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Abstract

In this paper, we study symmetric integrators for solving second-order ordinary differential

equations on the basis of the notion of continuous-stage Runge-Kutta-Nyström methods. The

construction of such methods heavily relies on the Legendre expansion technique in conjunction

with the symmetric conditions and simplifying assumptions for order conditions. New families

of symmetric integrators as illustrative examples are presented. For comparing the numerical

behaviors of the presented methods, some numerical experiments are also reported.

Keywords: Continuous-stage Runge-Kutta-Nyström methods; Reversible systems; Symmetric
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1. Introduction

Numerical integration that preserves at least one of geometric properties of a given dynamical

system has attracted much attention in these years [13, 15, 24]. As suggested by Kang Feng [11, 13],

it is natural to look forward to those discrete systems which preserve as much as possible the intrinsic

properties of the continuous system — this is a truly ingenious idea for devising “good” integrators

to properly simulate the evolution of various dynamical systems with geometric features. It is

evidenced that numerical methods with such a special purpose can not only perform a more accurate

long-time integration than those traditional methods without any geometric-feature preservation,

but also produce an improved qualitative behavior [15]. Such type of methods, generally associated

with the terminology “geometric integration”, are distinguished by the geometric properties they

inherit, including symplectic methods for Hamiltonian systems, symmetric methods for reversible

systems, volume-preserving methods for divergence-free systems, invariant-preserving methods for

conservative systems, multi-symplectic methods for Hamiltonian partial differential equations etc.

For more details, we refer the interested readers to [11, 13, 15, 24, 17] and references therein.

Reversible systems and reversible maps are of interest in both aspects of theoretical study and

numerical simulation for many differential equations [15]. Let ρ be an invertible linear transfor-

∗Corresponding author.
Email addresses: tangws@lsec.cc.ac.cn (Wensheng Tang), jjzhang06@outlook.com (Jingjing Zhang)

Preprint submitted to Elsevier June 11, 2019

ar
X

iv
:1

90
1.

00
10

7v
2 

 [
m

at
h.

N
A

] 
 1

0 
Ju

n 
20

19



mation in the phase space of a first-order system given by1 z′ = f(z), then the system is called

ρ-reversible if [15]

ρf(z) = −f(ρz), for ∀ z,

and a map φ(z) is called ρ-reversible if

ρ ◦ φ = φ−1 ◦ ρ.

Particularly, it is shown in [15] that all second-order systems with the form z′′ = f(z) are reversible

as they can be transformed into reversible first-order systems. In addition, notice that the exact

flow of a reversible system is a reversible map, it is therefore natural to find a numerical method Φh,

which is better referred to as a reversibility-preserving integrator, such that it is also a reversible

map (i.e., ρ ◦ Φh = Φ−1h ◦ ρ). It is known that a number of symmetric integrators automatically

possess this property, e.g., all symmetric Runge-Kutta (RK) methods, some partitioned Runge-

Kutta (PRK) methods for special partitioned systems, some composition and splitting methods,

and standard projection methods for differential equations on special manifolds (see [15], page 145).

To be specific, we quote the following result from [25].

Theorem 1.1. [25] A Runge-Kutta method or a Runge-Kutta-Nyström (RKN) method is reversible

iff it is symmetric.

Thanks to the property of reversibility preservation, symmetric integrators often have an ex-

cellent long-time numerical behavior than those non-symmetric integrators for reversible systems

[15]. So far, a wide variety of effective symmetric integrators have been proposed (see [6, 7, 9, 13,

15, 19, 25] and references therein).

In the context of geometric integration, the greatest interest has been given to the develop-

ment of symplectic integrators for solving Hamiltonian systems over the last decades [13, 15, 24].

However, if the Hamiltonian H(p, q) satisfies H(−p, q) = H(p, q), then the system is reversible

with respect to the linear transformation ρ : (p, q) 7→ (−p, q). Particularly, a well-known class of

separable Hamiltonian systems determined by the Hamiltonian H(p, q) = 1
2p
TMp+ U(q) happens

to be such type of reversible systems. Therefore, it makes sense for devising a numerical method

that preserves symplecticity and reversibility at the same time, and fortunately, this has been

shown to be an attainable goal (see [6, 13, 14, 15, 22, 26, 28] and references therein). Besides, a

numerical method which is energy-preserving and reversibility-preserving can also be of interest

[1, 2, 3, 4, 5, 16, 23, 26, 28].

In recent years, numerical methods with infinitely many stages including continuous-stage

Runge-Kutta (csRK) methods, continuous-stage partitioned Runge-Kutta (csPRK) methods and

continuous-stage Runge-Kutta-Nyström (csRKN) methods are presented and discussed by several

authors, see [1, 16, 18, 20, 21, 26, 27, 28, 29, 31, 32, 33, 34, 35]. They can be viewed as the natural

generalizations of numerical methods with finite stages (e.g., classical RK methods). It is shown

in [28, 29, 31, 32, 33, 34, 35] that by using continuous-stage methods many classical RK, PRK

and RKN methods of arbitrary order can be derived, without resort to solving the tedious nonlin-

ear algebraic equations (associated with order conditions) in terms of many unknown coefficients.

1If the system is non-autonomous, we can introduce an extra equation namely ṫ = 0 to rewrite the original system

as an autonomous system.
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The construction of continuous-stage methods seems much easier than that of those traditional

methods with finite stages, as the associated Butcher coefficients are “continuous” or “smooth”

functions and hence they can be treated by using some analytical tools [28, 29, 31, 32, 33, 34, 35].

Moreover, as presented in [4, 16, 18, 20, 21, 28, 29, 31, 32, 33, 34, 35], numerical methods serving

some special purpose including symplecticity-preserving methods for Hamiltonian systems, sym-

metric methods for reversible systems, energy-preserving methods for conservative systems can

also be established within this new framework. Besides, a well known negative result we have

to mention here is that no RK methods is energy-preserving for general non-polynomial Hamilto-

nian systems [8], in contrast to this, energy-preserving csRK methods can be easily constructed

[1, 2, 16, 18, 23, 26, 27, 28, 20]. In addition, as presented in [27, 30], some Galerkin variational

methods can be interpreted as continuous-stage (P)RK methods, but they can not be completely

understood in the classical (P)RK framework. Therefore, continuous-stage methods have granted

us a new insight for numerical integration of differential equations and some subjects in this new

area need to be investigated.

Since symmetric integrators possess important theoretical and real values in numerical ordinary

differential equations [7, 15, 19, 25], we are concerned with the development of new symmetric

integrators for solving second-order ordinary differential equations (ODEs). The construction of

such methods in this paper is on the basis of the notion of csRKN methods and heavily relies

on the Legendre polynomial expansion technique. Furthermore, by using Gaussian and Lobatto

quadrature formulas we show that new families of symmetric RKN-type schemes can be easily

devised. Moreover, by Theorem 1.1, these methods are also reversibility-preserving and therefore

very suitable for solving reversible systems.

This paper will be organized as follows. In Section 2, we introduce the exact definition of csRKN

methods for solving second-order ODEs and the corresponding order theory previously developed in

[32] will be briefly revisited. In Section 3, by using Legendre expansion technique, we present some

useful results for devising symmetric integrators which is then followed by giving some illustrative

examples for deriving new symmetric integrators in Section 4. Some numerical experiments are

reported in section 5. At last, we give some concluding remarks in Section 6 to end this paper.

2. Continuous-stage RKN method and its order theory

In this section, we will recall the notion of the so-called continuous-stage Runge-Kutta-Nyström

(csRKN) methods and review some known results which are useful for constructing such methods

of arbitrarily high order. For more details, see [31, 32].

2.1. Continuous-stage RKN method

Consider the following initial value problem governed by a second-order system

q′′ = f(t, q), q(t0) = q0, q
′(t0) = q′0, (2.1)

where f : R× Rd → Rd is a smooth vector-valued function.

A well-known numerical method for solving (2.1) is the so-called RKN method with s stages,
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which can be depicted as

Qi = q0 + hciq
′
0 + h2

s∑
j=1

āijf(t0 + cjh,Qj), i = 1, · · · , s, (2.2a)

q1 = q0 + hq′0 + h2
s∑
i=1

b̄if(t0 + cih,Qi), (2.2b)

q′1 = q′0 + h
s∑
i=1

bif(t0 + cih,Qi), (2.2c)

and it can be characterized by the following Butcher tableau

c Ā

b̄

b

where Ā = (āij)s×s, b̄ = (b̄1, · · · , b̄s)T , b = (b1, · · · , bs)T , c = (c1, · · · , cs)T . Compared with an

s-stage RK method applied to the corresponding first-order system deduced from (2.1), the RKN

method is preferable since about half of the storage can be saved and the computational work can

be reduced a lot [14].

As a counterpart of the classical RKN method, the csRKN method can be formally defined.

Definition 2.1. [31] Let Āτ,σ be a function of variables τ, σ ∈ [0, 1] and B̄τ , Bτ , Cτ be functions

of τ ∈ [0, 1]. For solving (2.1), the continuous-stage Runge-Kutta-Nyström (csRKN) method as a

one-step method mapping (q0, q
′
0) to (q1, q

′
1) is given by

Qτ = q0 + hCτq
′
0 + h2

∫ 1

0
Āτ,σf(t0 + Cσh,Qσ)dσ, τ ∈ [0, 1], (2.3a)

q1 = q0 + hq′0 + h2
∫ 1

0
B̄τf(t0 + Cτh,Qτ )dτ, (2.3b)

q′1 = q′0 + h

∫ 1

0
Bτf(t0 + Cτh,Qτ )dτ, (2.3c)

which can be characterized by the following Butcher tableau

Cτ Āτ,σ

B̄τ
Bτ

2.2. Order theory for RKN-type method

Definition 2.2. [14] A RKN-type method is of order p, if for all regular problem (2.1), the following

two formulas hold, as h→ 0,

q(t0 + h)− q1 = O(hp+1), q′(t0 + h)− q′1 = O(hp+1).
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We introduce the following classical simplifying assumptions for RKN methods [14, 15]

B(ξ) :

s∑
i=1

bic
κ−1
i =

1

κ
, 1 ≤ κ ≤ ξ,

CN(η) :

s∑
j=1

āijc
κ−1
j =

cκ+1
i

κ(κ+ 1)
, 1 ≤ i ≤ s, 1 ≤ κ ≤ η − 1,

DN(ζ) :

s∑
i=1

bic
κ−1
i āij =

bjc
κ+1
j

κ(κ+ 1)
− bjcj

κ
+

bj
κ+ 1

, 1 ≤ j ≤ s, 1 ≤ κ ≤ ζ − 1.

(2.4)

Theorem 2.3. [14] If the coefficients of the RKN method (2.2a)-(2.2c) satisfy the simplifying

assumptions B(p), CN(η), DN(ζ), and if b̄i = bi(1− ci) holds for all i = 1, . . . , s, then the method

is of order at least min{p, 2η + 2, η + ζ}.

Analogously to the classical case, we have the following simplifying assumptions for csRKN

methods [32]

B(ξ) :

∫ 1

0
BτC

κ−1
τ dτ =

1

κ
, 1 ≤ κ ≤ ξ,

CN (η) :

∫ 1

0
Āτ, σC

κ−1
σ dσ =

Cκ+1
τ

κ(κ+ 1)
, ∀ τ ∈ [0, 1], 1 ≤ κ ≤ η − 1,

DN (ζ) :

∫ 1

0
BτC

κ−1
τ Āτ, σ dτ =

BσC
κ+1
σ

κ(κ+ 1)
− BσCσ

κ
+

Bσ
κ+ 1

, ∀ σ ∈ [0, 1], 1 ≤ κ ≤ ζ − 1.

Theorem 2.4. [32] If the coefficients of the csRKN method (2.3a)-(2.3c) satisfy the simplifying

assumptions B(p), CN (η), DN (ζ), and if B̄τ = Bτ (1− Cτ ) holds for τ ∈ [0, 1], then the method is

of order at least min{p, 2η + 2, η + ζ}.

Let us introduce the normalized shifted Legendre polynomial Pk(x) of degree k by the following

Rodrigues’ formula

P0(x) = 1, Pk(x) =

√
2k + 1

k!

dk

dxk
[(x2 − x)k], k = 1, 2, 3, · · · .

A well-known property of Legendre polynomials is that they are orthogonal to each other with

respect to the L2 inner product in [0, 1]∫ 1

0
Pj(x)Pk(x) dx = δjk, j, k = 0, 1, 2, · · · ,

where δjk is the Kronecker delta. For convenience, we list some of them as follows

P0(x) = 1, P1(x) =
√

3(2x− 1), P2(x) =
√

5(6x2 − 6x+ 1), · · · .

Theorem 2.5. [32] For the csRKN method (2.3a)-(2.3c) denoted by (Āτ,σ, B̄τ , Bτ , Cτ ) with the

assumption Bτ = 1, Cτ = τ , the following two statements are equivalent to each other:

(I) both CN (η) and DN (ζ) hold true;

5



(II) Āτ, σ possesses the following form in terms of Legendre polynomials

Āτ, σ =
1

6
− 1

2
ξ1P1(σ) +

1

2
ξ1P1(τ) +

N1∑
ι=1

ξιξι+1Pι−1(τ)Pι+1(σ)

−
N2∑
ι=1

(
ξ2ι + ξ2ι+1

)
Pι(τ)Pι(σ) +

N3∑
ι=1

ξιξι+1Pι+1(τ)Pι−1(σ)

+
∑
i≥ζ−1
j≥η−1

ω(i, j)Pi(τ)Pj(σ).

(2.5)

where ξι = 1
2
√
4ι2−1 , N1 = max{η−3, ζ−1}, N2 = max{η−2, ζ−2}, N3 = max{η−1, ζ−3}

and ω(i, j) are arbitrary real numbers.

Recall that we have B(∞) by using Bτ = 1, Cτ = τ , thus Theorem 2.5 implies that we can easily

construct a csRKN method with order min{∞, 2η+2, η+ζ} = min{2η+2, η+ζ} (by Theorem 2.4).

However, for the sake of deriving a practical csRKN method, we need to define a finite form for the

coefficient Āτ, σ, which can be easily realized by truncating the series (2.5). In such a case, we get

Āτ, σ which is a bivariate polynomial. Consequently, by applying a quadrature formula denoted by

(bi, ci)
s
i=1 to (2.3a)-(2.3c), it leads to an s-stage RKN method

Qi = q0 + hCciq
′
0 + h2

s∑
j=1

bjĀci,cjf(t0 + Ccjh, Qj), i = 1, · · · , s, (2.6a)

q1 = q0 + hq′0 + h2
s∑
i=1

biB̄cif(t0 + Ccih, Qi), (2.6b)

q′1 = q′0 + h
s∑
i=1

biBcif(t0 + Ccih, Qi), (2.6c)

whose Butcher tableau is
Cc1 b1Āc1,c1 · · · bsĀc1,cs

...
...

...

Ccs b1Ācs,c1 · · · bsĀcs,cs

b1B̄c1 · · · bsB̄cs

b1Bc1 · · · bsBcs

(2.7)

If we additionally assume B̄τ = Bτ (1 − Cτ ), Bτ = 1, Cτ = τ , then it gives an s-stage RKN

method with tableau
c1 b1Āc1,c1 · · · bsĀc1,cs
...

...
...

cs b1Ācs,c1 · · · bsĀcs,cs

b̄1 · · · b̄s

b1 · · · bs

(2.8)

where b̄i = bi(1− ci), i = 1, · · · , s.
In view of Theorem 2.3, we have the following result for analyzing the order of the RKN method

with tableau (2.8).
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Theorem 2.6. [32] Assume Āτ, σ is a bivariate polynomial of degree πτA in τ and degree πσA in

σ, and the quadrature formula (bi, ci)
s
i=1 is of order p. If the coefficients of the underlying csRKN

method (2.3a)-(2.3c) satisfy B̄τ = Bτ (1−Cτ ), Bτ = 1, Cτ = τ , and both CN (η), DN (ζ) hold true,

then the RKN method with tableau (2.8) is of order at least

min(p, 2α+ 2, α+ β),

where α = min(η, p− πσA + 1) and β = min(ζ, p− πτA + 1).

3. Conditions for the symmetry of csRKN methods

Now let us introduce the definition of symmetric methods and then show the conditions for a

csRKN method to be symmetric.

Definition 3.1. [15] A numerical one-step method Φh is called symmetric if it satisfies

Φ∗h = Φh,

where Φ∗h = Φ−1−h is referred to as the adjoint method of Φh.

Symmetry implies that the original method and the adjoint method give identical numerical

results. An attractive property of symmetric integrators is that they possess an even order [15].

By definition, a one-step method z1 = Φh(z0; t0, t1) is symmetric if exchanging h ↔ −h, z0 ↔ z1
and t0 ↔ t1 leaves the original method unaltered.

Theorem 3.2. If the coefficients of the csRKN method (2.3a)-(2.3c) satisfy

Cτ = 1− C1−τ ,

Āτ,σ = B1−σ(1− C1−τ )− B̄1−σ + Ā1−τ,1−σ,

B̄τ = B1−τ − B̄1−τ ,

Bτ = B1−τ ,

(3.1)

for ∀ τ, σ ∈ [0, 1], then the method is symmetric.

Proof. Firstly, let us establish the adjoint method. From (2.3a)-(2.3c), by interchanging t0, q0, q
′
0, h

with t1, q1, q
′
1,−h respectively, we have

Qτ = q1 − hCτq′1 + h2
∫ 1

0
Āτ,σf(t1 − Cσh,Qσ)dσ, τ ∈ [0, 1], (3.2a)

q0 = q1 − hq′1 + h2
∫ 1

0
B̄τf(t1 − Cτh,Qτ )dτ, (3.2b)

q′0 = q′1 − h
∫ 1

0
Bτf(t1 − Cτh,Qτ )dτ. (3.2c)

Notice that t1 − Cτh = t0 + (1− Cτ )h, thus (3.2c) becomes

q′1 = q′0 + h

∫ 1

0
Bτf(t0 + (1− Cτ )h,Qτ )dτ. (3.3)
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Substituting it into (3.2b) yields

q1 = q0 + hq′0 + h2
∫ 1

0
(Bτ − B̄τ )f(t0 + (1− Cτ )h,Qτ )dτ. (3.4)

Next, by inserting (3.3) and (3.4) into (3.2a), it follows that

Qτ = q0 + h(1− Cτ )q′0 + h2
∫ 1

0
(Bσ(1− Cτ )− B̄σ + Āτ,σ)f(t0 + (1− Cσ)h,Qσ)dσ. (3.5)

By replacing τ and σ with 1− τ and 1− σ respectively, we can recast (3.5), (3.4) and (3.3) as

Q∗τ = q0 + hC∗τ q
′
0 + h2

∫ 1

0
Ā∗τ,σf(t0 + C∗σh,Q

∗
σ)dσ, τ ∈ [0, 1],

q1 = q0 + hq′0 + h2
∫ 1

0
B̄∗τf(t0 + C∗τh,Q

∗
τ )dτ,

q′1 = q′0 + h

∫ 1

0
B∗τf(t0 + C∗τh,Q

∗
τ )dτ,

(3.6)

where Q∗τ = Q1−τ , τ ∈ [0, 1] and

C∗τ = 1− C1−τ ,

Ā∗τ,σ = B1−σ(1− C1−τ )− B̄1−σ + Ā1−τ,1−σ,

B̄∗τ = B1−τ − B̄1−τ ,

B∗τ = B1−τ ,

(3.7)

for ∀ τ, σ ∈ [0, 1]. Therefore, we have get the adjoint method defined by (3.6) and (3.7). Given that

a csRKN method can be uniquely determined by its coefficients, hence if we require the following

condition

Cτ = C∗τ , Āτ,σ = Ā∗τ,σ, B̄τ = B̄∗τ , Bτ = B∗τ ,

namely the condition (3.1), then the original method is symmetric.

In the following we present a preferable result for ease of devising symmetric csRKN methods.

Theorem 3.3. Suppose that B̄τ = Bτ (1 − Cτ ), Bτ = 1, Cτ = τ , then the csRKN method de-

noted by (Āτ,σ, B̄τ , Bτ , Cτ ) is symmetric, if Āτ,σ possesses the following form in terms of Legendre

polynomials

Āτ,σ = α(0,0) −
1

2
ξ1P1(σ) +

1

2
ξ1P1(τ) +

∑
i+j is even
i+j>1

α(i,j)Pi(τ)Pj(σ), τ, σ ∈ [0, 1],
(3.8)

where ξι = 1
2
√
4ι2−1 and α(i,j) are arbitrary real numbers.

Proof. By noticing B̄τ = Bτ (1 − Cτ ), Bτ = 1, Cτ = τ , it suffices for us to consider the second

condition given in (3.1). By using a simple identity τ = 1
2P0(τ) + ξ1P1(τ), it implies

Āτ, σ − Ā1−τ, 1−σ = τ − σ = ξ1(P1(τ)− P1(σ)). (3.9)
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Next, let us consider the following expansion of Āτ, σ in terms of the Legendre orthogonal basis

{Pi(τ)Pj(σ) : i, j ≥ 0},
Āτ, σ =

∑
i,j≥0

α(i,j)Pi(τ)Pj(σ), α(i,j) ∈ R,

and then by replacing τ and σ with 1 − τ and 1 − σ respectively, with the help of Pι(1 − t) =

(−1)ιPι(t) (ι ≥ 0), we have

Ā1−τ, 1−σ =
∑
i,j≥0

(−1)i+jα(i,j)Pi(τ)Pj(σ).

Substituting the above two expressions into (3.9) and collecting the like basis, follows

α(0,1) = −1

2
ξ1, α(1,0) =

1

2
ξ1, α(i,j) = 0, when i+ j is odd and i+ j > 1,

which completes the proof.

By putting Theorem 2.5 and Theorem 3.3 together, we can devise symmetric integrators of

arbitrarily high order. Besides, as an alternative way, we can use the same technique as presented

in [31] to construct symmetric integrators for arbitrary order, that is, substituting (3.8) into the

order conditions (see [31], Page 12) one by one and determining the corresponding parameters α(i,j).

As symmetric methods possess an even order, it is sufficient to consider those order conditions for

odd orders, so we can increase two orders per step. We present the the following result without a

proof (please see [31] for a similar proof).

Theorem 3.4. Suppose that Āτ,σ is in the form (3.8) and B̄τ = Bτ (1 − Cτ ), Bτ = 1, Cτ = τ .

Then the corresponding csRKN method is symmetric and of order 2 at least. If we additionally

require α(0,0) = 1
6 , then the method is of order 4 at least. Moreover, if we further require that

α(0,0) =
1

6
, α(1,1) = − 1

10
, α(2,0) = α(0,2) =

√
5

60
,

α(i,0) = 0, for even i > 2,

(3.10)

then the method is of order 6 at least.

4. Symmetric RKN method

In this section, we show that symmetric RKN methods can be easily derived from symmetric

csRKN methods by using quadrature formulas.

Theorem 4.1. If the coefficients of the underlying symmetric csRKN method satisfy (3.1), then

the associated RKN method (2.7) is symmetric, provided that the weights and abscissae of the

quadrature formula satisfy bs+1−i = bi and cs+1−i = 1− ci for all i.

Proof. The symmetric condition for an s-stage classical RKN method denoted by (āij , b̄i, bi, ci) is

known as (see, e.g., [22])

ci = 1− cs+1−i,

āij = bs+1−j(1− cs+1−i)− b̄s+1−j + ās+1−i,s+1−j ,

b̄i = bs+1−i − b̄s+1−i,

bi = bs+1−i,

9



1
2 α

1
2

1

0 1
2α

1
2α−

1
4

1 1
2α+ 1

4
1
2α

1
2 0
1
2

1
2

Table 4.1: Two families of symmetric and symplectic RKN methods of order 2, by using Gaussian (on the left) and

Lobatto (on the right) quadrature formulas respectively.

for all i, j = 1, · · · , s. By using (3.1), we have

Cci = 1− C1−ci ,

Āci,cj = B1−cj (1− C1−ci)− B̄1−cj + Ā1−ci,1−cj ,

B̄ci = B1−ci − B̄1−ci ,

Bci = B1−ci ,

for all i, j = 1, · · · , s. In view of bs+1−i = bi and cs+1−i = 1 − ci for all i, the coefficients

(bjĀci,cj , biB̄ci , biBci , Ci) of the associated RKN method satisfy

Cci = 1− Ccs+1−i ,

bjĀci,cj = bs+1−jBcs+1−j (1− Ccs+1−i)

− bs+1−jB̄cs+1−j + bs+1−jĀcs+1−i,cs+1−j ,

biB̄ci = bs+1−iBcs+1−i − bs+1−iB̄cs+1−i ,

biBci = bs+1−iBcs+1−i ,

for all i, j = 1, · · · , s, which completes the proof by the classical result.

Corollary 4.2. If Āτ,σ takes the form (3.8) and B̄τ = Bτ (1−Cτ ), Bτ = 1, Cτ = τ , then by using

a quadrature formula (bi, ci)
s
i=1 with bs+1−i = bi and cs+1−i = 1 − ci for all i, the resulting RKN

method (2.8) is symmetric.

Since the weights and abscissae of Gaussian-type and Lobatto-type quadrature formulas satisfy

bs+1−i = bi and cs+1−i = 1− ci for all i, they can be used for devising symmetric RKN methods.

Example 4.1. If we take the coefficients (Āτ,σ, B̄τ , Bτ , Cτ ) as

Āτ,σ = α−
√

3

12
P1(σ) +

√
3

12
P1(τ),

B̄τ = 1− τ, Bτ = 1, Cτ = τ,

(4.1)

with one parameter α being introduced, then we get a family of symmetric csRKN methods with

order 2. By Theorem 3.3 presented in [31] (see also Theorem 4.4 in [32]), such methods are also

symplectic and thus suitable for solving general second-order Hamiltonian systems.

By using suitable quadrature formulas with order p ≥ 2 we can get symmetric RKN methods of

order2 2. The resulting symmetric RKN methods are shown in Table 4.1.

2This can be easily checked by the classical order conditions that listed in [14] (see also [31]).
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3−
√
3

6
1+6α
12

1−
√
3−6α
12

3+
√
3

6
1+
√
3−6α
12

1+6α
12

3+
√
3

12
3−
√
3

12
1
2

1
2

0 1+18α+6
√
5(β+γ)

36
−1−6

√
5(β−2γ)
18

−1−9α+3
√
5(β+γ)

18

1
2

5+6
√
5(2β−γ)
72

1−3
√
5(β+γ)
9

−1+6
√
5(2β−γ)
72

1 2−9α+3
√
5(β+γ)

18
5−6
√
5(β−2γ)
18

1+18α+6
√
5(β+γ)

36
1
6

1
3 0

1
6

2
3

1
6

Table 4.2: Two families of symmetric RKN methods of order 4, by using Gaussian (2 nodes) and Lobatto (3 nodes)

quadrature formulae.

Example 4.2. If we take the coefficients (Āτ,σ, B̄τ , Bτ , Cτ ) as

Āτ,σ =
1

6
−
√

3

12
P1(σ) +

√
3

12
P1(τ) + αP1(τ)P1(σ) + βP0(τ)P2(σ) + γP0(σ)P2(τ),

B̄τ = 1− τ, Bτ = 1, Cτ = τ,

(4.2)

then we get a family of symmetric csRKN methods with order 4. By using suitable quadrature

formulas with order p ≥ 4 we get symmetric RKN methods of order 4, which are shown in Table

4.2.

Remark 4.3. We point out that:

(1) The left family of RKN methods in Table 4.2 are always symmetric and symplectic, while the

right family of RKN methods of Table 4.2 are symmetric and symplectic when β = γ.

(2) The classical 3-stage Lobatto IIIA method [15] induces the following RKN method,

0 0 0 0
1
2

1
16

1
12 − 1

48

1 1
6

1
3 0

1
6

1
3 0

1
6

2
3

1
6

(4.3)

which can be retrieved by taking α = − 1
12 , β = 0, γ =

√
5

60 in Table 4.2.

(3) The classical 3-stage Lobatto IIIB method [15] induces the following RKN method,

0 0 − 1
12 0

1
2

1
12

1
12 0

1 1
6

1
4 0

1
6

1
3 0

1
6

2
3

1
6

(4.4)

which can be retrieved by taking α = − 1
12 , β =

√
5

60 , γ = 0 in Table 4.2.
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5−
√
15

10
2+60α
135

19−6
√
15−120α
270

62−15
√
15+120α

540

1
2

19+6
√
15−120α
432

1+15α
27

19−6
√
15−120α
432

5+
√
15

10
62+15

√
15+120α

540
19+6

√
15−120α
270

2+60α
135

5+
√
15

36
2
9

5−
√
15

36
5
18

4
9

5
18

0 1+150α
360

−5−3
√
5−300α

720
−5+3

√
5−300α

720
2+75α
180

5−
√
5

10
29
720 −

11
√
5+100α
1200

11+30α
360

29−15
√
5+30α

360 − 1
720 +

√
5−100α
1200

5+
√
5

10
29
720 + 11

√
5−100α
1200

29+15
√
5+30α

360
11+30α

360 − 1
720 −

√
5+100α
1200

1 17+75α
180

145+33
√
5−300α

720
145−33

√
5−300α

720
1+150α

360

1
12

5+
√
5

24
5−
√
5

24 0
1
12

5
12

5
12

1
12

Table 4.3: Two families of symmetric and symplectic RKN methods of order 6, by using Gaussian (on the top) and

Lobatto (on the bottom) quadrature formulas respectively.

Example 4.3. If we take the coefficients (Āτ,σ, B̄τ , Bτ , Cτ ) as

Āτ,σ =
∑
i+j≤2

α(i,j)Pi(τ)Pj(σ) + αP2(τ)P2(σ),

B̄τ = 1− τ, Bτ = 1, Cτ = τ,

(4.5)

where α(0,1) = −
√
3

12 , α(1,0) =
√
3

12 , and the remaining α(i,j) satisfy (3.10), then we get a family of

6-order symmetric and symplectic csRKN methods. By using suitable quadrature formulas with

order p ≥ 6 we get symmetric and symplectic RKN methods of order 6, which are shown in Table

4.3.

5. Numerical experiments

In this section, we perform some numerical results for comparing the numerical behaviors of

the presented methods. For this aim, we consider the 4-order method (4.4) and the following three

4-order methods:

• By taking α = 0, β = γ =
√
5

30 in Table 4.2 it leads to a diagonally implicit symplectic and

symmetric RKN method
0 1

12 0 0
1
2

1
12 0 0

1 1
6

1
3

1
12

1
6

1
3 0

1
6

2
3

1
6

(5.1)
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• By taking α = − 1
10 , β =

√
5

150 , γ =
√
5

60 in Table 4.2 it gives the following symmetric RKN

method
0 − 1

360 − 1
90

1
72

1
2

49
720

13
180 − 11

720

1 13
72

29
90 − 1

360
1
6

1
3 0

1
6

2
3

1
6

(5.2)

• By taking α = − 1
10 , β =

√
5

60 , γ =
√
5

150 in Table 4.2 it gives the following symmetric RKN

method
0 − 1

360 − 11
180

1
72

1
2

29
360

13
180 − 1

360

1 13
72

49
180 − 1

360
1
6

1
3 0

1
6

2
3

1
6

(5.3)

For convenience, we denote four symmetric RKN methods (4.4), (5.1), (5.2) and (5.3) by RKN-

IIIB, RKN-Diagsymp, RKN-A and RKN-B methods respectively. These methods are applied to

the following perturbed pendulum equation

q′′ = − sin q − 2

5
cos(2q), q(t0) = 0, q′(t0) = 2.5, (5.4)

where the initial values are taken the same as that given in [10]. The system (5.4) is reversible

with respect to the reflection p ↔ −p (here p = q′) and the corresponding Hamiltonian function

(energy) is given by H(p, q) = 1
2p

2 − cos q + 1
5 sin(2q).

Global errors of the numerical solutions by the above four methods with six small step sizes

are shown in Fig. 5.1 with log-log scales, which verifies the order of all the methods. From Fig.

5.2, it is seen that RKN-IIIB method and RKN-B method produce obvious energy drifts, though

these methods are symmetric. This shows that not all symmetric RKN methods nearly preserve

the energy over long times even if the system is reversible — this observation has been shown for

symmetric Runge-Kutta methods in [10]. It is observed that the energy error keeps bounded for the

RKN-Diagsymp method. Besides, it seems that the non-symplectic RKN-A method gives a “better”

behavior. However, when we integrate the system on a much longer time interval [0, 1.6× 105], it

gives a worse result (energy drift) compared with the RKN-Diagsymp method (see Fig. 5.3). From

these numerical tests we may conclude that symplectic-structure preservation is more essential

than the reversibility preservation of the reversible Hamiltonian systems in long-term numerical

simulation. Nevertheless, for general reversible non-Hamiltonian systems, symmetric methods are

also preferable.

6. Concluding remarks

We develop symmetric integrators by means of continuous-stage Runge-Kutta-Nyström (csRKN)

methods in this paper. The crucial technique based on Legendre polynomial expansion combining

with the symmetric conditions and order conditions is fully utilized. As illustrative examples, new
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Figure 5.1: Global errors of the numerical solutions by RKN-IIIB method(black line), RKN-Diagsymp method (blue

line), RKN-A method (red line) and RKN-B method (green line) for the perturbed pendululm equation (5.4). The

reference line has slope 4 in every subplots.
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Figure 5.2: Energy errors of the numerical solutions by RKN-IIIB method(black line), RKN-Diagsymp method (blue

line), RKN-A method (red line) and RKN-B method (green line) for the perturbed pendululm equation (5.4): step

size h = 0.16, integration interval [0, 1600].
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Figure 5.3: Energy errors of the numerical solutions by RKN-Diagsymp method (blue line), and RKN-A method (red

line) for the perturbed pendululm equation (5.4): step size h = 0.16, integration interval [0, 1.6× 105].

families of symmetric integrators (most of them are also symplectic) are derived in use of Gaussian-

type and Lobatto-type quadrature formulas. It is worth observing that other quadrature formulas

can also be considered for devising symmetric integrators and more free parameters can be led into

the formalism of the Butcher coefficients.
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