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Abstract

The sine-Gordon equation turn up in several problems in science and engineer-
ing. Although it is integrable, in practical applications, its numerical solution
is powerful and versatile. Four novel implicit finite difference methods based on
(q, s) Padé approximations with (q + s)-th order in space have been developed
and analyzed for this equation; all share the same treatment for the nonlin-
earity and integration in time. Concretely, (0, 4), (2, 2), (2, 4), and (4, 4) Padé
methods; additionally, the energy conserving, Strauss–Vázquez scheme has been
considered in a (0, 2) Padé implementation. These methods have been compared
among them for both the kink–antikink and breather solutions in terms of global
error, computational cost and energy conservation. The (0, 4) and (2, 4) Padé
methods are the most cost-effective ones for small and large global error, re-
spectively. Our results indicate that spatial order of accuracy is more relevant
to effectiveness of a method than energy conservation even in very long time
integrations.

Keywords: Sine-Gordon equation, Padé numerical methods, Implicit time
integration, Solitons

1. Introduction

The sine-Gordon equation (sGE) arises in many branches of mathematical
physics. It was discovered in the study of surfaces of constant negative curva-
ture. It is also a continuum model for waves in coupled-pendulum, mechanical
systems, the magnetic-flux propagation in large Josephson junctions, the study5

of the domain wall dynamics in magnetic crystals, the propagation of crystal
dislocations in solids, the propagation of ultra-short optical pulses in optical
fibers, and as a nonlinear, effective, field theory for strong interactions in par-
ticle physics, among others [1, 2, 3]. The sGE is exactly solvable by the inverse
scattering method [4, 5, 6, 7], however it still continues to provide mathematical10

surprises and new physical applications [3], such in graphene superlattices [8].
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Let us briefly review the current state of the numerical solution of the
sGE. The first two numerical methods for the sGE were developed by Per-
ring and Skyrme (PS), a method of characteristics and a leapfrog finite dif-
ference scheme [9]. A staggered-leapfrog scheme was introduced by Ablowitz,15

Kruskal, and Ladik (AKL) with the goal of stabilizing the PS scheme [10]. An
energy-conserving, implicit, leapfrog finite difference scheme was developed by
Strauss and Vázquez (SV) for the Klein–Gordon equation [11], first used for
the sGE in Ref. [12]. A comparison of four leapfrog numerical schemes, the
PS, AKL, SV, and a new fully-explicit method shows that, for long-time inte-20

gration, the SV scheme is the best one [13]. Several generalizations of the SV
scheme, also energy-conserving and second-order in both space and time, have
been published [14, 15, 16, 17, 18]; the comparison among these methods shows
that implicitness is the key property for long-time stability, instead of energy
conservation [19]. However, a general procedure for the development of energy-25

conserving methods based on the nonlinear treatment of the SV scheme [20] and
starting from a discrete energy [21] have been developed.

Finite difference schemes based on (q, s) Padé approximants, with (q + s)-
th order in space, are also referred to as compact operator methods. Bratsos
and Twizell [22] used (0, 2), (1, 1), and (1, 2) Padé methods, Duncan [23] and30

Bratsos [24] a (2, 2) one, and Sari and Güarslan [25] a (2, 4) one, all with the
nonlinearity treatment of the PS scheme; a comparison of some of the Padé
methods with PS, AKL, and SV schemes shows that high-order methods are
more efficient for high accuracy [23]. Other Padé methods up to fourth-order
have been developed in Refs. [26, 27, 28], however, up to these authors’ knowl-35

edge, Padé methods with the nonlinearity treatment of the SV scheme have not
been either developed or analyzed.

Apart from finite differences, other numerical methods have also been used
for the sGE. Pseudospectral methods, like the split-step Fourier scheme [29, 30,
31], and spectral methods like an energy-conserving, Fourier scheme [32], a Leg-40

endre spectral element method [33], a wavelet spectral method [34, 35], and a
multiresolution analysis method based on Legendre wavelets [36]. Finite element
methods based on a Petrov–Galerkin scheme [37], and on a collocation scheme
using Legendre–Gauss–Lobatto points [38], or cubic B-splines [39]. Multisym-
plectic methods [40, 41], including a systematic method for discretizing Hamil-45

tonian partial differential equations preserving their energy exactly [32, 42], even
for arbitrary boundary conditions [43]. Moreover, meshless methods based on
multiquadric quasi-interpolation [44, 45], on radial basis fuctions [46, 47], and
on an optimal nodal distribution determined by the so-called optimal sampling
density of kernel interpolation time variables [48]. Even, exponentially-fitted50

and piecewise analytical methods [49], boundary element methods [50], local
discontinuous Galerkin methods [51, 52], and numerical implementations of the
inverse scattering transform have been developed for the sGE [53, 54]. Finally,
note that many of these methods have been extended to two and three dimen-
sions [55].55

Previous studies [23, 31, 35] pointed out that the spatial order of accuracy
is more important for accuracy than either the symplectic or the energy conser-
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vation property; although some authors have results that do not seem to agree
with it [49]. Hence, high-order methods must be explored. The goal of this
paper is to develop Padé methods with the nonlinearity treatment of the SV60

scheme.
The contents of this paper are as follows. Section 2 presents the five numer-

ical Padé approximation schemes for the sGE; their linear stability is studied
in Subsection 2.1. A detailed comparison of these methods is presented in Sec-
tion 3, for the propagation of both a kink-antikink solution in Subsection 3.1,65

and a breather in Subsection 3.2. Finally, the last section is devoted to some
conclusions.

2. Numerical schemes

The initial-value problem for the sine-Gordon equation is written in non-
dimensional form as70

∂2u

∂t2
− ∂2u

∂x2
+

dF (u)

du
= 0, x ∈ R, t ≥ 0, (1)

u(x, 0) = u0(x),
∂u

∂t
(x, 0) = u1(x), (2)

where F (u) = 1 − cos(u) is the potential energy, with Fu(u) ≡ dF (u)/du =
sin(u), and u(x, t) denotes the amplitude of the solution, x is the spatial coor-75

dinate, and t is time. The existence, uniqueness, and regularity of the solutions
of the initial-boundary value problem for the sGE can be proved by using the
same approach as for the inhomogeneous, linear wave equation; it is sufficient
to show the contractivity of Duhamel’s formula as a nonlinear integral operator.
In fact, Theorem B.5 in Ref. [56, Appendix B] states that for u0(x) ∈ Lp(R),80

∂u0(x)/∂x ∈ Lp(R), and u1(x) ∈ Lp(R), the unique weak solution of the sGE
for t ∈ [0, T ] is u(x, t) ∈ Lp(R) × L∞[0, T ]. Hence, high-order numerical meth-
ods can be applied without concern for consistency, since for enough regularity
in the initial condition, the classical solution achieves the same regularity.

The sGE is integrable in the sense of Liouville, having an infinite set of85

conservation laws. In order to assess the accuracy of the numerical methods, let
us use the momentum and the energy, given by

P (t) = −
∫

∞

−∞

(

∂u

∂t

) (

∂u

∂x

)

dx = P (0), (3)

E(t) =

∫

∞

−∞

(

1

2

(

∂u

∂t

)2

+
1

2

(

∂u

∂x

)2

+ F (u)

)

dx = E(0), (4)90

respectively. Since F (u) is positive definite, it can be shown that |P (t)| ≤
E; moreover, the speed of the kinks (antikinks) can be calculated as v(t) =
P (t)/E(t), thanks to the negative sign in the definition of the momentum.
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Let us consider five numerical methods for the solution of Eq. (1) by using
Padé approximants in space, all with the same central, second-order differences95

in time, and an approximation of the nonlinear term inspired in the conservative
method of Strauss–Vázquez [11]. The resulting scheme can be written as

Ai(E)
Un+1
m − 2Un

m + Un−1
m

∆t2
− Bi(E)U

n
m +Ai(E)H(Un+1

m ) = 0, (5)

with

H(Un+1
m ) ≡ F (Un+1

m )− F (Un−1
m )

Un+1
m − Un−1

m

, (6)100

where Un
m ≈ u(xm, tn) = un

m, with xm = m∆x, m ∈ Z, with ∆x as the grid
size, and tn = n∆t, n ∈ N, with ∆t as the time step, and A−1

i (E)Bi(E)u
n
m is

the i-th Padé approximation for the second-order spatial derivative of u(xm, tn)
in Method i, with E being the shift operator, i.e., EUn

m = Un
m+1. Hereon, for

the numerical solution of the initial-value problem of Eq. (1), periodic boundary105

conditions are used in the finite interval x ∈ (−L/2, L/2], with xm = −L/2 +
m∆x, m = 1, 2, . . . ,M , and ∆x = L/M (note that x0 ≡ xM ), and a finite time
interval t ∈ [0, T ], with tn = n∆t, n = 0, 1, . . . , N , and ∆t = T/N .

Method (5) is implicit, since the calculation of Un+1
m from Un

m and Un−1
m

requires the solution of a nonlinear equation. Let us use Newton’s iterative110

method given by

Ai(E)
(

U (k+1)
m − 2Un

m + Un−1
m

)

−∆t2 Bi(E)U
n
m

+∆t2 Ai(E)
(

H(U (k)
m ) +Hu(U

(k)
m ) (U (k+1)

m − U (k)
m )

)

= 0, (7)

with

Hu(U
(k)
m ) ≡ Fu(U

(k)
m ) (U

(k)
m − Un−1

m )− (F (U
(k)
m )− F (Un−1

m ))
(

U
(k)
m − Un−1

m

)2 . (8)115

Our stopping criterion for Newton’s iteration convergence is based on the rela-

tive error using the infinite norm, i.e., ‖U (k+1)
m −U

(k)
m ‖∞ ≤ Tol ‖U (k+1)

m ‖∞, with

‖U (k)
m ‖∞ = maxm |U (k)

m |, and Tol being a small enough tolerance.
There are catastrophic cancellations in the numerical evaluation of Eq. (6)

for H(U), and Eq. (8) for Hu(U), when |U − Un−1
m | ≪ 1. For the sGE, they120

can be avoided by rearranging the expression of H(U) by means of the exact
formula [17, 32, 42]

H(U) =
cos(U)− cos(Un−1

m )

U − Un−1
m

=
2 sin((U + Un−1

m )/2) sin((U − Un−1
m )/2)

U − Un−1
m

,

and that of Hu(U) by means of

Hu(U) =
sin(U)

U − Un−1
m

− 2 sin((U + Un−1
m )/2) sin((U − Un−1

m )/2)
(

U − Un−1
m

)2 .125
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The local truncation error terms Li(u) of Method i can be easily calculated
as follows; note that for smooth initial conditions the solution is smooth in both
space and time. By using Taylor series expansion after the substitution of Un

m

by the exact solution u(xm, tn) in Eq. (5) for the i-th method results in

Mi(u) ≡ G(u) + Li(u) = 0, (9)130

where G(u) is the sGE, cf.

G(u) ≡ ∂2u

∂t2
− ∂2u

∂x2
+ sin(u),

and the local truncation error is

Li(u) = T (u)∆t2 + Si(u)∆xpi + h.o.t., (10)

where h.o.t. stands for higher-order terms depending on u and its partial deriva-135

tives, pi is the approximation order of the Padé operator for i-th method, and

T (u) = −1

6
sin(u)

(

∂u

∂t

)2

+
1

2
cos(u)

∂2u

∂t2
+

1

12

∂4u

∂t4
.

Method 1. The finite difference method developed by Strauss and Vázquez [11]
is interpreted as a (0,2)-Padé method by using

A1(E) = I,140

B1(E) =
E−1 − 2 + E1

∆x2
,

where I is the identity operator. Method 1 is second-order accurate in space
(p1 = 2) since

B1(E)

A1(E)
u(xm, tn) =

∂2u

∂x2
+

∆x2

12

∂4u

∂x4
+O(∆x4).145

The local truncation error for the Strauss–Vázquez method, L1(u) in Eq. (10),
is given by

L1(u) = T (u)∆t2 − ∆x2

12

∂4u

∂x4
+ h.o.t. . (11)

Method 2. A novel (0,4)-Padé method of fourth-order in space, inspired
in the method of lines developed by Duncan [23, section 2.5] using symplectic150

and Dormand–Prince, Runge–Kutta methods, but with the SV scheme for the
nonlinearity, given as

A2(E) = I,

B2(E) =
−E−2 + 16E−1 − 30 + 16E1 − E2

12∆x2
.155
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By using Taylor series expansion, the Padé operator yields

B2(E)

A2(E)
u(xm, tn) =

∂2u

∂x2
− ∆x4

90

∂6u

∂x6
+O(∆x6).

The local truncation error for this method is given by

L2(u) = T (u)∆t2 +
∆x4

90

∂6u

∂x6
+ h.o.t.. (12)

Method 3. A novel (2,2)-Padé method of fourth-order in space, inspired in160

the compact operator methods used by Duncan [23, section 2.4], but incorpo-
rating the SV scheme for the nonlinearity, which can written as

A3(E) =
E−1 + 10 + E1

12
,

B3(E) =
E−1 − 2 + E1

∆x2
,165

which approximates the second-order derivative up to the fourth-order, as shown
by Taylor series expansion,

B3(E)

A3(E)
u(xm, tn) =

∂2u

∂x2
− ∆x4

240

∂6u

∂x6
+O(∆x6).

The local truncation error for this method is given by

L3(u) = T (u)∆t2 +
∆x4

240

∂6u

∂x6
+ h.o.t.. (13)170

Method 4. A novel (2,4)-Padé method of sixth-order in space, with the SV
scheme for the nonlinearity, given by

A4(E) =
2E−1 + 11 + 2E1

3
,

B4(E) =
E−2 + 16E−1 − 34 + 16E1 + E2

4∆x2
,175

which can be easily checked by Taylor series expansion yielding

B4(E)

A4(E)
u(xm, tn) =

∂2u

∂x2
+

23∆x6

75600

∂8u

∂x8
+O(∆x8).

In this case, the local error is

L4(u) = T (u)∆t2 − 23∆x6

75600

∂8u

∂x8
+ h.o.t.. (14)

6



Method 5. A novel (4,4)-Padé method of eighth-order in space, with the180

SV scheme for the nonlinearity, which can be written as

A5(E) =
23E−2 + 688E−1 + 2358 + 688E1 + 23E2

15
,

B5(E) =
31E−2 + 128E−1 − 318 + 128E1 + 31E−2

∆x2
,

whose accuracy can be verified by Taylor series expansion resulting in185

B5(E)

A5(E)
u(xm, tn) =

∂2u

∂x2
− 79∆x8

4762800

∂10u

∂x10
+O(∆x10).

In this case, the local error is

L5(u) = T (u)∆t2 +
79∆x8

4762800

∂10u

∂x10
+ h.o.t. . (15)

For a fair comparison of the five methods the discrete analogue of the en-
ergy (4) given by190

En = ∆x
∑

m

[

1

2

(

Un+1
m − Un

m

∆t

)2

+
1

2

(

Un+1
m+1 − Un+1

m

∆x

)

(

Un
m+1 − Un

m

∆x

)

]

+∆x
∑

m

[

F (Un+1
m ) + F (Un−1

m )

2

]

, (16)

is used; this discrete energy is exactly conserved (En = E0) by the SV method [11].
Neither of the Methods 2–5 exactly conserve it.

In order to numerically estimate the speed of the kinks (antikinks) by means195

of v(t) = P (t)/E(t), a discrete analogue of the momentum (3) given by

Pn = −∆x
∑

m

[(

Un+1
m − Un−1

m

2∆t

) (

Un
m+1 − Un

m−1

2∆x

)]

, (17)

has been used [11]. Note that neither of the Methods 1–5 exactly conserve this
discrete momentum.

2.1. Stability analysis200

The linear stability of Methods 1–5 can be easily studied by means of using
the von Neumann analysis. The computational error Zn

m = Un
m −Un∗

m , with re-
spect to a given solution Un∗

m , can be Fourier expanded as Zn
m = exp(imβ∆x) ξn,

where i =
√
−1, β is the spatial frequency, and ξ is the amplification factor, and

substituted into Eq. (5) with F ≡ 0. After cancelling common factors, the205

resulting polynomial equation for ξ is given by

pi(ξ) = Ai ξ
2 − 2Bi ξ +Ai = 0, (18)
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whose two roots ξ1 and ξ2 have modulus smaller than or equal to unity for every
ξ if and only if |Bi| ≤ Ai, i.e., −Ai ≤ Bi ≤ Ai. These two inequalities yield
necessary condition for linear stability on both ∆x and ∆t.210

Method 1. The (linear) stability polynomial (18) for the Strauss–Vázquez
method has coefficients

A1 = 1, B1 = 1− 2 r2 sin2(ω), (19)

where r = ∆t/∆x, and ω = β∆x/2. For stability, the condition B1 ≤ A1 is
always true, and the condition −A1 ≤ B1 gives215

2 r2 sin2(ω) ≤ 2,

(

∆t

∆x

)2

≤ 1, ∆t ≤ ∆x. (20)

Note that this is the CFL condition.
Method 2. The stability polynomial (18) for this method is given by220

A2 = 1, B2 = 1− 8 r2

3
sin2(ω) +

r2

6
sin2(2ω). (21)

In this case, the condition B2 ≤ A2 yields

0 ≤ 8

3
sin2(ω)− 1

6
sin2(2ω) ≤ 8

3
,

being always true, and the condition −A2 ≤ B2 gives

r2
(

8

3
sin2(ω)− 1

6
sin2(2ω)

)

≤ 2,225

(

∆t

∆x

)2

≤ 3

4
, ∆t ≤

√
3

2
∆x ≤ ∆x. (22)

Method 3. This method has a stability polynomial (18) with coefficients

A3 = 1− 1

3
sin2(ω), (23)

230

B3 = 1− 1

3
sin2(ω)− 2 r2 sin2(ω). (24)

In this case, the condition B3 ≤ A3 is always true, and the condition −A3 ≤ B3

gives

2 r2 sin2(ω) ≤ 2− 2

3
sin2(ω),
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235

2 r2 sin2(ω) ≤ 2− 2

3
=

4

3
,

(

∆t

∆x

)2

≤ 2

3
, ∆t ≤

√
6

3
∆x ≤ ∆x. (25)

Method 4. The stability polynomial (18) of this method is given by

A4 = 5− 8

3
sin2(ω), (26)240

B4 = 5− 8

3
sin2(ω)− 8 r2 sin2(ω)− r2

2
sin2(2ω). (27)

In this case, the condition B4 ≤ A4 is always true, and the condition −A4 ≤ B4

gives

r2
(

8 sin2(ω) +
1

2
sin2(2ω)

)

≤ 10− 16

3
sin2(ω),245

(

∆t

∆x

)2

≤ 7

12
, ∆t ≤

√
21

6
∆x ≤ ∆x. (28)

Method 5. The stability polynomial (18) of this method is given by

A5 = 252− 2752

15
sin2(ω)− 92

15
sin2(2ω), (29)

250

B5 = 252− 2752

15
sin2(ω)− 92

15
sin2(2ω) (30)

− 504 r2 sin2(ω) + 248 r2 sin4(ω). (31)

In this case, the condition B5 ≤ A5 is always true, and the condition −A5 ≤ B5

gives

r2
(

504 sin2(ω)− 248 sin4(ω)
)

255

≤
(

504− 5504

15
sin2(ω)− 184

15
sin2(2ω)

)

,

(

∆t

∆x

)2

≤ 257

480
, ∆t ≤

√
7710

120
∆x ≤ ∆x. (32)

Nonlinear stability theorems are direct by-products of the discrete conser-
vation properties. Method 1 exactly conserves the discrete energy En, however260
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it is not positive definite (the product (Un+1
m+1 −Un+1

m ) (Un
m+1 − Un

m) is not nec-
essarily greater than zero). Hence no strong nonlinear stability theorem can be
proved [17]. However, under the CFL condition, ∆t ≤ ∆x, the discrete energy
is positive definite and Method 1 is nonlinearly stable, as proved by Comech and
Komech [57]. The nonlinear stability of Methods 2–5 has not yet been studied265

in the literature.
The nonlinear stability and consistency of Method 1 ensures its convergence

thanks to the Lax equivalence theorem. However, in long-time integrations of
solutions growing in amplitude, like the kink-antikink collisions under periodic
boundary conditions, nonconvergent results have been observed [58, 40]; such270

problems have not been observed with bounded solutions, like breathers. In the
case of Methods 2–5, the linear stability and consistency ensures local conver-
gence thanks to the Lax equivalence theorem. The behaviour of these methods
in long-time integrations should be explored.

3. Numerical results275

Let us summarize the results obtained for the behaviour in space of Meth-
ods 1-5 after an extensive set of simulations for both kink–antikink and breather
solution for the sGE. The five methods are compared in terms of global error,
energy conservation, computational cost, and behaviour in long-time integra-
tions. Subsection 3.1 presents the results for a kink–antikink collision solution,280

and Subsection 3.2 for the breather solution.

3.1. Kink–antikink

Let us consider the analytical solution of the sGE given by

uka(x, t) = 4 tan−1 sinh(v (t− 10)/r−)

v cosh(x/r−)
, (33)

where r− =
√
1− v2, and v = 1/2, corresponding to a kink–antikink collision.285

For the validation and comparison of Methods 1–5, the initial conditions (2) are
approximated by means of U0

m = uka(xm, 0), and U−1
m = uka(xm,−∆t), and

the numerical solution Un
m for n = 2, 3, . . . , N , is calculated for different values

of ∆t and ∆x, always with T = 20, L = 50, and Tol = 10−14.
Figure 1 (left plot) shows the numerical error ‖UN

m − uka(xm, 20)‖∞ for290

Methods 1–5 with ∆t = 0.001 as a function of ∆x ∈ [0.001, 1]. The linear
stability conditions in Section 2.1 for ∆t = 1/1000 requires that ∆x ≥ 1/1000,
& 1/866, & 1/816, & 1/764, and & 1/731, for Methods 1–5, resp.; hence, in
Fig. 1 the plots only show the results when ∆x ≥ 1/800, ≥ 1/800, ≥ 1/700,
and ≥ 1/700 for Methods 2–5, respectively. The spatial order of the methods295

can be validated by means of linear fitting of the logarithm of the error versus
the logarithm of the grid size when the error in time is smaller than the error in
space; in our case, for ∆x ∈ {0.2, 0.3, . . . , 1.0}, the resulting slopes are given by
2.8, 4.7, 5.0, 7.2, and 8.7, for Methods 1–5, respectively, in agreement with the
theoretical consistency order, cf. 2, 4, 4, 6, and 8, resp. Hence, for ∆x > 0.1 the300
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Figure 1: Numerical error (left plot) and computational cost (right plot) for the kink-antikink
solution with T = 20 and ∆t = 1/1000 as a function of ∆x ∈ {1/1000, 1/900, 1/800, . . . ,
1/100, 1/90, 1/80, . . . , 1/10, 2/10, 3/10, . . . , 1}, for Methods 1–5.
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Figure 2: Numerical error of the discrete analogue of the energy (16) for the kink-antikink
solution with T = 20 and ∆t = 0.001 as a function of ∆x ∈ {1/1000, 1/900, 1/800, . . . , 1/100,
1/90, 1/80, . . . , 1/10, 2/10, 3/10, . . . , 1}, for Methods 1–5. The left plot shows |EN − E0|,
the numerical approximation of |E(T )− E(0)|, and right plot shows ‖En −E0‖∞.

high-order methods are more accurate than the lower order ones. However, for
∆x . 0.03 for Method 2, ∆x . 0.05 for Method 3, and ∆x . 0.1 for Methods 4
and 5, the error for Methods 2–5 reaches a constant value ≈ 8.0 × 10−7, due
to the error in time; such a plateau error can be reduced by using values of
∆t < 0.001.305

Figure 1 (right plot) shows the computational cost, estimated by using the
run-time in seconds, for Methods 1–5 with ∆t = 0.001 as a function of the
numerical error. Method 2 is the most efficient one for errors larger than 10−3,
but its cost is similar in magnitude to that of high-order methods. For errors
smaller than 10−3, Methods 4 and 5 are the most cost-effective ones, being310

about tens of times more efficient than Method 1.
The energy of Methods 1–5 is illustrated in Figure 2, where the discrete ana-

logue of the energy (16), exactly conserved by Method 1, has been used instead
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Figure 3: Evolution in time of the energy En −E0 (approximation to E(t)−E(0)), left plot,
and of the speed V (t), right plot, of the kink-antikink solution with T = 20, ∆t = 0.001, and
∆x = 0.01, for Methods 1–5.

of a high-order approximation for the exact energy (4); this choice has been
motivated by the aim of making a fair comparison of the energy conservation315

properties among all the methods. Figure 2 shows the value of |EN − E0| (left
plot) and ‖En−E0‖∞ (right plot) for Methods 1–5 with T = 20 and ∆t = 0.001
as a function of ∆x ∈ [0.001, 1].

Figure 2 (left plot) shows that, as expected, Method 1 conserves the energy
for all ∆x, but Methods 2–5 only show good conservation properties for very320

accurate solutions, when ∆x is smaller than ∼ 0.04; for larger values of ∆x the
error in the energy decreases as the grid size does, with a slope that increases
with the order of the method.

Figure 2 (right plot) shows that the maximum error in the energy is constant
for Method 1, but its value decreases with ∆x for Methods 2–5; surprisingly, it325

coincides among them, being independent of the spatial order of the method.
Moreover, this value is O

(

∆x2
)

, the order of approximation in space of the
discrete energy (16). Figure 3 (left plot) shows that the maximum error in
the energy is reached at t = T/2, where the solution and its spatial derivative
becomes null, but its time derivative has a local maximum; in such a point the330

error in the discrete energy is dominated by the method of integration in time,
which is exactly the same for Method 2–5. In our opinion, this is the origin of
the features observed in Fig. 2 (right plot).

The speed v(t) = P (t)/E(t) of the exact kink-antikink solution is zero. How-
ever, the speed of the kink (antikink) before (after) the collision can be estimated335

by using the half-interval speed v1/2(t) = 2P1/2(t)/E(t), where P1/2(t) is the
half-momentum calculated by means of the integration of Eq. (3) in x ∈ (−∞, 0);
note that, the factor 2 is necessary because the energy is calculated in the whole
real line. Figure 3 (right plot) shows the evolution in time of v1/2(t), numerically
calculated by the discrete half-momentum, summing for m ∈ {1, 2, . . . ,M/2} in340

Eq. (17); Methods 1–5 conserve the half-momentum with an error smaller than
the resolution of the plot, so the corresponding curves shows overlapped in the
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figure. Before the collision, v1/2(t) is the speed of the kink, decreasing monoton-
ically from v1/2(0) = 1/2 to v1/2(T/2) = 0; during the collision, v1/2(t) shows a
tiny plateau, but a careful analysis shows that it is only apparent; after the col-345

lision, v1/2(t) is negative, as expected for the speed of the antikink, decreasing
monotonically from v1/2(T/2) = 0 to v1/2(T ) = −1/2.

Following Ablowitz et al. [58] and Marsden et al. [40] long-time integration
of the kink-antikink solution have been executed for both odd (M = 255) and
even (M = 256) number of spatial nodes, with v = 1/10, L = 40, ∆x = L/M ,350

∆t = ∆x/8, and T = 200000, corresponding to an exact solution undergoing
1297 kink-antikink collisions. The results show that the solution of the high-
order methods at t = T is not a kink-antikink solution, but it is degraded by
the accumulation of round-off errors. Specifically, Method 4 results in unreliable
solutions in both even and odd M , but Method 3 only for evenM , and Method 5355

only for odd M . Ablowitz et al. [58] explained this behaviour depending on the
parity of the number of spatial points is due to homoclinic crossings induced
by the numerical errors since the initial solution is near a homoclinic orbit.
Methods 1 and 2 are stable, but there are errors in the speed of the numerical
solitons that result in an incorrect number of collisions with respect to the exact360

solution. In summary, our best long-time integration results are obtained with
Method 2 for both even and odd M , and also with Method 5 but only for even
M .

3.2. Breather

The breather solution of the sGE is given by365

ubr(x, t) = 4 tan−1 (sin(v (t− 10)/r+) sech(x/r+)/v) , (34)

where r+ =
√
1 + v2, and v = 1/2. Let us compare Methods 1–5 with the

initial conditions (2) approximated by means of U0
m = ubr(xm, 0), and U−1

m =
ubr(xm,−∆t), and the numerical solution Un

m for n = 2, 3, . . . , N , is calculated
for different values of ∆t and ∆x, always with T = 20, L = 50, and Tol = 10−14.370

Figure 4 (left plot) shows the numerical error ‖UN
m−ubr(xm, 20)‖∞ for Meth-

ods 1–5 with ∆t = 0.001 as a function of ∆x ≥ ∆t. The estimation of the spatial
order of the methods by means of linear fitting for ∆x ∈ {0.3, 0.4, . . . , 1.0}, re-
sults in 2.0, 4.3, 4.8, 6.8, and 8.7, for Methods 1–5, respectively, similar to the
expected values of the theoretical consistency order. Hence, for ∆x > 0.2 the375

high-order methods are more accurate than the lower order ones. However, for
∆x . 0.03 for Method 2, ∆x . 0.05 for Method 3, ∆x . 0.1 for Method 4,
and ∆x . 0.2 for Method 5, the error for Methods 2–5 is dominated by error
in time, reaching a constant value ≈ 7.0 × 10−7; as expected, using values of
∆t < 0.001, the plateau error can be reduced.380

Figure 4 (right plot) shows the run-time (in seconds) for Methods 1–5 with
∆t = 0.001 as a function of the numerical error. Method 2 is the most efficient
one for errors larger than 10−4, but its cost is similar in magnitude to that of
high-order methods; for errors smaller than 10−4, Method 4 is the most cost-
effective one, but Methods 2, and 5 have similar cost.385
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Figure 4: Numerical error (left plot) and computational cost (right plot) for the breather
solution with T = 20 and ∆t = 1/1000 as a function of ∆x ∈ {1/1000, 1/900, 1/800, . . . ,
1/100, 1/90, 1/80, . . . , 1/10, 2/10, 3/10, . . . , 1}, for Methods 1–5.
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Figure 5: Numerical error of the discrete analogue of the energy (16) for the breather solution
with T = 20 and ∆t = 0.001 as a function of ∆x ∈ {1/1000, 1/900, 1/800, . . . , 1/100, 1/90,
1/80, . . . , 1/10, 2/10, 3/10, . . . , 1}, for Methods 1–5. The left plot shows |EN − E0|, the
numerical approximation of |E(T )−E(0)|, and right plot shows ‖En − E0‖∞.
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Figure 6: Numerical energy (left plot) and speed (right plot) of the breather solution with
T = 20, ∆t = 0.001, and ∆x = 0.01, for Methods 1–5.

Figure 5 (left plot) shows that, as expected, Method 1 conserves the energy
for all ∆x, but Methods 2–5 only show good conservation properties for very
accurate solutions, when ∆x is smaller than ∼ 0.05; for larger values of ∆x the
error in the energy decreases as the grid size does, with a slope that increases
with the order of the method. Figure 5 (right plot) shows that the maximum390

error in the energy is constant for Method 1, but its value decreases with ∆x
for Methods 2–5, as previously observed for the kink-antikink solution in Sec-
tion 3.1. The maximum error in the energy is of the order of approximation in
space of the discrete energy (16), i.e., O

(

∆x2
)

.
Figure 6 (left plot) shows that the maximum error in the energy for Meth-395

ods 1–5. It is constant for Method 1, but it oscillates at the same frequency that
the breather solution does, for Methods 2–5, with three maxima at t = 2.98,
10.0, and 17.0. At these maxima, the breather solution and its spatial derivative
becomes null, hence the maximum error in the discrete energy is dominated by
the method of integration in time, which is exactly the same for Method 2–5.400

Figure 6 (right plot) shows the evolution in time of v1/2(t), cf. Section 3.1,
for the numerical breather solution; note that the exact breather has a speed
v(t) = 0. Methods 1–5 show the same oscillatory behaviour for v1/2(t), thanks
to their good conservation properties for the momentum. The value of v1/2(t)
oscillates at the same frequency that the breather, with local maxima at t = 1.33,405

8.36, and 15.4, and local minima at t = 4.62, 11.6, and 18.7. Between the
maxima and minima there is a tiny plateau, at the same position of the maxima
in Fig. 6 (left plot); its origin is similar to the one observed in the kink-antikink
solution in Section 3.1.

4. Conclusions410

Five numerical schemes for the sGE have been developed and analyzed. All
use the same second-order differences in time and the same approximation to the
nonlinearity, with a proper rearrangement to avoid catastrophic cancellations in
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its numerical evaluation; they are implicit, so Newton’s iterative method has
been used. Method 1 is the classical Strauss–Vázquez method, interpreted as415

a (0,2)-Padé numerical method; this method conserves a discrete analog of the
energy of the sGE and it is of second-order in space. Methods 2–5 are (0,4)-,
(2,2)-, (2,4)-, and (4,4)-Padé methods which fourth-, fourth-, sixth-, and eighth-
order of accuracy in space. The local truncation error terms of the five methods
have been calculated by using Taylor series expansion. The linear stability of420

Methods 1–5 has been studied by using the von Neumann analysis, showing
that (∆t/∆x)2 ≤ 1, 3/4, 2/3, 7/12, and 257/480, for Methods 1–5, resp.

Methods 1–5 have been compared for both the kink–antikink and breather
solutions of the sGE with ∆t = 0.001 and ∆x ∈ [1/1000, 1]. The results are
similar in both cases. For large enough ∆x with respect to ∆t, the spatial order425

of the methods has been validated; however, for small ∆x the global error is
dominated by the contribution of the common method of integration in time.
The computational cost (the run-time in seconds) for Methods 1–5 shows that
Method 2 is the most efficient one for errors larger than 10−3 and 10−4 for the
kink–antikink and breather solutions, resp.; but for smaller errors Method 4430

and 5 are the most cost-effective ones.
Method 1 exactly conserves a discrete energy analogous to the energy of

the sGE, but Methods 2–5 shows good conservation properties for accurate
solutions, with the error in the energy decreasing as the grid size does, with
a slope that increases with the order of the method. In fact, the maximum435

error in the energy is constant for Method 1, but it is O
(

∆x2
)

, the order of
approximation in space of the discrete energy, for Method 2–5; for the kink-
antikink solution this maximum is located at the center of the collision, but
for the breather solution oscillates at the same frequency as the breather; in
both cases, the maximum is reached where the amplitude and spatial derivative440

of the solution are null. The speed of the kink (antikink) before (after) the
collision in the kink-antikink solution has been estimated using the half-interval
speed calculated by the half-interval momentum; the results coincide among
Methods 1–5, decreasing monotonically from 1/2 before the collision to −1/2
after it, for the kink-antikink solution. The half-interval speed has also been445

calculated for the breather solution, showing an oscillatory behaviour at the
same frequency that the breather.

In long-time integrations, the best results have been obtained by using
Method 2, and also Method 5 but only for an even number of spatial points.
Method 1 exactly conserves an analogue of the energy, but this property it is450

not enough to avoid the accumulation of error in the speed of the solitons, that
degrades the solution with large amounts of noise (contradicting the theoretical
results of convergence published in the literature). For an initial solution near a
homoclinic orbit, Method 4 yields noisy solutions for both even and odd number
of spatial nodes, Method 3 only for even M , and Method 5 only for odd M .455

In summary, our analysis indicates that Method 2 and Method 4 are the most
cost-effective ones for small and large error, resp., in short-time integrations, and
Method 2 and Method 5, the last one with an even number of spatial points, are
the best ones for long-time integrations. Comparing the fourth-order methods,
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Method 2 is better than Method 3, even if its local truncation error term is460

smallest (the sixth-order spatial derivative is multiplied by a smaller number).
Comparing the higher-order methods, Method 5 is better than Method 4 for
long-time integrations. Except in terms of linear stability, it turns out that the
widely used Method 1 is the worst among the other methods studied in this
paper, in spite of his energy conservation property.465

Our results indicate that to attain a very small global error our high-order
methods in space require a high-order scheme in time. There are several possibil-
ities to be explored in the future, either Richardson extrapolation, or diagonally
implicit Runge–Kutta–Nyström methods, or even modified equation techniques.
The theoretical analysis of the nonlinear stability and convergence of the four470

novel methods developed in this paper is also an open problem requiring further
research.
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