
1

s2H−1
)|Ŷs|2ds+ 4CvE

∫ T

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds

+4CvE

∫ T

tn

eβs
(
|ŷs+δ(s)|2 + s2H−1|ẑs+ζ(s)|2

)
ds

≤ 8C

v
E

∫ T

tn

eβs(1 +
1

s2H−1
)|Ŷs|2ds+ 4Cv(1 + L)E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds,
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where v > 0. Using the inequalities (3.13) and (3.14), and note that M > 2, we obtain

E

(∫ T

tn

eβs|Ŷs|2ds+
∫ T

tn

eβss2H−1|Ẑs|2ds
)

≤ G̃E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds,

or

E

∫ T+K

tn

eβs
(
|Ŷs|2 + s2H−1|Ẑs|2

)
ds ≤ G̃E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds,

where

G̃ =
4CGM

v
(T − tn) +

4CGM

v(1 −H)
(T 2−2H − t2−2H

n ) + 2CM(1 + L)v.

Choosing v such that 2CM(1 + L)v < 1
4 , and taking n large enough such that

4CGM

v
(T − tn) <

1

4
,

4CGM

v(1−H)
(T 2−2H − t2−2H

n ) <
1

4
,

then

E

∫ T+K

tn

eβs
(
|Ŷs|2 + s2H−1eβs|Ẑs|2

)
ds ≤ 3

4
E

∫ T+K

tn

eβs
(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Hence I is a contraction on Ṽ[tn,T+K] × ṼH
[tn,T+K], which implies that BSDE (3.1) has a unique

solution on [tn, T ]. The next step is to solve (3.1) on [tn−1, tn]. In order to do this, one can show

I is a contraction on Ṽ[tn−1,tn+K] × ṼH
[tn−1,tn+K]. With the same arguments, repeating the above

technique we obtain that BSDE (3.1) admits a unique solution on Ṽ[0,T+K] × ṼH
[0,T+K].

Now we prove the estimate (3.4). Suppose (Y,Z) is the solution of BSDE (3.1). From (H2),

similarly to (3.7) we obtain

E

(
eβtY 2

t + β

∫ T

t
eβsY 2

s ds+
2

M

∫ T

t
eβss2H−1Z2

sds

)

≤ E

(
eβT |g(ηT )|2 + 2

∫ T

t
eβsYsE

′[f(s, ηs, Y
′
s , Z

′
s, Ys, Zs, Y

′
s+δ(s), Z

′
s+ζ(s), Ys+δ(s), Zs+ζ(s))]ds

)
.

By Lipschitz continuity of f , similar as the above discussion, we have

2E

∫ T

t
eβsYsE

′[f(s, ηs, Y
′
s , Z

′
s, Ys, Zs, Y

′
s+δ(s), Z

′
s+ζ(s), Ys+δ(s), Zs+ζ(s))]ds

≤ 4E

∫ T

t
eβs|Ys|

(
C
(
|Ys|+ |Zs|+ |Ys+δ(s)|+ |Zs+ζ(s)|

)
+ |f0(s, ηs)|

)
ds

≤ E

∫ T

t
4

(
2C + C2 +

2C2M

s2H−1
+

2C2ML

s2H−1
+ 1

)
eβs|Ys|2ds+

1

2M
E

∫ T

t
eβss2H−1|Zs|2ds

+E

∫ T

t
eβs|Ys+δ(s)|2ds+

1

2ML
E

∫ T

t
eβss2H−1|Zs+ζ(s)|2ds+ 4E

∫ T

t
eβs|f0(s, ηs)|2ds

≤ E

∫ T

t
4

(
2C + C2 +

2C2M

s2H−1
+

2C2ML

s2H−1
+ 1 + L

)
eβs|Ys|2ds+

1

M
E

∫ T

t
eβss2H−1|Zs|2ds

+LE

∫ T+K

T
eβs|g(ηs)|2ds+

1

2M
E

∫ T+K

T
eβss2H−1|h(ηs)|2dt+ 4E

∫ T

t
eβs|f0(s, ηs)|2ds.
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Thus, we have

(3.15)

E

(
eβt|Yt|2 +

1

M

∫ T

t
eβss2H−1|Zs|2ds

)

≤ RΘ(t, T,K) + E

∫ T

t
4

(
2C + C2 + L+ 1 +

2C2M(L+ 1)

s2H−1

)
eβs|Ys|2ds.

By Gronwall’s inequality,

eβtE|Yt|2 ≤ RΘ(t, T,K) exp

{
4(2C + C2 + L+ 1)(T − t) + 8C2M(L+ 1)

T 2−2H − t2−2H

2− 2H

}
.

Finally, from (3.15), combining the above estimate one has

E

∫ T

t
eβss2H−1|Zs|2ds ≤ RΘ(t, T,K).

Hence the estimate (3.4) is obtained. This completes the proof.

Remark 3.4. In the proof of Theorem 3.3, we first divide the interval [0, T + K], and then

we prove BSDE (3.1) has unique solution in each subinterval of [0, T +K]. Next, we use another

approach to directly prove that BSDE (3.1) admits unique solution in [0, T +K].

3.2 The second approach

In this section we present the second approach to prove the existence and uniqueness of solutions

of equation (3.1). It should be pointed out that this approach is more convenient than the above

one. However, the price of doing this is that we should strengthen the condition of the coefficient

f with respect to z.

(H3) Assume that f = f(t, x, y′, z′, y, z, θ′, ζ ′, θ, ζ) : [0, T ]×R
5×L2(Fr′ ,R)×L2(Fr,R)×L2(Fr′ ,R)×

L2(Fr,R) −→ L2(Ft,R) is a C0,1
pol -continuous function, where r′, r ∈ [t, T + K]. Moreover,

there is a constant C ≥ 0 such that, for every t ∈ [0, T ], x, y, ȳ, z, z̄, y′, ȳ′, z′, z̄′ ∈ R, θ·, θ̄·, θ
′
·, θ̄

′
·,

ζ·, ζ̄·, ζ
′
· , ζ̄

′
· ∈ L2

F (t, T +K;R), we have

|f(t, x, y′, z′, y, z, θ′r′ , ζ ′r, θr′ , ζr)− f(t, x, ȳ′, z̄′, ȳ, z̄, θ̄′r′ , , ζ̄
′
r, θ̄r′ , ζ̄r)|

≤ C

(
|y′ − ȳ′|+ tH− 1

2 |z′ − z̄′|+ |y − ȳ|+ tH− 1

2 |z − z̄|

+E
′

[
|θ′r′ − θ̄′r′ |+ rH− 1

2 |ζ ′r − ζ̄ ′r|
∣∣∣∣Ft

]
+ E

[
|θr′ − θ̄r′ |+ rH− 1

2 |ζr − ζ̄r|
∣∣∣∣Ft

])
.

Remark 3.5. Suppose θ′ is a square integrable, jointly measurable stochastic process. Then we

can define for all t ∈ [0, T ], x, y, z ∈ R, θ′ ∈ L2(Fr′ ,R),

f θ
′

(t, x, y, z) , E
′[f(t, x, y, z, θ′t+δ(t))] =

∫

Ω
f(t, x, y, z, θ′t+δ(t)(ω

′))P(dω′).

Indeed, due to the assumption on the coefficient f being C0,1
pol -continuous, we know that f θ

′

is also

C0,1
pol -continuous. In addition, with the same constant C of assumption (H3), for every t ∈ [0, T ],

x, y, ȳ, z, z̄ ∈ R, we have

|f θ′(t, x, y, z) − f θ
′

(t, x, ȳ, z̄)| ≤ C
(
|y1 − y2|+ tH− 1

2 |z1 − z2|
)
.
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This remark is useful in the proof of the comparison theorem (see Section 4). Now, we show

the existence and uniqueness theorem.

Theorem 3.6. Under the assumptions (H1) and (H3), BSDE (3.1) admits a unique solution

in Ṽ[0,T+K] × ṼH
[0,T+K].

Proof. Firstly, similar to the previous approach, for any given (yt, zt) ∈ Ṽ[0,T+K] × ṼH
[0,T+K], we

consider the following BSDE:

{
−dYt = E

′[f(t, ηt, y
′
t, z

′
t, yt, zt, y

′
t+δ(t), z

′
t+ζ(t), yt+δ(t), zt+ζ(t))]dt− ZtdB

H
t , t ∈ [0, T ];

Yt = g(ηt), Zt = h(ηt), t ∈ [T, T +K].

Define a mapping I : Ṽ[0,T+K] × ṼH
[0,T+K] −→ Ṽ[0,T+K] × ṼH

[0,T+K] such that I[(y·, z·)] = (Y·, Z·).

Now we show that I is a contraction mapping. For two arbitrary elements (y·, z·) and (ȳ·, z̄·) ∈
Ṽ[0,T+K] × ṼH

[0,T+K], set (Y·, Z·) = I[(y·, z·)] and (Ȳ·, Z̄·) = I[(ȳ·, z̄·)]. We denote their differences by

(ŷ·, ẑ·) = (y· − ȳ·, z· − z̄·), (Ŷ·, Ẑ·) = (Y· − Ȳ·, Z· − Z̄·).

By the estimate (2.2) we have

E

∫ T

0
eβs

(β
2
|Ŷs|2 +

2

M
s2H−1|Ẑs|2

)
ds

≤ 2

β
E

∫ T

0
eβs

∣∣∣E′
[
f(s, ηs, y

′
s, z

′
s, ys, zs, y

′
s+δ(s), z

′
s+δ(s), ys+δ(s), zs+δ(s))

−f(s, ηs, ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+δ(s), z̄
′
s+δ(s), ȳs+δ(s), z̄s+δ(s))

]∣∣∣
2
ds.

From assumption (H3), Jensen’s inequality and (3.2) we obtain

E

[∣∣∣E′
[
f(s, ηs, y

′
s, z

′
s, ys, zs, y

′
s+δ(s), z

′
s+δ(s), ys+δ(s), zs+δ(s))

−f(s, ηs, ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+δ(s), z̄
′
s+δ(s), ȳs+δ(s), z̄s+δ(s))

]∣∣∣
2
]

≤ E

[
E
′
[∣∣∣f(s, ηs, y′s, z′s, ys, zs, y′s+δ(s), z

′
s+δ(s), ys+δ(s), zs+δ(s))

−f(s, ηs, ȳ′s, z̄′s, ȳs, z̄s, ȳ′s+δ(s), z̄
′
s+δ(s), ȳs+δ(s), z̄s+δ(s))

∣∣∣
2]]

≤ C2
E

[
E
′
[(

|ŷ′s|+ |ŷs|+ sH− 1

2 |ẑ′s|+ sH− 1

2 |ẑs|+ E
′
[
|ŷ′s+δ(s)|

∣∣Ft

]
+ E

[
|ŷs+δ(s)|

∣∣Ft

]

+
(
s+ ζ(s)

)H− 1

2E
′
[
|ẑ′s+δ(s)|

∣∣Ft

]
+

(
s+ ζ(s)

)H− 1

2E
[
|ẑs+δ(s)|

∣∣Ft

])2]]

≤ 16C2
E

[
|ŷs|2 + s2H−1|ẑs|2 + |ŷs+δ(s)|2 +

(
s+ ζ(s)

)2H−1|ẑs+ζ(s)|2
]
,

where we used the notation (ŷ′·, ẑ
′
·) = (y′· − ȳ′·, z

′
· − z̄′·) and the fact that (a+ b)2 ≤ 2a2 + 2b2. Then
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note that δ and ζ satisfy (i) and (ii), we obtain

E

∫ T

0
eβs

(β
2
|Ŷs|2 +

2

M
s2H−1|Ẑs|2

)
ds

≤ 32C2

β
E

∫ T

0
eβs

(
|ŷs|2 + s2H−1|ẑs|2 + |ŷs+δ(s)|2 +

(
s+ ζ(s)

)2H−1|ẑs+ζ(s)|2
)
ds

≤ 32C2(L+ 1)

β
E

∫ T+K

0
eβs

(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Therefore one has

E

∫ T

0
eβs

(Mβ

4
|Ŷs|2 + s2H−1|Ẑs|2

)
ds ≤ 16C2(L+ 1)M

β
E

∫ T+K

0
eβs

(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Finally, by letting β = 32C2(L+ 1)M + 4
M we get

E

∫ T+K

0
eβs

(
|Ŷs|2 + s2H−1|Ẑs|2

)
ds ≤ 1

2
E

∫ T+K

0
eβs

(
|ŷs|2 + s2H−1|ẑs|2

)
ds.

Consequently, I is a contraction on Ṽ[0,T+K] × ṼH
[0,T+K]. It follows by the fixed point theorem that

BSDE (3.1) has a unique solution in Ṽ[0,T+K] × ṼH
[0,T+K].

Remark 3.7. Now, we make a comparison between the above two approaches. It is easy to

see that (H2) is weaker than (H3). So from the point of view of conditions, the first approach is

better than the second one. On the other hand, thanks to the concise proof, the second approach is

convenient than the first one. So from this point of view, the second approach is better.

4 Comparison theorem

In this section, we study a comparison theorem of MF-ABSDEs of the following form:

(4.1)

{
−dYt = E

′[f(t, ηt, Yt, Zt, Y
′
t+δ(t))]dt− ZtdB

H
t , t ∈ [0, T ];

Yt = g(ηt), t ∈ [T, T +K].

Under (H1) and (H3), it is easy to know that the above equation admits a unique solution. Here,

not (H2), we use (H3) because it is more convenient for the proof of the following comparison

theorem.

Theorem 4.1. For i = 1, 2, suppose gi satisfies (H1), and fi and ∂θ′fi satisfy (H3). Moreover,

assume f1(t, x, y, z, ·) is increasing, i.e., f1(t, x, y, z, θ
′
r) ≤ f1(t, x, y, z, θ̄

′
r), if θ′r ≤ θ̄′r, θ

′
r, θ̄

′
r ∈

L2
F (t, T +K;R), r ∈ [t, T +K]. Then, if g1(x) ≤ g2(x) and f1(t, x, y, z, θ

′) ≤ f2(t, x, y, z, θ
′) for all

(t, x, y, z) ∈ [0, T ]× R
3, θ′1 ∈ L2(Fr,R), we have Y1(t) ≤ Y2(t) almost surely.

Proof. For i = 1, 2, we define f θ
′

i (s, x, y, z) , E
′[fi(s, x, y, z, θ

′
s+δ(s))]. By virtue of Remark 3.5, we

see that f θ
′

i and ∂θ′f
θ′
i satisfy (H3). In addition, f θ

′

1 is increasing in θ′ and f θ
′

1 ≤ f θ
′

2 .
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Let Ỹ0(·) = Y2(·). We consider the following BSDE,




Ỹ1(t) = g1(ηT ) +

∫ T

t
E
′[f1(s, ηs, Ỹ1(s), Z̃1(s), Ỹ

′
0(s+ δ(s)))]ds −

∫ T

t
Z̃1(s)dB

H
s , t ∈ [0, T ];

Y1(t) = g1(ηt), t ∈ [T, T +K].

By Theorem 3.6, the above equation admits a unique solution (Ỹ1(·), Z̃1(·)) ∈ Ṽ[0,T+K] × ṼH
[0,T ].

Now based on the assumptions, we have



f
Ỹ ′

0

1 (t, x, y, z) ≤ f
Ỹ ′

0

2 (t, x, y, z), ∀(t, x, y, z) ∈ [0, T ] × R
3;

g1(x) ≤ g2(x), ∀x ∈ R.

So from Theorem 12.3 of Hu et al. [15], we deduce

Ỹ1(t) ≤ Ỹ0(t) = Y2(t), a.s.

Next, we consider the following BSDE,




Ỹ2(t) = g1(ηT ) +

∫ T

t
E
′[f1(s, ηs, Ỹ2(s), Z̃2(s), Ỹ

′
1(s+ δ(s)))]ds −

∫ T

t
Z̃2(s)dB

H
s , t ∈ [0, T ];

Y2(t) = g1(ηt), t ∈ [T, T +K].

And denote by (Ỹ2(·), Z̃2(·)) ∈ Ṽ[0,T+K] × ṼH
[0,T ] the unique solution of the above equation. Thanks

to that f θ
′

1 is increasing in θ′, one has

f
Ỹ ′

1

1 (t, x, y, z) ≤ f
Ỹ ′

0

1 (t, x, y, z), ∀(t, x, y, z) ∈ [0, T ] × R
3.

Therefore, similar to the above discussion we deduce

Ỹ2(t) ≤ Ỹ1(t), a.s.

By induction, one can construct a sequence {(Ỹn(·), Z̃n(·))}n≥1 ⊆ Ṽ[0,T+K] × ṼH
[0,T ] such that





Ỹn(t) = g1(ηT ) +

∫ T

t
E
′[f1(s, ηs, Ỹn(s), Z̃n(s), Ỹ

′
n−1(s+ δ(s)))]ds −

∫ T

t
Z̃n(s)dB

H
s , t ∈ [0, T ];

Yn(t) = g1(ηt), t ∈ [T, T +K].

Similarly, we obtain

Y2(t) = Ỹ0(t) ≥ Ỹ1(t) ≥ Ỹ2(t) ≥ · · · ≥ Ỹn(t) ≥ · · · , a.s.

In the following, we show {(Ỹn(·), Z̃n(·))}n≥1 is a Cauchy sequence. Denote

Ŷn = Ỹn − Ỹn−1, Ẑn = Z̃n − Z̃n−1, n ≥ 4.

From the estimate (2.2), we have

E

(
β

2

∫ T

0
eβs|Ŷn(s)|2ds+

2

M

∫ T

0
s2H−1eβs|Ẑn(s)|2ds

)

≤ 2

β
E

∫ T

0
eβs

(
E
′[f1(s, ηs, Ỹn(s), Z̃n(s), Ỹ

′
n−1(s + δ(s)))]

−E
′[f1(s, ηs, Ỹn−1(s), Z̃n−1(s), Ỹ

′
n−2(s+ δ(s)))]

)2

ds.
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Then combining (H3) and Jensen’s inequality, note that δ satisfying (i) and (ii), one has

E

(
β

2

∫ T

0
eβs|Ŷn(s)|2ds+

2

M

∫ T

0
s2H−1eβs|Ẑn(s)|2ds

)

≤ 6C

β
E

∫ T

0
eβs

(
|Ŷn(s)|2 + s2H−1|Ẑn(s)|2

)
ds +

6CL

β
E

∫ T

0
eβs|Ŷn−1(s)|2ds

≤ 6C(L+ 1)

β
E

∫ T

0
eβs

(
|Ŷn(s)|2 + s2H−1|Ẑn(s)|2 + |Ŷn−1(s)|2

)
ds.

Now we choose M > 2 and let β = 12CM(L+ 1) + 4
M , then

E

∫ T

0
eβs

(
|Ŷn(s)|2 + s2H−1|Ẑn(s)|2

)
ds

≤ 1

4
E

∫ T

0
eβs

(
|Ŷn(s)|2 + s2H−1|Ẑn(s)|2 + |Ŷn−1(s)|2

)
ds.

Hence

E

∫ T

0
eβs

(
|Ŷn(s)|2 + s2H−1|Ẑn(s)|2

)
ds

≤ 1

3
E

∫ T

0
eβs|Ŷn−1(s)|2ds

≤ 1

3
E

∫ T

0
eβs

(
|Ŷn−1(s)|2 + s2H−1|Ẑn−1(s)|2

)
ds.

So

E

∫ T

0
eβs(|Ŷn(s)|2 + s2H−1|Ẑn(s)|2)ds ≤ (

1

3
)n−4

E

∫ T

0
eβs(|Ŷ4(s)|2 + s2H−1|Ẑ4(s)|2)ds.

It follows that (Ŷn(·))n≥4 and (Ẑn(·))n≥4 are respectively Cauchy sequences in Ṽ[0,T+K] and ṼH
[0,T ].

Denote their limits by Ỹ· and Z̃·, respectively. From Theorem 3.6, we have Ỹ (t) = Y1(t), a.s.,

which deduce that

Y1(t) ≤ Y2(t), a.s.

Therefore, the desired result is obtained.

Example 4.2. Suppose we are facing with the following two MF-ABSDEs,




Y1(t) = g1(ηT ) +

∫ T

t
[Y1(s) + Z1(s) + E

′Y ′
1(s + δ(s))− 1]ds −

∫ T

t
Z1(s)dB

H
s ;

Y1(t) = g1(ηt), t ∈ [T, T +K],

and 



Y2(t) = g2(ηT ) +

∫ T

t
[Y2(s) + Z2(s) + E

′Y ′
2(s + δ(s)) + 1]ds −

∫ T

t
Z2(s)dB

H
s ;

Y2(t) = g2(ηt), t ∈ [T, T +K],

where g1 and g2 satisfy (H1) with g1(x) ≤ g2(x), ∀x ∈ R. Then, according to Theorem 4.1, one

has

Y1(t) ≤ Y2(t), a.s.
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5 Optimal control problem

Let δ > 0. We want to control a process X(t) = Xu(t) given by an equation of the form:

(5.1)

{
dX(t) = b(t,PX(t),PX(t−δ),Pu(t))dt+ σ(t)dBH

t , t ∈ [0, T ];

X(t) = x0(t), t ∈ [−δ, 0].

The function σ is assumed to be in H, the integral with respect to BH is therefore understood

in the Wiener sense. The function b : [0, T ] × P2(R) × P2(R) × P2(R) → R is assumed to be

deterministic in the sense that it’s a function of t and the laws of processes X and u. The function

x0 is assumed to be continuous and deterministic. The set U ⊂ R consists of the admissible control

values. The information available to the controller is given by the filtration F (generated by the

fBm BH). The set of admissible controls, i.e., the strategies available to the controller, is given by

AF the set of U -valued and F-adapted square integrable processes. In this paper, we assume that

X exists and belongs to L2(Ω × [0, T ]). For recent works about fractional stochastic differential

equation, we refer the reader to Ferrante and Rovira [13], Buckdahn et al. [6], Buckdahn and Jing

[7], etc. For other examples of stochastic optimal control problems with delay driven by fBm, the

reader may consult Agram, Douissi and Hilbert [10].

The performance functional is assumed to have the following form:

(5.2) J(u) = E

[
g(X(T ),PX(T )) +

∫ T

0
f(t,X(t),X(t − δ),PX(t),PX(t−δ), u(t))dt

]
,

where f : Ω× [0, T ]×R
2×P2(R)

2×U → R and g : Ω×R×P2(R) → R are given processes, such that

for all t ∈ [0, T ], f(., t, x, x̄,m, m̄, u) is assumed to be Ft-measurable for all x, x̄ ∈ R, m, m̄ ∈ P2(R),

u ∈ U . The process g(., x,m) is assumed to be FT -measurable for all x ∈ R, m ∈ P2(R).

We also assume the following integrability condition

(5.3) E

[∣∣∣g(X(T ),PX(T ))
∣∣∣+

∫ T

0

∣∣∣f(t,X(t),X(t − δ),PX(t),PX(t−δ), u(t))
∣∣∣dt

]
< +∞.

The functions b, f and g are assumed to be continuously differentiable w.r.t x, x̄, u with bounded

derivatives and admit Fréchet bounded derivatives with respect to the probability measures as

mentioned in the preliminaries.

The problem we consider in this section is the following:

Problem: Find a control u∗ ∈ AF such that

(5.4) J(u∗) = sup
u∈AF

J(u).

Any control u∗ ∈ AF satisfying (5.4) is called an optimal control.

The Hamiltonian associated to our problem is defined by

H : Ω× [0, T ]× R× R× U × P2(R)× P2(R)× P2(R)× R× R → R
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with

(5.5) H(t, x, x, u,m1,m2,m3, y, z) = f(t, x, x,m1,m2, u) + y × b(t,m1,m2,m3) + z × σ(t).

For u ∈ AF with corresponding solution X = Xu, define, whenever solutions exist, (Y,Z) ,

(Y u, Zu), by the adjoint equation, in terms of the Hamiltonian, as follows:

(5.6)





dY (t) = −{∂xH(t) + E[∂x̄H(t+ δ)χ[0,T−δ](t)|Ft] + E
′[∂m1

H ′(t)(X(t))]

+E[E′[∂m2
H ′(t+ δ)(X(t))χ[0,T−δ](t)]|Ft]}dt+ Z(t)dBH(t), t ∈ [0, T ],

Y (T ) = ∂xg(T ) + E
′[∂mg

′(T )(X(T ))].

Note that we have used the following notations:

H(t) , H(t,X(t),X(t − δ), u(t),PX(t),PX(t−δ),Pu(t), Y (t), Z(t)),

H ′(t) , H(t,X ′(t),X ′(t− δ), u′(t),PX(t),PX(t−δ),Pu(t), Y
′(t), Z ′(t)),

g(T ) , g(X(T ),PX(T )), g′(T ) , g(X ′(T ),PX(T )).

Remark 5.1. 1. Note that according to the definition of the differentiability of functions of

measures and Remark 3.1, the terminal value Y (T ) is a measurable function of X(T ) and the

value of Z(T ) follows from the Clark-Ocone formula, see [2].

2. In the coming example, we illustrate how to solve a special kind of BSDE (5.6), the resolution

proposed is done on time intervals using the results we obtained in the previous sections

concerning the existence and uniqueness of MF-ABSDE (3.1) when the constant K is equal

to zero.

5.1 Sufficient maximum principle

In this section, we prove sufficient stochastic maximum principle.

Theorem 5.2. Let u∗ ∈ AF, with corresponding controlled state process X∗ , Xu∗

. Suppose

that there exists (Y∗(t), Z∗(t)), the solution of the associated adjoint equation (5.6). Assume the

following:

1. (Xu(t)Z∗(t)) ∈ dom(δH ) ∀u ∈ AF.

2. (Concavity) The functions

(x, x̄, u,m1,m2,m3) 7→ H(t, x, x̄, u,m1,m2,m3, Y∗(t), Z∗(t)),

(x,m) 7→ g(x,m),

are concave for each t ∈ [0, T ] almost surely.

Moreover, the control u∗ satisfies the following conditions:

3. (Maximum condition)

18



H(t,X∗(t),X∗(t− δ), u∗(t),PX∗(t),PX∗(t−δ),Pu∗(t), Y∗(t), Z∗(t)) =

sup
u∈U

H(t,X∗(t),X∗(t− δ), u,PX∗(t),PX∗(t−δ),Pu∗(t), Y∗(t), Z∗(t)),

for all t ∈ [0, T ] almost surely.

4. ∂m3
H(t,X∗(t),X∗(t− δ), u∗(t),PX∗(t),PX∗(t−δ),Pu∗(t), Y∗(t), Z∗(t))(u

∗(t)) = 0,

for all t ∈ [0, T ] almost surely.

Then (u∗,X∗) is an optimal couple for our problem.

Remark 5.3. The above condition 4 means that the Fréchet derivative of H with respect to the

law of the control in u∗ vanishes.

Proof. Let u ∈ AF be a generic admissible control. By the definition of the performance functional

J given by (5.2), we have

(5.7) J(u)− J(u∗) = A2 +A3,

where

A2 , E

[ ∫ T

0
[f(t)− f∗(t)]dt

]
,

A3 , E

[
g(T )− g∗(T )

]
.

Applying the definition of Hamiltonian (5.5), we have

(5.8) A2 = E

[ ∫ T

0

(
H(t)−H∗(t)− Y∗(t)b̄(t)

)
dt
]
,

where we used the following notations

b(t) , b(t,PX(t),PX(t−δ),Pu(t)), b∗(t) , b(t, PX∗(t),PX∗(t−δ),Pu∗(t)),

f(t) , f(t,X(t),X(t − δ),PX(t),PX(t−δ), u(t)),

f∗(t) , f(t,X∗(t),X∗(t− δ),PX∗(t),PX∗(t−δ), u
∗(t)),

g(T ) , g(X(T ),PX(T )), g∗(T ) , g(X∗(T ),PX∗(T )),

H(t) , H(t,X(t),X(t − δ), u(t),PX(t) ,PX(t−δ),Pu(t), Y∗(t), Z∗(t)),

H∗(t) , H(t,X∗(t),X∗(t− δ), u∗(t),PX∗(t),PX∗(t−δ),Pu∗(t), Y∗(t), Z∗(t)),

b̄(t) , b(t)− b∗(t), X̄(t) , X(t) −X∗(t).

Remark 5.4. Notice that since σ is a function of t and therefore it is not related to the process

X, we have dX̄(t) = b̄(t)dt.

Now using the concavity of g and the terminal value of BSDE (5.6) associated to (u∗,X∗), we

get by Fubini’s theorem

A3 ≤ E[∂xg∗(T )X̄(T )] + E[E′[∂mg∗(T )(X
′
∗(T ))X̄

′(T )]]

= E[(∂xg∗(T ) + E
′[∂mg

′
∗(T )(X∗(T ))])X̄(T )]

= E[Y∗(T )X̄(T )].
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Applying the integration by parts formula (Proposition 2.4) to X̄(t) and Y∗(t), we get

d(Y∗(t)X̄(t)) = Y∗(t)dX̄(t) + X̄(t)dY∗(t).

The equality comes from Remark 5.4 and the fact that D
H
t X̄(t) = 0 because X̄(t) =

∫ t
0 b̄(s)ds

and b̄ is deterministic. Hence, integrating from 0 to T , taking the expectation and using the first

assumption, we get

(5.9)

E[Y∗(T )X̄(T )] = E[

∫ T

0
Y∗(t)dX̄(t)] + E[

∫ T

0
X̄(t)dY∗(t)]

= E[

∫ T

0
Y∗(t)b̄(t)dt]− E[

∫ T

0
X̄(t){∂xH∗(t) + ∂x̄H∗(t+ δ)χ[0,T−δ](t)

+E
′[∂m1

H ′
∗(t)(X∗(t))] + E

′[∂m2
H ′

∗(t+ δ)(X∗(t))]χ[0,T−δ](t)}dt]

= E[

∫ T

0
Y∗(t)b̄(t)dt]− E[

∫ T

0
X̄(t)∂xH∗(t)dt]− E[

∫ T

0
∂x̄H∗(t)X̄(t− δ)dt]

−E[

∫ T

0
E
′[∂m1

H∗(t)(X
′
∗(t))X̄

′(t)]dt]− E[

∫ T

0
E
′[∂m2

H∗(t)(X
′
∗(t− δ))X̄ ′(t− δ)]dt].

To obtain the last equality, we did the following change of variables r = t+ δ to get

E[

∫ T−δ

0
X̄(t)∂x̄H∗(t+ δ)dt] = E[

∫ T

δ
X̄(r − δ)∂x̄H∗(r)dr] = E[

∫ T

0
X̄(r − δ)∂x̄H∗(r)dr],

where we used that E[
∫ δ
0 X̄(r− δ)∂x̄H∗(r)dr] = E[

∫ 0
−δ X̄(u)∂x̄H∗(u+ δ)du] = 0, since X̄(u) = 0 for

all u ∈ [−δ, 0], because X∗(t) = X(t) = x0(t) for all t ∈ [−δ, 0].

Similarly, we get using the previous argument and by Fubini’s theorem

E[

∫ T

0
X̄(t)E′[∂m2

H ′
∗(t+ δ)(X∗(t))]χ[0,T−δ](t)dt] = E[

∫ T

0
E
′[∂m2

H∗(t)(X
′
∗(t− δ))X̄ ′(t− δ)]dt].

By (5.7), (5.8) and (5.9), we obtain

J(u)− J(u∗) ≤ E[

∫ T

0
(H(t)−H∗(t))dt]− E[

∫ T

0
∂xH∗(t)X̄(t)dt] − E[

∫ T

0
∂x̄H∗(t)X̄(t− δ)dt]

−E[

∫ T

0
E
′[∂m1

H∗(t)(X
′
∗(t))X̄

′(t)]dt]− E

∫ T

0
E
′[∂m2

H∗(t)(X
′
∗(t− δ))X̄ ′(t− δ)]dt

≤ 0.

Due to the concavity assumption on H and because u∗ satisfies the maximum condition 3 and 4.

the first order derivative of H in u∗ and the Fréchet derivative of H with respect to the law of the

control u∗ in u∗(t) vanish.

5.2 Application and example

The main applications of mean-field dynamics that appear in the literature rely mainly on a depen-

dence upon the probability measures through functions of scalar moments of the measures. More
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precisely, we assume that:

b(t,m1,m2,m3) = b̂(t, (ψ1,m1), (ψ2,m2), (ψ3,m3)),

f(t, x, x̄,m1,m2, u) = f̂(t, x, x̄, (γ1,m1), (γ2,m2), u),

g(x,m) = ĝ(x, (γ3,m)).

for some scalar differentiable functions ψ1, ψ2, ψ3, γ1, γ2, γ3 with at most quadratic growth at ∞.

The function b̂ is defined on [0, T ]×R×R×R, the function f̂ is defined on [0, T ]×R×R×R×R×U
and ĝ is defined on R×R. The notation (ψ,m) denotes the integral of the function ψ with respect

to the probability measure m. The Hamiltonian that we defined in the previous section takes now

the following form:

H(t, x, x, u,m1,m2,m3, y, z)

= f̂(t, x, x, (γ1,m1), (γ2,m2), u) + y × b̂(t, (ψ1,m1), (ψ2,m2), (ψ3,m3)) + z × σ(t).

The functions f̂ , b̂ and ĝ are similar to the functions f , b, g, the only difference is that the measure

for examplem1 is replaced by a numeric variable say x′. Therefore according to the definition of the

differentiability with respect to functions of measures recalled in the preliminaries, the derivative

of the Hamiltonian with respect to the measure m1 for instance, is computed as follows,

∂m1
H(t, x, x, u,m1,m2,m3, y, z)(x

′)

= ∂x′ f̂(t, x, x, (γ1,m1), (γ2,m2), u)γ
′
1(x

′) + y × ∂x′ b̂(t, (ψ1,m1), (ψ2,m2), (ψ3,m3))ψ
′
1(x

′).

The terminal value of the adjoint BSDE (5.6) which is Y (T ) = ∂xg(T ) + E
′[∂mg

′(T )(X(T ))], can

be written in terms of the derivatives of the function ĝ as follows:

Y (T ) = ∂xĝ(XT ,E[γ3(XT )]) + E
′[∂x′ ĝ(X ′

T ,E[γ3(XT )])]γ
′
3(XT ).

5.2.1 Example

We consider now a controlled state process X = Xα given by the following mean-field delayed

stochastic differential equation:

(5.10)

{
dX(t) = −[β1(t)E[X(t− δ)] + β2E[α(t)]

2]dt+ β3(t)dB
H(t), t ∈ [0, T ];

X(t) = x0(t), t ∈ [−δ, 0],

where δ > 0 is a given constant, β1, x0 are given bounded deterministic functions, β2 is a given

positive constant, β3 is a given deterministic function in H. The integral with respect to the fBm is

therefore a Wiener type integral and α ∈ AF is our control process. The set AF are the admissible

controls assumed to be square integrable F-adapted processes with real positive values.

We want to minimize the expected value of X2
T with a minimal average use of energy, measured by

the integral
∫ T
0 E[α2(t)]dt, more precisely, the performance functional we consider in this example

has the following form:

(5.11) J(α) = −1

2

(
E[X2

T ] + E[

∫ T

0
α2(t)dt]

)
.
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Our goal is therefore to find the control process α∗ ∈ AF, such that

(5.12) J(α∗) = sup
α∈AF

J(α).

The Hamiltonian of our control problem is the following,

H(t, x, x̄, α,m1,m2,m3, y, z) = −1

2
α2 − y[β1(t)(Id,m2) + β2(Id,m3)

2] + β3(t)z.

So, according to the notations we used previously, we have

∗∂xH(t) = 0,

∗∂x̄H(t) = 0,

∗∂m1
H(t)(X(t)) = 0,

∗∂m2
H(t)(X(t − δ)) = −yβ1(t),

∗∂m3
H(t)(α(t)) = −2yβ2E[α(t)],

∗∂αH(t) = −α.

Hence, by calculating the second derivatives of H, we find that the Hessian matrix is semi definite

negative and therefore the Hamiltonian H is concave in (x, x̄, α,m1,m2,m3) under the condition

y ≥ 0.

Moreover the function α ∈ R+ 7→ H(t, x, x̄, α,m1,m2,m3, y, z) is concave and decreasing and

therefore is maximal in α∗ , 0, note that once evaluating the derivative of H with respect to m3

in α∗, we get ∂m3
H(t)(α∗(t)) = 0.

On the other hand the adjoint solution of the BSDE of our dynamic satisfies the following

BSDE:

(5.13)

{
dY (t) = β1(t+ δ)E′[Y ′(t+ δ)χ[0,T−δ](t)]dt+ Z(t)dBH(t), t ∈ [0, T ],

Y (T ) = −XT .

We propose a resolution of the previous anticipated BSDE by solving a sequence of linear BSDEs

following this procedure:

Step 1. If t ∈ [T − δ, T ], the previous BSDE takes the form

{
dY (t) = Z(t)dBH(t), t ∈ [T − δ, T ];

Y (T ) = −XT .

Then, under the hypothesis of Theorem 3.3, this BSDE has a unique solution (Y,Z) in Ṽ[T−δ,T ] ×
ṼH
[T−δ,T ].

Step 2. If t ∈ [T − 2δ, T − δ] and T − 2δ > 0, we obtain the BSDE

{
dY (t) = β1(t+ δ)E′[Y ′(t+ δ)] + Z(t)dBH(t), t ∈ [T − 2δ, T − δ];

Y (T − δ) = known from step 1.
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We set ψδ(t) , β1(t+δ)E
′[Y ′(t+δ)] which is the driver of this BSDE, as ψδ(.) checks the hypothesis

of Theorem 3.3, this BSDE has a unique solution (Y,Z) in Ṽ[T−2δ,T−δ] × ṼH
[T−2δ,T−δ].

We continue like this by induction up to and including step n, where n is such that T − nδ ≤
0 < T − (n − 1)δ and we solve the corresponding BSDE on the time interval [0, T − (n− 1)δ] and

we solve the corresponding BSDE on the time interval [0, T − (n − 1)δ].

According to Theorem 5.2 and the previous calculus, an optimal decision of our control problem

is the constant control α∗ = 0, the value of the performance functional in α∗ is J(α∗) = −1
2E[X

2
T ],

where X , Xα∗

is the solution of the SDE (5.10), thus we have the following corollary.

Corollary 5.5. The constant control α∗ = 0 is an optimal control for the control problem

(5.12), the corresponding triplet (Xα∗

, Y α∗

, Zα∗

) solves the couple of systems (5.10) and (5.13)

of (decoupled) forward-backward stochastic differential equations, and the value of the performance

functional in the proposed optimal control α∗ is J(α∗) = −1
2E[X

2
T ], where XT , Xα∗

T .
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