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Abstract

Weighted compact nonlinear schemes (WCNS) [Deng and Zhang, JCP 165(2000):

22-44] were developed to improve the performance of the compact high-order non-

linear schemes (CNS) by utilizing the weighting technique originally designed for

WENO schemes, and excellent shock capturing capability and high resolution are

achieved. Various work has been given for further improving the performance of WC-

NSs since then. In this work, the ENO-like stencil selection procedure of Targeted

ENO schemes [Fu et al. JCP 305(2016):333-359] is introduced for interpolating mid-

point variables, targeting compact nonlinear schemes which fully abandon the oscilla-

tory stencils crossing discontinuities, and directly apply optimal linear weights when

the flow field is smooth, such that the optimal numerical resolution is fully recovered

in smooth flow field. Several canonical numerical cases of scalar equations and the Eu-

ler equations of gas dynamics are given to examine the performance of the presented

method.

Keywords: compact nonlinear schemes; ENO-like stencil-selection; optimal linear

weights; gas dynamics

1. Introduction

The spatial solution of flow field containing strong discontinuities such as shock

waves is a challenging topic ever since the shock-capturing schemes invented. High-
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order accurate and high-resolution schemes with discontinuity-capturing ability are

especially desired in simulating multi-scale compressible flows. To achieve higher-

order accuracy in smooth flow regions, and to suppress spurious oscillations near dis-

continuities are two essential problems which especially attract the attention of re-

searchers. These two problems, however, somehow contradict with each other, since

oscillation usually comes with the use of high-order reconstruction schemes, and high-

order schemes owning discontinuity-capturing capability tends to locally degenerate to

lower-order schemes for robustness or stability purpose.

Great efforts have been made in the development of new high-order discontinuity-

capturing schemes to address the dilemma. Among those schemes, the Weighted non-

linear schemes, specifically Weighted Essentially Non-Oscillatory (WENO) schemes

[1, 2, 3, 4] and Weighted Compact Nonlinear Schemes (WCNS) [5] are two typical

classes of methods, which have achieved great success. They can adaptively tune the

numerical dissipation by changing the nonlinear convex combination of candidate sten-

cils according to local flow features, such that high order accuracy and non-oscillatory

property near discontinuities can be achieved.

Compact finite difference schemes have shown spectral-like resolution [6], which

is highly favored in the simulations of multi-scale flow problems. In certain circum-

stances, WCNS also has several advantages over the standard finite-difference WENO:

(1) the resolution is slightly higher; (2) various numerical flux schemes can be applied,

including Roe’s flux difference splitting (FDS) scheme [7], van Leer’s flux vector split-

ting scheme [8], and Liou’s advection upstream splitting method (AUSM) [9]; and (3)

WCNS performs well on freestream and vortex preservation properties on wavy grids

[10].

Therefore, various researches have been attracted in the improvements and appli-

cations of WCNS. The complete WCNS procedure includes three steps [5]: (1) node-

to-midpoint weighted nonlinear interpolation of given variables, (2) flux evaluation at

the midpoint, and (3) midpoint-to-node high-order differencing of flux function. In the

second step, various upwind flux schemes can be applied, and related investigations

have been given [11, 12, 13]. In the third step, various candidate midpoint-to-node

or midpoint-and-node-to-node difference schemes are also available. Deng and Zhang
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[14] indicate that the type of midpoint-to-node difference scheme, explicit or implicit,

does not affect the resolution of a fifth- or fourth-order WCNS significantly, because

the weighted nonlinear interpolation, i.e. step (1), dominates the resolution property.

In addition, Nonomura et al. [15] demonstrate that the type of midpoint-to-node differ-

ence scheme does not significantly change the resolution, even for higher-order WC-

NSs. Moreover, Nonomura and Fujii [16] proposed an explicit formula which can

significantly improve the robustness of WCNS and this formula is also more compact

because it is featured by using a midpoint-and-node-to-node difference scheme. In gen-

eral, aforementioned work suggests that explicit difference scheme is preferred, due to

satisfying resolution with lower cost and simplicity for parallelization and vectoriza-

tion.

Resolutions of WCNSs have been greatly improved by focusing on the improve-

ment of its first construction step, i.e. node-to-midpoint weighted nonlinear interpola-

tion. Novel nonlinear weights achieving optimal order of accuracy [3, 4] are introduced

into WCNSs [17, 18], and novel nonlinear compact node-to-midpoint interpolation is

also implemented [19]. Recently, a family of high-order targeted ENO schemes has

been proposed [20]. Apart from using novel nonlinear weights and incremental-width

candidate stencils, the TENO scheme is characterized by using a newly developed

ENO-like stencil-selection procedure. These features of TENO schemes bring sig-

nificant improvement in spatial resolution. Particularly, the ENO-like stencil-selection

procedure is essential to fully recover the background linear schemes in smooth region.

Further developments and applications of TENO schemes can be found in [21, 22, 23,

24], and boundary variation diminishing (BVD) method was also used to sharpen the

captured shock waves with using TENO scheme [25]. In this work, which is the fur-

ther development of compact nonlinear schemes [26], the specific ENO-like stencil-

selection procedure is adopted with an aim that the optimal node-to-midpoint interpo-

lation of compact linear scheme is achieved in smooth fields, including in the region of

smooth critical points.

This article is organized as follows. In section 2, the WCNS scheme and the pre-

sented method, labeled as TCNS similarly to the nomenclature of TENO, are intro-

duced in detail. In section 3, detailed numerical analysis including ADR (Approxi-
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mate dispersion relation) analysis [27] and the solutions of scalar equation and system

equations, are introduced to testify the performance of the presented method. Finally,

concluding remarks are given in the last section.

2. Numerical methods

The governing equations of compressible flows are hyperbolic systems. With-

out loss of generality, the theoretical analysis and numerical solutions of the one-

dimensional scalar hyperbolic conservation law can be first used to examine the perfor-

mance of numerical schemes, and then the associated results can be extended to one-

or two-dimensional hyperbolic system of equations without substantial difficulty.

The one-dimensional hyperbolic conservation law can be written as

∂u
∂ t

+
∂ f (u)

∂x
= 0, (1)

in which the characteristic velocity is ∂ f (u)
∂u and assumed to be positive, without loss

of generality. Here, the spatial discretization of Eq. (1) is given on an equally spaced

one-dimensional mesh, in which the distance between two grid nodes are h, leading to

an ordinary differential equation (ODE) system, i.e.

dui

dt
=−∂ f

∂x
|x=xi =− f ′i , i = 1, · · · ,n. (2)

The numerical solutions of f ′i will be discussed in the following sections, and the tem-

poral solutions are given by using the third-order strongly stable Runge-Kutta method

[28].

2.1. The approximation of the flux derivative

The first-order derivative of flux function, i.e. f ′i , can be approximated by using

various numerical schemes. In a WCNS-type method, usually a central (compact)

difference scheme is used to calculate the flux derivatives at grid nodes, by utilizing the

flux function at midpoints and grid nodes.

As aforementioned, because of their efficiency, in this work, explicit central dif-

ference schemes which require nontridiagonal inversion are used to approximate the
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derivative. Here, for achieving fifth-order overall accuracy, three midpoint-to-node

(MD) or midpoint-and-node-to-node (MND) formulas of sixth-order accuracy are given

as

f ′i =
a1

h
( f̃i+ 1

2
− f̃i− 1

2
)+

a2

h
( f̃i+ 3

2
− f̃i− 3

2
)+

a3

h
( f̃i+ 5

2
− f̃i− 5

2
), (3)

f ′i =
b1

h
( f̃i+ 1

2
− f̃i− 1

2
)+

b2

h
( f̃i+1− f̃i−1)+

b3

h
( f̃i+2− f̃i−2), (4)

and

f ′i =
c1

h
( f̃i+ 1

2
− f̃i− 1

2
)+

c2

h
( f̃i+1− f̃i−1)+

c3

h
( f̃i+ 3

2
− f̃i− 3

2
), (5)

which are corresponding to the WCNS [29], Hybrid cell-edge and cell-node Weighted

Compact Nonlinear Scheme (HWCNS) [30] and WCNS-midpoint-and-node-to-node

difference (WCNS-MND) [16], respectively. Moreover, these three formulas show

that they are not compact schemes, but can be taken as the special cases of the general

WCNS [29]. The constant coefficients in Eq. (3), (4) and (5), can be found in the

corresponding references.

It is worth noticed that the required midpoint stencils of HWCNS and WCNS-

MND are more compact than that of Eq.(3), because they use node variables in the

difference schemes, involving fewer midpoint interpolations. Moreover, Nonomura

and Fujii [16] proved that WCNS-MND is more robust but less accurate than the orig-

inal WCNS [5]and the original WCNS has higher propensity to blow up compared to

WENO schemes when strong discontinuities are captured. WCNS-MND method is

thus used in simulations of turbulence problems [31] and multi-species flow problems

[32]. In this work, most of the numerical results and discussions are given by using

the sixth-order explicit MD scheme (Eq. (3)), and, of course, the other two formulas,

Eq. (4) and (5), can be used straightforwardly.

2.2. Node-to-midpoint interpolation: WCNS

As shown in the last subsection, midpoint flux terms are unknown and should be

evaluated before performing the MD or MND procedure. To achieve this goal, numer-
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ical upwind flux functions are used. Without loss of generality, a scalar form is used to

explain the interpolation procedure. The scalar upwind flux function is

fi± 1
2
=

1
2

[(
f (uR,i± 1

2
)+ f (uL,i± 1

2
)
)
−|â|

(
uR,i± 1

2
−uL,i± 1

2

)]
, (6)

where the subscript L and R indicate the variables at the left and right side of xi± 1
2
,

respectively, and â is the approximate eigenvalue. The question left to be settled is how

to calculate uL/R,i± 1
2

accurately, while maintaining numerical stability, nonoscillatory

and sharp discontinuity-capturing properties. For simplicity, we only consider the eval-

uation of variables on the left side of xi+ 1
2
, i.e. uL,i+ 1

2
, in the following paragraphs. The

interpolations of the other midpoint variables are performed by using a symmetrical

form of uL,i+ 1
2
.

The fifth-order node-to-midpoint reconstruction of WCNS to be used in this work

was introduced in [5]. The basic idea of it is to approximate a linear optimal approxi-

mation of the midpoint variable

uL,i+ 1
2
= ui +

1
128

(3ui−2−20ui−1−38ui +60ui+1−5ui+2) , (7)

by using a nonlinear convex combination of lower-order interpolations. It is obvi-

ous that a five-point full stencil Si+ 1
2
= {xi−2,xi−1,xi,xi+1,xi+2} is used to calculate

the high-order approximation. This optimal fifth-order scheme can be equivalently

represented by using three third-order polynomials each constructed on the following

three-point substencil

Si+ 1
2 ,k

= {xi+k−3,xi+k−2,xi+k−1}, k = 1,2,3. (8)

Each of the third-order polynomials can be expressed in a generic form using the

(approximated) n−th derivatives (n = 1,2)

uL,i+ 1
2 ,k

= ui (xi +∆x) = ui +u(1)i,k ∆x+u(2)i,k
∆x2

2
, (9)

where ∆x = xi+ 1
2
− xi =

h
2 . Specifically, the first- and second-order derivatives are

u(1)i,1 =
1

2h
(ui−2−4ui−1 +3ui),

u(1)i,2 =
1

2h
(ui+1−ui−1),

u(1)i,3 =
1

2h
(−3ui +4ui+1−ui+2),

(10)
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and

u(2)i,1 =
1
h2 (ui−2−2ui−1 +ui),

u(2)i,2 =
1
h2 (ui−1−2ui +ui+1),

u(2)i,3 =
1
h2 (ui−2ui+1 +ui+2),

(11)

respectively. The linear optimal scheme is then represented as

uL,i+ 1
2
=

3

∑
k=1

dkuL,i+ 1
2 ,k

, (12)

where the optimal linear weights are

d1 =
1

16
, d2 =

10
16

, d3 =
5

16
. (13)

Obviously, directly using the optimal weights yields a fifth-order accurate scheme.

The resulting scheme, however, is inadequate to obtain a satisfying resolution for a

steep gradient solution: it causes spurious oscillations. The nonlinear weights of Jiang

and Shu [2] can be applied to replace the optimal linear weights in order to suppress

non-physical oscillations. The so called JS nonlinear weights are defined by

ωk =
αk

∑
3
k=1 αk

, αk =
dk

(βk + ε)2 , (14)

where the small parameter ε = 10−6 is specified to avoid the denominator becoming

zero, and βk is the smoothness indicator, which is defined as

βk =
(

hu(1)i,k

)2
+
(

h2u(2)i,k

)2
. (15)

The main advantage of using nonlinear weights is that the contribution of oscillatory

stencil(s) will be approximately eliminated in the final interpolation while preserving

those of relative smooth, and thus the spurious numerical oscillation can be suppressed.

2.3. Node-to-midpoint interpolation: ENO-like stencil-selection

Instead of merely concentrating on improving the nonlinear weights, the ENO-like

stencil-selection procedure [20] is introduced as an essential component of the pre-

sented method. Firstly, the nonlinear smoothness measurement yielding strong scale-

separation mechanism of the fifth-order scheme is given as

γk =

(
C+

τ5

βk + ε

)q

, k = 1,2,3. (16)
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where τ5 = |β1−β3| is the global smooth indicator that was originally introduced in

[4], and the small threshold is defined as ε = 10−40. Constant C = 1 is set, and the

integer power q = 6 is used. As introduced by Fu et al. [20], larger integer power

exponent q and smaller C are preferable for a stronger separation between resolved

and non-resolved scales, and the discontinuity-detection capability can be significantly

enhanced.

Rather than using the original nonlinear smoothness measurement, Eq. (16) is fur-

ther normalized by

χk =
γk

∑
3
k=1 γk

, (17)

which is then subject to a sharp cutoff function

δk =

0, if χk <CT ,

1, otherwise.
(18)

The underlying idea of this design is that by introducing a value CT as the threshold

of smoothness, the candidate stencils are attributed as “smooth” or “oscillatory”, such

that those stencils of oscillations are abandoned thereby, and only smooth ones are

saved with their associated optimal linear weights used in the final interpolation. The

resulting weight functions are now given by

ω
(T )
k =

dkδk

∑
3
k=1 dkδk

, (19)

where dk denotes the optimal linear weight, and the above cut-off function δk is incor-

porated into the final weighting to decide whether each candidate stencil is taken into

account or not. Two promising advantages of this weighting procedure can be readily

shown. Firstly, by removing the stencil crossing discontinuity completely, it ensures

the numerical robustness of the scheme. Secondly, the background fifth-order linear

scheme can be fully recovered in smooth regions, including at smooth critical points.

In fact, the stencil-selection procedure has simplified the nonlinear convex combi-

nations of candidate stencils. Instead of using the continuous varying weights lead-

ing to infinite possible combinations, the presented method in fact uses only sev-

eral candidate combinations, since each candidate stencil has only two possible re-
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Table 1: The coefficients of the equivalent single polynomial spatial reconstructions.
if δ1,2,3 = û∗

L,i+ 1
2 ,m

S∗m am,i−2 am,i−1 am,i am,i+1 am,i+2

1,1,1 û∗
L,i+ 1

2 ,0
S∗0 3/128 -5/32 45/64 15/32 -5/128

0,1,1 û∗
L,i+ 1

2 ,1
S∗1 0 -1/12 5/8 1/2 -1/24

1,1,0 û∗
L,i+ 1

2 ,2
S∗2 3/88 -5/22 75/88 15/44 0

0,0,1 û∗
L,i+ 1

2 ,3
S∗3 0 0 3/8 3/4 -1/8

0,1,0 û∗
L,i+ 1

2 ,4
S∗4 0 -1/8 3/4 3/8 0

1,0,0 û∗
L,i+ 1

2 ,5
S∗5 3/8 -5/4 15/8 0 0

1,0,1 û∗
L,i+ 1

2 ,6
S∗6 1/16 -5/24 5/8 5/8 -5/48

Figure 1: Schematic of the equivalent candidate stencils of the fifth-order nonlinear interpolation. The circle

indicates that the stencil is not really continuous.

sults of dkδk, i.e. dk and 0. Therefore, similar to [24], each of the possible com-

binations of the nonlinear interpolation of ûL,i+ 1
2

can be represented as û∗
L,i+ 1

2 ,m
=

am,i−2ui−2 + am,i−1ui−1 + am,iui + am,i+1ui+1 + am,i+2ui+2, where the coefficients are

given in Table 1. The corresponding equivalent stencil of each convex combination is

given in Fig.1, by which the meaning of ”stencil-selection” can be interpreted more

clear.

In addition, using the stencil-selection procedure results into several potential choices

of high-order polynomials, and each can be optimized independently such as in [24].

Parameter CT , serving as the global reference of smooth indicators, is an effective and

a direct mean to control the spectral properties of the scheme for compressible turbu-

lence simulation in which close embedded shocklets need to be captured [24]. Within
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the scope of this work, however, the parameter is simply set as CT = 10−5 for all the

simulations without further investigation on the influence of its choice, but the advan-

tages of importing the ENO-like stencil-selection procedure into compact nonlinear

schemes are clearly showed.

3. Numerical results

A variety of canonical problems are simulated to assess fifth-order WCNS-JS,

WCNS-Z, and the proposed scheme TCNS. One-dimensional linear advection equa-

tion, one-dimensional inviscid Burgers equation and Euler equations of gas dynamics

are used as model equations. The ideal-gas equation of state is given by p = (γ−1)ρe

with γ = 1.4 to close Euler equations. Node-to-midpoint interpolation is performed

on characteristic variables to alleviate spurious oscillations [5]. Van leer scheme [8]

is used for the computation of fluxes. The proposed fifth-order TCNS scheme is first

assessed through comparisons with the classical WCNS-JS, WCNS-Z on spectral prop-

erties and official order of accuracy. Its rate of convergence is then verified by solv-

ing one-dimensional linear advection equation, and one-dimensional inviscid Burgers

equation. Performances of the above fifth-order schemes in shock-capturing and wave

resolutions are compared by solving selected test-problems both in one and two dimen-

sions. The CFL= 0.6 is used as default for all numerical schemes and testing cases.

3.1. Approximate dispersion relation analysis

Following the ADR analysis introduced by Pirozzoli [33] and Tu et al. [34], the

spectral properties of different fifth-order schemes are compared and shown in Fig. 2.

The result of the presented method agrees very well with the background linear scheme

for the low range of wave-numbers with a recovered wave-number reaching up to 1.76.

A significant improvement can also be found when cosmpared against the WCNS-JS

in both dispersion and dissipation properties. While slight inferior result of dissipation

property is given by TCNS when compared with WCNS-Z for the wave-number in

intermediate range, TCNS performs better than WCNS-Z scheme for rest range of

wave-numbers. Moreover, the performance of TCNS will be significantly improved if
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small CT is used, and the adaptive dissipation control in [24] will further improve its

overall performance.

(a) (b)

Figure 2: Approximated dispersion and dissipation properties of different fifth-order schemes: dispersion

(left) and dissipation (right).

3.2. Linear advection problem

The one-dimensional Gaussian pulse advection problem [35] is used to assess the

numerical order of accuracy of the proposed scheme. This problem is modeled by

means of the linear advection equation, given by

∂u
∂ t

+
∂u
∂x

= 0, x ∈ [0,1], (20)

with periodic boundary-conditions and the initial conditions given by

u(t,x = 0) = u(t,x = 1),

u(0,x) = e−300(x−xc)
2
, xc = 0.5.

(21)

Time integration is performed up to t = 1, which corresponds to one period of the

single wave propagation in time. A set of evenly distributed grids are progressively

refined by a factor of 2 from the most coarse grid with N = 51. Numerical simulation

on each of the grid is conducted by using a time step size that even further reducing its

value will not change the evaluated error of the numerical solution.
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Table 2 and Fig. 3 illustrate the numerical error of those fifth-order schemes used,

where the result of TCNS scheme coincides with that of the corresponding linear

scheme, indicating that it recovers the optimal order of convergence. A slight devi-

ation can be found for WCNS-Z over the linear scheme for the coarse grids. WCNS-JS

also shows approximate fifth-order accuracy, but its resolution is significantly lower

than WCNS-Z and TCNS. In general, using the ENO-like stencil-selection procedure

recovers the optimal linear scheme in this smooth field.

Table 2: L∞-error and convergence rate for different fifth-order schemes used by solving the linear advection

equation at t = 1 .

N
Linear WCNS-JS WCNS-Z TCNS

Error Order Error Order Error Order Error Order

51 5.22E-02 * 1.07E-01 * 5.67E-02 * 5.20E-02 *

101 3.30E-03 3.98 1.04E-02 3.37 3.57E-03 3.99 3.30E-03 3.98

201 1.16E-04 4.83 4.63E-04 4.49 1.20E-04 4.90 1.16E-04 4.83

401 3.69E-06 4.97 1.84E-05 4.66 3.72E-06 5.01 3.69E-06 4.97

801 1.16E-07 4.99 6.36E-07 4.85 1.16E-07 5.00 1.16E-07 4.99

1601 3.64E-09 4.99 2.02E-08 4.98 3.64E-09 4.99 3.64E-09 4.99

(a) L2 error (b) L∞ error

Figure 3: Convergence rate of the L2- and L∞-error for different fifth-order schemes used by solving the

linear advection equation at t = 1.
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3.3. Inviscid Burgers equation

The one-dimensional inviscid Burgers equation [36, 37] is used to assess the actual

order of accuracy of the proposed scheme when it is applied to a non-linear scalar

equation. The governing equation is in the form of

∂u
∂ t

+
∂

∂x

(
1
2

u2
)
= 0, x ∈ [0,2], (22)

with periodic boundary-conditions and the initial conditions given by

u(t,x = 0) = u(t,x = 1),

u(0,x) =
1
2
+ sin(πx).

(23)

Exact solutions are computed by solving the derived general characteristic relation

in reference [36]. The solutions are smooth for 0≤ t < 1/π , and a discontinuity devel-

ops and starts to interact with the expansion wave if t ≥ 1/π . The results at t = 0.2 and

t = 0.7 are both given to show the continuous and discontinuous distributions. Solu-

tions obtained by the above fifth-order schemes are compared against the exact solution

in Fig. 4, in which, good agreement is presented both for the smooth and the discon-

tinuous solution. Moreover, at t = 0.2, L∞-error and convergence rate for each scheme

are presented in Table 3. All of the schemes can achieve fifth-order of accuracy as the

grids are refined. Perfect agreement can be found between the TCNS and the back-

ground fifth-order linear scheme. WCNS-Z scheme shows minor deviation compared

with TCNS scheme only when the grid is relatively coarse. WCNS-JS scheme is less

accurate than the other fifth-order schemes. Again, TCNS scheme recovers the optimal

linear scheme if the solution is smooth.

Moreover, it should be noticed that in the discontinuous solution, minor overshoot

has been found. This problem can be avoided by using the MND method, as shown

in Fig.4(b). At the meantime, MND method reduces the resolution of the result, as

already introduced by Nonomura and Fujii [16]. Whereas, in this work, only the node-

to-midpoint interpolation methods are discussed, and thus the detail of MND method

is not further investigated. As mentioned above, the presented method can be applied

with using all the midpoint-to-node or midpoint-and-node-to-node methods.
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(a) t = 0.2 (b) t = 0.7

Figure 4: One-dimensional inviscid Burgers equation: numerical solutions and exact solution at t = 0.2

(left) and t = 0.7 (right). Grid resolution 161.

Table 3: L∞-error and convergence rate for different fifth-order schemes used by solving the 1-D inviscid

Burgers equation at t = 0.2.

N
Linear WCNS-JS WCNS-Z TCNS

Error Order Error Order Error Order Error Order

41 9.96E-04 * 1.41E-03 * 1.01E-03 * 9.96E-04 *

81 9.04E-05 3.46 1.34E-04 3.40 9.07E-05 3.48 9.04E-05 3.46

161 3.21E-06 4.81 5.06E-06 4.73 3.22E-06 4.82 3.21E-06 4.81

321 1.00E-07 5.00 1.63E-07 4.96 1.00E-07 5.00 1.00E-07 5.00

641 2.82E-09 5.15 4.82E-09 5.07 2.82E-09 5.15 2.82E-09 5.15

3.4. Sod and Lax shock tube problem

Riemann initial value problems of Sod [38] and Lax [39] are used to evaluate the

shock-capturing capability of the proposed scheme. The initial conditions for the Sod

problem is

(ρ,u, p) =

 (1,0,1) x ∈ [0,0.5],

(0.125,0,0.1) x ∈ (0.5,1] .
(24)

and the final time is t = 2 by solving the problem on an evenly distributed grid of

N = 101 points.
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(a) (b)

Figure 5: Sod problem: numerical solutions and the exact solution at t = 0.2.

Overall, good agreement of numerical solutions with the exact solution is achieved

for all of the schemes shown in Fig. 5(a). Steep gradient solutions such as shock wave

and contact discontinuity are captured without oscillations. In Fig. 5(b), WCNS-Z and

TCNS schemes yield a relative sharp profile compared to WCNS-JS in the vicinity of

contact discontinuity, and TCNS is found with a better performance of resolving the

contact discontinuity when compared with WCNS-Z.

The initial conditions for the Lax shock-tube problem is

(ρ,u, p) =

(0.445,0.698,3.528) x ∈ [0,0.5],

(0.5,0,0.571) x ∈ (0.5,1] .
(25)

This case is run on a grid of N = 101 points with uniform distribution, and the results

at t = 0.14 are given.

Density and velocity distributions are compared in Fig.6(a), and Fig. 6(b) respec-

tively. WCNS-Z overshoots the velocity slightly at the tail of the expansion fan, but

TCNS shows accurate and oscillation-free result. WCNS-JS smears the shock wave

significantly, indicating extra numerical dissipation.
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(a) Density (b) Velocity

Figure 6: Lax problem: numerical solutions and the exact solution at t = 0.14.

3.5. Shock-density wave interaction

The shock-density wave interaction problem [40] is characterized by a right mov-

ing Mach 3 shock interacting with sine waves in density field. The multi-scale wave

structure is evolved after the shock wave interacts with the oscillating density wave,

and both the shock-capturing and wave-resolution capabilities are evaluated thereafter.

The problem is initialized by

(ρ,u, p) =

(3.857,2.629,10.333), x ∈ [0,1],

(1+0.2sin(5x),0,1) , x ∈ (1,10] .
(26)

This case is run on a grid of N = 201 points which are uniformly distributed and the

final time is t = 1.8. Numerical solution of WCNS-JS on a grid of N = 2001 is used as

the reference ”exact” solution.

As shown in Fig. 7, TCNS produces considerably better resolved density waves be-

hind the shock wave compared with WCNS-JS and WCNS-Z. Particularly, the result of

WCNS-JS indicates strong numerical dissipation, since the small-scale wave structure

is significantly smeared. Moreover, TCNS does not produce spurious oscillations in

the flow field.
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(a) (b)

Figure 7: Shock-density wave interaction problem: numerical solutions and the exact solution at t = 1.8.

3.6. Two-dimensional Riemann problem

In this section, the configurations 3 and 6 out of 19 2-D Riemann problems used

by Lax and Liu [41] are specifically taken to evaluate performances of the proposed

numerical schemes.

3.6.1. The configuration 3

The initial conditions for the configuration 3 are given by

(ρ,u,v, p) =



(1.5,0,0,1.5) x ∈
[ 1

2 ,1
]

and y ∈
[ 1

2 ,1
]
,

(0.5323,1.206,0,0.3) x ∈
[
0, 1

2

)
and y ∈

[ 1
2 ,1
]
,

(0.138,1.206,1.206,0.029) x ∈
[
0, 1

2

)
and y ∈

[
0, 1

2

)
,

(0.5323,0,1.206,0.3) x ∈
[ 1

2 ,1
]

and y ∈
[
0, 1

2

)
.

(27)

Boundary conditions are given by

∂u(t,x,y)
∂x

= 0, x = 0,1, ∀t,y,

∂u(t,x,y)
∂y

= 0, y = 0,1, ∀t,x.
(28)

Figure 8 presents the results obtained by using WCNS-JS, WCNS-Z and TCNS

schemes, at t = 0.3. The density profiles are best predicted by TCNS. WCNS-Z yields

17



a solution very close to that of TCNS, but TCNS captures more vortexes along the

contact lines. WCNS-JS smears a few small scales that can be resolved by TCNS and

WCNS-Z due to relative large dissipations.

(a) WCNS-JS (b) WCNS-Z

(c) TCNS

Figure 8: Configurations 3 of 2-D Riemann problems in [41]: 30 density contours ranging from 0.1 to 1.8

at t = 0.23 obtained on a grid of 1024×2014.
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3.6.2. The configuration 6

The initial conditions for the configuration 6 are given by

(ρ,u,v, p) =



(1,0.75,−0.5,1) x ∈
[ 1

2 ,1
]

and y ∈
[ 1

2 ,1
]
,

(2,0.75,0.5,1) x ∈
[
0, 1

2

)
and y ∈

[ 1
2 ,1
]
,

(1,−0.75,0.5,1) x ∈
[
0, 1

2

)
and y ∈

[
0, 1

2

)
,

(3,−0.75,−0.5,1) x ∈
[ 1

2 ,1
]

and y ∈
[
0, 1

2

)
.

(29)

Boundary conditions are the same as in the last case.

Results obtained by using WCNS-JS, WCNS-Z and TCNS schemes at t = 0.3 are

shown in Fig. 9. The results of WCNS-JS and WCNS-Z are similar. Whereas, using

TCNS obtains abundant small scale flow structures along the contact lines, indicating

lower numerical dissipation.
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(a) WCNS-JS (b) WCNS-Z

(c) TCNS

Figure 9: Configurations 6 of 2-D Riemann problems in [41]: 40 density contours ranging from 0.1 to 2.9

at t = 0.3 obtained on a grid of 1024×2014.

3.7. Shock vortex interaction

This problem was modeled in two dimensions by Jiang and Shu [2]. It involves a

vortex perturbing a stationary shock. The computational domain is [0,2]× [0,1]. This

field is discretized by 251×101 grid. Initially, a stationary shock is located at x = 0.5

normal to the x direction. The left state of this shock is specified as (ρ,u,v, p) =

(1,1.1
√

γ,0,1). A small vortex centered at (0.25, 0.5) is superposed to the flowfiled

on the left hand side of the normal shock. The superposition is performed through
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perturbations on velocity (u,v), temperature T , given by T = p/ρ , and entropy S,

defined as S = ln(p/ργ) of the mean flow. Specifically, the perturbation variables are



ũ = ετea(1−τ2)sinθ

ũ =−ετea(1−τ2)cosθ

T̃ =− (γ−1)ε2e2a(1−γ2)

4aγ

S̃ = 0

(30)

where τ = r/rc, and r =
√
(x− xc)2 +(y− yc)2, rc = 0.05, ε = 0.3, a= 0.204 are taken

from the reference [2]. The results at t = 0.6 are presented in Fig.10.

(a) WCNS-JS (b) WCNS-Z

(c) TCNS

Figure 10: Shock vortex interaction problem: 90 density contours ranging from 1.19 to 1.37.
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The flow contours of different schemes are similar. The density distribution along

the central line of the flow field are further shown in Fig.11, where the result obtained

by using WCNS-Z on a refined mesh of 1001×401 is used as the “exact” solution. It

can be found that the captured vortex of TCNS is more accurate, comparing with the

other two results of WCNS-JS and WCNS-Z.

Figure 11: Shock vortex interaction problem: density distribution along y = 0.5.

3.8. Rayleigh-Taylor instability

Rayleigh-Taylor instability problem which contains both discontinuities and com-

plex flow structures [42], is also used to examine the numerical dissipation of the pre-

sented method. The initial conditions are given by

(ρ,u,v, p)=

 (2,0,−0.025a cos(8πx),1+2y) x ∈ [0,0.25] and y ∈ [0,0.5) ,

(1,0,−0.025a cos(8πx),1+3/2) x ∈ [0,0.25] and y ∈ [0.5,1] ,
(31)

where a is the speed of sound, given by a =
√

γ
p
ρ

and a different γ = 5
3 is used for

this specific case. Reflecting boundary conditions are imposed at the left and right side

of the domain, and constant boundary conditions are given for the top and the bottom
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sides, in details

(ρ,u,v, p) =

(1,0,0,2.5) y = 1, ∀t,x,

(2,0,0,1) y = 0, ∀t,x.
(32)

Two source terms ρ , and ρv are added to the right hand side of the third and the fourth

equation, respectively. Two sets of grids are used, i.e. 128× 512 and 256× 1024.

Density profiles at final time t = 1.95 calculated by WCNS-JS, WCNS-Z and TCNS

are shown in Fig. 12.
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(a) Grid resolution 128×512

(b) Grid resolution 256×1024

Figure 12: Rayleigh-Taylor instability problem: 30 density contours ranging from 0.9 to 2.2.
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TCNS has resolved much more abundant vortical structures than WCNS-JS and

WCNS-Z, suggesting that TCNS is significantly less dissipative. Furthermore, the

low-dissipation property of TCNS induces symmetry breaking of the flow field. In par-

ticular, the small structures resolved by using TCNS with grid resolution of 128×512

are comparable to that of using WCNS-JS with grid resolution of 256× 1024. Even

the result of WCNS-Z only shows little advantage (if any) while doubling the grid

resolution.

4. Conclusions

As a subsequent work of compact nonlinear scheme and weighed compact non-

linear scheme, we have introduced a novel compact nonlinear scheme in this article,

by applying the ENO-like stencil-selection procedure. The method is targeted optimal

linear interpolation in the node-to-midpoint interpolation step of the compact nonlin-

ear scheme, and thus the method is named as targeted CNS (TCNS). Numerical results

of one-dimensional scalar equations and one- or two-dimensional Euler equations are

given to examine the performance of the method, involving strong discontinuities and

broadband fluctuations.

The presented method uses a novel smoothness measurement which possesses strong

scale separation mechanism, and the ENO-like stencil-selection procedure is capable

to target optimal linear weights while maintaining excellent shock-capturing capability.

ADR analysis shows that TCNS recovers the background linear scheme up to higher

wave number, even using a relative larger CT . Examining the numerical results, it

can be found that TCNS has recovered optimal linear scheme in smooth field, where

the optimal linear weights dk is directly applied in the node-to-midpoint interpolation.

Whereas, WCNSs, including WCNS-JS and WCNS-Z, approximate the optimal linear

weights but can not perfectly recover them. Therefore, the presented TCNS is capa-

ble to capture much more abundant wave structures in the simulations. Especially in

the Rayleigh-Taylor instability problem, TCNS achieves similar or even better result

comparing with WCNS-JS on a coarser grid.
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