C-eigenvalues intervals for Piezoelectric-type tensors

Chaoqian Li^a, Yaotang Li^{a,*}

^aSchool of Mathematics and Statistics, Yunnan University, Kunming, P. R. China 650091

Abstract

C-eigenvalues of piezoelectric-type tensors which are real and always exist, are introduced by Chen et al. [1]. And the largest C-eigenvalue for the piezoelectric tensor determines the highest piezoelectric coupling constant. In this paper, we give two intervals to locate all C-eigenvalues for a given Piezoelectric-type tensor. These intervals provide upper bounds for the largest C-eigenvalue. Numerical examples are also given to show the corresponding results.

Keywords: Piezoelectric tensors, *C*-eigenvalues, Interval. 2010 MSC: 12E10; 15A18; 15A69

1. Introduction

Piezoelectric-type tensors are introduced by Chen et al. in [1] as a subclass of third order tensors which have extensive applications in physics and engineering [2, 3, 5, 6, 7, 9]. The class of Piezoelectric tensors, as the subclass of Piezoelectric-type tensors of dimension three, plays the key role in Piezoelectric effect and converse Piezoelectric effect [1].

Definition 1. [1, Definition 2.1] Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a third-order n dimensional real tensor. If the later two indices of \mathcal{A} are symmetric, i.e., $a_{ijk} = a_{ikj}$ for all $j \in N$ and $k \in N$ where $N := \{1, 2, ..., n\}$, then \mathcal{A} is called a piezoelectric-type tensor.

^{*}Corresponding author.

Email addresses: lichaoqian@ynu.edu.cn (Chaoqian Li), liyaotang@ynu.edu.cn (Yaotang Li)

To explore more properties related to piezoelectric effect and converse piezoelectric effect in solid crystal, Chen et al. in [1] introduced C-eigenvalues and C-eigenvectors for Piezoelectric-type tensors, and shown that the largest C-eigenvalue corresponds to the electric displacement vector with the largest 2-norm in the piezoelectric electronic effect under unit uniaxial stress [1, 2, 8].

Definition 2. [1, Definition 2.2] Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectrictype tensor. If there exist a scalar $\lambda \in \mathbb{R}$, vectors $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ satisfying the following system

$$\mathcal{A}yy = \lambda x, \ x\mathcal{A}y = \lambda y, \ x^T x = 1 \ and \ y^T y = 1, \tag{1}$$

where $Ayy \in \mathbb{R}^n$ and $xAy \in \mathbb{R}^n$ with the *i*-th entry

$$(\mathcal{A}yy)_i = \sum_{j,k\in N} a_{ijk}y_jy_k, and (x\mathcal{A}y)_i = \sum_{j,k\in N} a_{jki}x_jy_k,$$

respectively, then λ is called a *C*-eigenvalue of \mathcal{A} , *x* and *y* are called associated left and right *C*-eigenvectors, respectively.

For C-eigenvalues and associated left and right C-eigenvectors of a piezoelectrictype tensor, Chen et al. in [1] also provided several related results, such as:

Property 1. For a piezoelectric-type tensor \mathcal{A} , there always exist *C*-eigenvalues of \mathcal{A} and associated left and right *C*-eigenvectors.

Property 2. Suppose that λ , x and y are a C-eigenvalue and its associated left and right C-eigenvectors of a piezoelectric-type tensor \mathcal{A} . Then

$$\lambda = x \mathcal{A} y y,$$

where $xAyy = \sum_{i,j,k\in N} a_{ijk}x_iy_jy_k$. Furthermore, $(\lambda, x, -y)$, $(-\lambda, -x, y)$ and $(-\lambda, -x, -y)$ are also *C*-eigenvalues and their associated *C*-eigenvectors of A.

Property 3. Suppose that λ^* is the largest *C*-eigenvalue of a piezoelectric-type tensor \mathcal{A} . Then

$$\lambda^* = \max\left\{ x \mathcal{A} y y : x^T x = 1, y^T y = 1 \right\}.$$

Property 2 and Property 3 provide theoretically the form to determine Ceigenvalues or the largest C-eigenvalue λ^* of \mathcal{A} , However, it is difficult to compute them in practice because determining x and y is not easy. So, we in this paper give some intervals to locate all C-eigenvalues of a piezoelectric-type tensor, and then give some upper bounds for the the largest C-eigenvalue. This can provide more information before calculating them out.

2. Main results

In this section, we give two intervals to locate all C-eigenvalues of a piezoelectric-type tensor. And the comparison of these two intervals are also established.

Theorem 1. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ be a C-eigenvalue of \mathcal{A} . Then

$$\lambda \in \left[-\rho, \ \rho\right],\tag{2}$$

where

$$\rho := \max_{i,j \in N} \left(R_i^{(1)}(\mathcal{A}) R_j^{(3)}(\mathcal{A}) \right)^{\frac{1}{2}},$$

 $R_i^{(1)}(\mathcal{A}) := \sum_{l,k \in N} |a_{ilk}| \text{ and } R_j^{(3)}(\mathcal{A}) := \sum_{l,k \in N} |a_{lkj}|.$

Proof. Suppose that $x = (x_1, x_2, \ldots, x_n)^T$ and $y = (y_1, y_2, \ldots, y_n)^T$ are left and right *C*-eigenvectors corresponding to λ with $x^T x = 1$ and $y^T y = 1$. Let

$$|x_p| = \max_{i \in N} |x_i|, and |y_q| = \max_{i \in N} |y_i|.$$

Then $0 < |x_p| \le 1$ and $0 < |y_q| \le 1$ because $x^T x = 1$ and $y^T y = 1$. By considering the *p*-th equation of $Ayy = \lambda x$ in (1), we have

$$\lambda x_p = \sum_{j,k \in N} a_{pjk} y_j y_k,\tag{3}$$

and

$$\begin{aligned} |\lambda||x_p| &\leq \sum_{j,k\in N} |a_{pjk}||y_j||y_k| \\ &\leq \sum_{j,k\in N} |a_{pjk}||y_q||y_q| \\ &\leq \sum_{j,k\in N} |a_{pjk}||y_q|. \ (by \ |y_q| \leq 1) \end{aligned}$$

Hence

$$|\lambda||x_p| \le R_p^{(1)}(\mathcal{A})|y_q|.$$
(4)

On the other hand, by considering the q-th equation of $xAy = \lambda y$ in (1), we have

$$\lambda y_q = \sum_{i,j \in N} a_{ijq} x_i y_j,\tag{5}$$

and

$$\begin{aligned} |\lambda||y_q| &\leq \sum_{i,j\in N} |a_{ijq}||x_i||y_j| \\ &\leq \sum_{i,j\in N} |a_{ijq}||x_p||y_q| \\ &\leq \sum_{i,j\in N} |a_{ijq}||x_p|. \ (by \ |y_q| \leq 1) \end{aligned}$$

Hence

$$|\lambda||y_q| \le R_q^{(3)}(\mathcal{A})|x_p|. \tag{6}$$

Multiplying (4) with (6) yields

$$|\lambda|^2 |x_p| |y_q| \le R_p^{(1)}(\mathcal{A}) R_q^{(3)}(\mathcal{A}) |x_p| |y_q|,$$

consequently,

$$|\lambda| \le \left(R_p^{(1)}(\mathcal{A})R_q^{(3)}(\mathcal{A})\right)^{\frac{1}{2}}.$$
(7)

Note the facts that λ is a *C*-eigenvalue of \mathcal{A} if and only if $-\lambda$ is a *C*-eigenvalue of \mathcal{A} , and that a *C*-eigenvalue is real. Then

$$\lambda \in \left[-\left(R_p^{(1)}(\mathcal{A})R_q^{(3)}(\mathcal{A})\right)^{\frac{1}{2}}, \left(R_p^{(1)}(\mathcal{A})R_q^{(3)}(\mathcal{A})\right)^{\frac{1}{2}}\right] \subseteq [-\rho, \rho].$$

The conclusion follows.

From Theorem 1, we can obtain easily the following upper bound for the largest C-eigenvalue of a piezoelectric-type tensor.

Corollary 1. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ^* be the largest *C*-eigenvalue of \mathcal{A} . Then

$$\lambda^* \leq \rho$$

Next we give another interval to locate all C-eigenvalues of a piezoelectrictype tensor. Before that some notation are given. For a subset S of N, denote

$$\Delta_S := \{(i,j) : i \in S \text{ or } j \in S\}$$

and

$$\overline{\Delta}_S := \{ (i,j) : i \notin S \text{ and } j \notin S \}.$$

Given a piezoelectric-type tensor $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$, let

$$R_j^{\Delta_S,(3)}(\mathcal{A}) = \sum_{(l,k)\in\Delta_S} |a_{lkj}|, R_j^{\overline{\Delta}_S,(3)}(\mathcal{A}) = \sum_{(l,k)\in\overline{\Delta}_S} |a_{lkj}|,$$

where $R_j^{\Delta_S,(3)}(\mathcal{A}) = 0$ if $S = \emptyset$, and $R_j^{\overline{\Delta}_S,(3)}(\mathcal{A}) = 0$ if S = N. Obviously, $R_j^{(3)}(\mathcal{A}) = R_j^{\Delta_S,(3)}(\mathcal{A}) + R_j^{\overline{\Delta}_S,(3)}(\mathcal{A})$ for each $j \in N$.

Theorem 2. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ be a *C*-eigenvalue of \mathcal{A} . And let *S* be a subset of *N*. Then

$$\lambda \in [-\rho_S, \ \rho_S],\tag{8}$$

where

$$\rho_{S} := \max_{i,j \in N} \frac{1}{2} \left(R_{j}^{\Delta_{S},(3)}(\mathcal{A}) + \left((R_{j}^{\Delta_{S},(3)}(\mathcal{A}))^{2} + 4R_{i}^{(1)}(\mathcal{A})R_{j}^{\overline{\Delta}_{S},(3)}(\mathcal{A}) \right)^{\frac{1}{2}} \right).$$

Furthermore,

$$\lambda \in [-\rho_{min}, \ \rho_{min}],\tag{9}$$

where $\rho_{min} := \min_{S \subseteq N} \rho_S.$

Proof. Similarly to the proof of Theorem 1, (4) and (5) hold. Furthermore, by (5) we have

$$\begin{aligned} \lambda ||y_q| &\leq \sum_{i,j \in N} |a_{ijq}| |x_p| |y_q| \\ &= R_q^{(3)}(\mathcal{A}) |x_p| |y_q| \\ &= \left(R_q^{\Delta_S,(3)}(\mathcal{A}) + R_q^{\overline{\Delta}_S,(3)}(\mathcal{A}) \right) |x_p| |y_q| \\ &\leq R_q^{\Delta_S,(3)}(\mathcal{A}) |y_q| + R_q^{\overline{\Delta}_S,(3)}(\mathcal{A}) |x_p| \end{aligned}$$

Hence

$$\left(|\lambda| - R_q^{\Delta_S,(3)}(\mathcal{A})\right)|y_q| \le R_q^{\overline{\Delta}_S,(3)}(\mathcal{A})|x_p|.$$
(10)

Multiplying (4) with (10) yields

$$|\lambda| \left(|\lambda| - R_q^{\Delta_S,(3)}(\mathcal{A}) \right) |x_p| |y_q| \le R_p^{(1)}(\mathcal{A}) R_q^{\overline{\Delta}_S,(3)}(\mathcal{A}) |x_p| |y_q|,$$

consequently,

$$|\lambda| \left(|\lambda| - R_q^{\Delta_S,(3)}(\mathcal{A}) \right) \le R_p^{(1)}(\mathcal{A}) R_q^{\overline{\Delta}_S,(3)}(\mathcal{A}).$$
(11)

Solving (11) for $|\lambda|$ gives

$$|\lambda| \leq \frac{1}{2} \left(R_q^{\Delta_S,(3)}(\mathcal{A}) + \left((R_q^{\Delta_S,(3)}(\mathcal{A}))^2 + 4R_p^{(1)}(\mathcal{A})R_q^{\overline{\Delta}_S,(3)}(\mathcal{A}) \right)^{\frac{1}{2}} \right).$$

By an analogous way of Theorem 1, we have

$$\lambda \in [-\rho_S, \ \rho_S]. \tag{12}$$

Furthermore, since (12) holds for any $S \subseteq N$, it follows that

$$\lambda \in \bigcap_{S \subseteq N} [-\rho_S, \ \rho_S] = \left[-\min_{S \subseteq N} \rho_S, \ \min_{S \subseteq N} \rho_S\right] = [-\rho_{min}, \ \rho_{min}].$$

The conclusion follows.

Note here that if $S = \emptyset$, then $R_j^{\Delta_S,(3)}(\mathcal{A}) = 0$ and $R_j^{\overline{\Delta}_S,(3)}(\mathcal{A}) = R_j^{(3)}(\mathcal{A})$ for any $j \in N$, which implies

$$\frac{1}{2}\left(R_{j}^{\Delta_{S},(3)}(\mathcal{A}) + \left((R_{j}^{\Delta_{S},(3)}(\mathcal{A}))^{2} + 4R_{i}^{(1)}(\mathcal{A})R_{j}^{\overline{\Delta}_{S},(3)}(\mathcal{A})\right)^{\frac{1}{2}}\right) = \left(R_{i}^{(1)}(\mathcal{A})R_{j}^{(3)}(\mathcal{A})\right)^{\frac{1}{2}}$$

consequently,

$$\rho_S = \rho.$$

Hence,

$$\rho_{min} = \min_{S \subseteq N} \rho_S \le \rho.$$

This gives the comparison of the intervals in Theorem 1 and Theorem 2 as follows.

Theorem 3. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ be a *C*-eigenvalue of \mathcal{A} . Then

$$\lambda \in [-\rho_{min}, \ \rho_{min}] \subseteq [-\rho, \ \rho]_{\ell}$$

where ρ is defined in Theorem 1, and ρ_{min} is defined in Theorem 2.

Remark 1. Theorem 3 shows that the interval $[-\rho_{min}, \rho_{min}]$ captures all *C*-eigenvalues of a piezoelectric-type tensor precisely than the interval $[-\rho, \rho]$, although ρ_{min} needs more computations than ρ .

Similarly to Corollary 1, we can obtain easily the following upper bound for the largest C-eigenvalue of a piezoelectric-type tensor by Theorem 2.

Corollary 2. Let $\mathcal{A} = (a_{ijk}) \in \mathbb{R}^{n \times n \times n}$ be a piezoelectric-type tensor, and λ^* be the largest *C*-eigenvalue of \mathcal{A} . Then

$$\lambda^* \le \rho_{min}$$

3. Numerical examples

In this section, we give some examples to show the results obtained above. Consider the eight piezoelectric tensors in [1];

(I) The piezoelectric tensor \mathcal{A}_{VFeSb} [1, 4], with its entries

$$a_{123} = a_{213} = a_{312} = -3.68180677,$$

and other elements are zeros;

(II) The piezoelectric tensor \mathcal{A}_{SiO_2} [1, 2, 3], with its entries

 $a_{111} = -a_{122} = -a_{212} = -0.13685$, and $a_{123} = -a_{213} = -0.009715$,

and other elements are zeros;

(III) The piezoelectric tensor $\mathcal{A}_{Cr_2AgBiO_8}$ [1, 4], with its entries

$$a_{123} = a_{213} = -0.22163, \ a_{113} = -a_{223} = 2.608665$$

$$a_{311} = -a_{322} = 0.152485$$
, and $a_{312} = -0.37153$,

and other elements are zeros;

(IV) The piezoelectric tensor \mathcal{A}_{RbTaO_3} [1, 4], with its entries

$$a_{113} = a_{223} = -8.40955, \ a_{222} = -a_{212} = -a_{211} = -5.412525,$$

 $a_{311} = a_{322} = -4.3031, \ and \ a_{333} = -5.14766,$

and other elements are zeros;

(V) The piezoelectric tensor \mathcal{A}_{NaBiS_2} [1, 4], with its entries

$$a_{113} = -8.90808, \ a_{223} = -0.00842, \ a_{311} = -7.11526,$$

 $a_{322} = -0.6222, \ and \ a_{333} = -7.93831,$

and other elements are zeros;

(VI) The piezoelectric tensor $\mathcal{A}_{LiBiB_2O_5}$ [1, 4], with its entries

$$a_{123} = 2.35682, \ a_{112} = 0.34929, \ a_{211} = 0.16101, \ a_{222} = 0.12562,$$

 $a_{233} = 0.1361, a_{213} = -0.05587, a_{323} = 6.91074, and a_{312} = 2.57812,$ and other elements are zeros;

(VII) The piezoelectric tensor $\mathcal{A}_{KBi_2F_7}$ [1, 4], with its entries

$$\begin{split} a_{111} &= 12.64393, \ a_{122} = 1.08802, \ a_{133} = 4.14350, \ a_{123} = 1.59052, \\ a_{113} &= 1.96801, \ a_{112} = 0.22465, \ a_{211} = 2.59187, \ a_{222} = 0.08263, \\ a_{233} &= 0.81041, \ a_{223} = 0.51165, \ a_{213} = 0.71432, \ a_{212} = 0.10570, \\ a_{311} &= 1.51254, \ a_{322} = 0.68235, \ a_{333} = -0.23019, \ a_{323} = 0.19013, \\ a_{313} &= 0.39030, \ and \ a_{312} = 0.08381. \end{split}$$

(VIII) The piezoelectric tensor \mathcal{A}_{BaNiO_3} [1, 4], with its entries

 $a_{113} = a_{223} = 0.038385, \ a_{311} = a_{322} = 6.89822, \ and \ a_{333} = 27.4628,$

and other elements are zeros.

We now use the intervals in Theorem 1 and Theorem 2 to locate all Ceigenvalues of the eight tensors above, see Table 1. It is easy to see that for any C-eigenvalue λ ,

	\mathcal{A}_{VFeSb}	\mathcal{A}_{SiO_2}	$\mathcal{A}_{Cr_2AgBiO_8}$	\mathcal{A}_{RbTaO_3}	\mathcal{A}_{NaBiS_2}	$\mathcal{A}_{LiBiB_2O_5}$	$\mathcal{A}_{KBi_2F_7}$	\mathcal{A}_{BaNiO_3}
ρ	7.3636	0.2882	5.6606	30.0911	17.3288	15.2911	22.6896	38.8162
ρ_{min}	7.3636	0.2834	5.6606	23.5377	16.8548	12.3206	20.2351	35.3787
λ^*	4.2514	0.1375	2.6258	12.4234	11.6674	7.7376	13.5021	27.4628

$$\lambda \in [-\rho_{min}, \ \rho_{min}] \subseteq [-\rho, \ \rho].$$

Table 1. The intervals $[-\rho, \rho]$ and $[-\rho_{min}, \rho_{min}]$, and λ^* is the largest *C*-eigenvalue.

Acknowledgements

This work is partly supported by National Natural Science Foundations of China (11601473) and CAS "Light of West China" Program.

References

- Y.N. Chen, A. Jákli, L.Q. Qi. Spectral Analysis of Piezoelectric Tensors, arXiv:1703.07937v1 [math-ph], 2017.
- [2] J. Curie, P. Curie, Développement, par pression, de l'électricité polaire dans les cristaux hémièdres à faces inclinées, Comptes rendus (in French) 91, 294-295, 1880.
- [3] S. Haussühl, *Physical Properties of Crystals: An Introduction*, Wiley-VCH Verlag, Weinheim, 2007.
- [4] M. de Jong, W. Chen, H. Geerlings, M. Asta, K. A. Persson, A database to enable discovery and design of piezoelectric materials, Sci. Data 2, 150053, 2015.
- [5] A.L. Kholkin, N.A. Pertsev, A.V. Goltsev, *Piezolelectricity and crys*tal symmetry, in: A. Safari and E.K. Akdoğan, eds., Piezoelectric and Acoustic Materials, Springer, New York, 2008.
- [6] D.R. Lovett, Tensor Properties of Crystals, Second Edition, Institute of Physics Publishing, Bristol, 1989.
- [7] J.F. Nye, *Physical Properties of Crystals: Their Representation by Tensors and Matrices*, Second Edition, Clarendon Press, Oxford, 1985.
- [8] T. Zhang, G.H. Golub, Rank-one approximation to high order tensors, SIAM J. Matrix Anal. Appl. 23, 534-550, 2001.
- [9] W.N. Zou, C.X. Tang, E. Pan, Symmetric types of the piezotensor and their identification, Proc. R. Soc. A 469, 20120755, 2013.