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Abstract The system of tensor equations (TEs) has received much considerable

attention in the recent literature. In this paper, we consider a class of general-

ized tensor equations (GTEs). An important difference between GTEs and TEs is

that GTEs can be regarded as a system of non-homogenous polynomial equations,

whereas TEs is a homogenous one. Such a difference usually makes the theoretical

and algorithmic results tailored for TEs not necessarily applicable to GTEs. To

study properties of the solution set of GTEs, we first introduce a new class of

so-named Z+-tensor, which includes the set of all P-tensors as its proper subset.

With the help of degree theory, we prove that the system of GTEs with a lead-

ing coefficient Z+-tensor has at least one solution for any right-hand side vector.

Moreover, we study the local error bounds under some appropriate conditions.

Finally, we employ a Levenberg-Marquardt algorithm to find a solution to GTEs

and report some preliminary numerical results.
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1 Introduction

Let A = (ai1i2···im) with ai1i2···im ∈ R for i1, i2, · · · , im ∈ [n] := {1, 2, · · · , n} be

an m-th order n-dimensional square real tensor and b ∈ R
n. The system of tensor

equations (or multi-linear system) investigated in the literature refers to the task

of finding a vector x ∈ R
n such that

Axm−1 = b, (1.1)

where Axm−1 is defined as a vector, whose i-th component is given by

(Axm−1)i =
n
∑

i2,··· ,im=1

aii2···imxi2 · · ·xim , i = 1,2, · · · , n. (1.2)

Recently, it has been well-documented that the system of tensor equations (1.1)

arises in a number of applications such as data mining [19], numerical partial dif-

ferential equations [7], and tensor complementarity problems [30,32]. Therefore,

the system of tensor equations (1.1) has received much considerable attention in

the recent literature, e.g., see [7,12,13,17,20,21,25,33] and references therein. Es-

pecially, in [7], Ding and Wei proved that, if the coefficient tensor A in (1.1) is a

nonsingular M-tensor [6,38], then the problem (1.1) has a unique positive solution

for any given positive vector b (i.e., each component of b is positive) in R
n, in

addition to generalizing the Jacobi and Gauss-Seidel methods to find the unique

solution. Since solving tensor equations system plays an instrumental role in en-

gineering and scientific computing, many numerical methods have been developed

to solve (1.1) with M-tensors, e.g., see [12,13,17,21,33]. However, the coefficient

tensor A of (1.1) arising from many real-world problems, such as data mining [19],

tensor complementarity problems [30,32] and high dimensional interpolations in

the reproducing kernel Banach spaces [35], is often not a nonsingular M-tensor.

Moreover, we observe that (1.1) is a system of homogenous polynomial equations,

but some applications usually lack of the underlying homogeneousness emerging

in (1.1), for example the high-order Markov chains [18] and multilinear PageRank

problems [11]. Unfortunately, for the aforementioned two cases, it is unclear that

whether (1.1) has solutions for any vector b ∈ R
n when the coefficient tensor A is

not a nonsingular M-tensor, and the numerical algorithms tailored for (1.1) still

work or not.

In this paper, we consider a class of so-named generalized tensor equations

(GTEs), which can be written as

A1x
m−1 +A2x

m−2 + · · ·+Am−2x
2 +Am−1x = b, (1.3)

where Ak ∈ Tm−k+1,n (k = 1, 2, · · · ,m − 1) and b ∈ R
n. Here, we denote the

set of all l-th order n-dimensional square real tensors by Tl,n for l = 2, 3, · · · ,m.
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Apparently, (1.1) falls into a special case of (1.3) with settings of A1 = A and Ai

(i = 2, · · · ,m− 1) being zero tensors.

Although the system of GTEs is an interesting generalization of (1.1), to the

best of our knowledge, there is no paper contributed to the solution existence of

(1.3) with any right-hand vector b ∈ R
n. Thus, the first contribution of this paper

is to show that (1.3) has at least one solution for any b ∈ R
n when the leading

coefficient tensor A1 is a Z+-tensor, where Z+-tensor is a newly introduced struc-

tured tensor in the paper, which includes the set of all P-tensors as its proper

set. As a byproduct of our results, (1.1) has a solution for any b ∈ R
n when A

is a Z+-tensor, in addition to showing that (1.1) has a unique solution if A is

a strong P-tensor. Such a theoretical result is an interesting complement to [7].

Moreover, we study the local error bounds under some appropriate conditions,

which is the second contribution of this paper and plays an important role in al-

gorithmic design. Since most of the recent numerical algorithms are devoted to

(1.1) with M-tensors, we employ an efficient Levenberg-Marquardt algorithm to

find numerical solutions of the generalized tensors equations (1.3). The computa-

tional results demonstrate that the proposed Levenberg-Marquardt algorithm is

competitive to the state-of-art algorithms in [12,13,17] when dealing with (1.1)

with M-tensors. More promisingly, the Levenberg-Marquardt algorithm performs

well for both (1.1) and (1.3) with generic tensors with a relatively high probability.

The remainder of the paper is organized as follows. In Section 2, we will sum-

marize some definitions on tensors and introduce a new class of structured tensors,

which includes many class of special tensors as its proper subset. In Section 3, by

utilizing the topological degree theory, we will present an existence result on so-

lutions for the system of generalized tensor equations (1.3). In Section 4, we give

some properties on local error bounds under appropriate conditions. To find a so-

lution of (1.3), we employ a Levenberg-Marquardt algorithm in Section 5. Some

preliminary numerical results on synthetic data are reported in Section 6. Finally,

we conclude the paper with drawing some remarks in Section 7.

Notation. Let R
n be the space of n-dimensional real column vectors and R

n
+ =

{x = (x1, x2, · · · , xn)⊤ ∈ R
n : xi ≥ 0, ∀ i = 1, 2, · · · , n}. A vector of zeros in a

real space of arbitrary dimension will be denoted by 0. For any x, y ∈ R
n, the

Euclidean inner product is denoted by x⊤y, and the Euclidean norm ‖x‖ is given

by ‖x‖ =
√
x⊤x. For given A = (ai1i2···im) ∈ Tm,n, if the entries ai1i2···im are

invariant under any permutation of their indices, then A is called a symmetric

tensor. In particular, for every given index i ∈ [n] := {1, 2, · · · , n}, if an (m− 1)-th

order n-dimensional square tensor Ai := (aii2···im)1≤i2,··· ,im≤n is symmetric, then

A is called a semi-symmetric tensor with respect to the indices {i2, · · · , im}. Denote
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the unit tensor in Tm,n by I = (δi1···im), where δi1···im is the Kronecker symbol

δi1···im =

{

1, if i1 = · · · = im,

0, otherwise.

With the notation (1.2), we define Axm = x⊤(Axm−1) for A ∈ Tm,n and x ∈ R
n.

Moreover, Axm−2 denotes an n× n matrix whose ij-th component is given by

(Axm−2)ij :=
n
∑

i3,...,im=1

aiji3 ...imxi3 · · ·xim , i, j = 1,2, · · · , n.

2 Preliminaries

In this section, we first summarize some definitions on tensors that will be used in

the coming analysis, and then introduce a new class of structured tensors.

Definition 2.1 Let A ∈ Tm,n. We say that A is

(i) a P-tensor (see [28]), if it holds that max
1≤i≤n

xi(Axm−1)i > 0 for any vector

x ∈ R
n\{0}.

(ii) a strong P-tensor (see [3]), if it holds that max
1≤i≤n

(xi−yi)(Axm−1−Aym−1)i > 0

for any vectors x, y ∈ R
n with x 6= y.

(iii) a positive definite tensor, if it holds that Axm > 0 for any vector x ∈ R
n\{0}.

Definition 2.2 ([31]) Let A ∈ Tm,n. We say that A is a strictly positive definite

tensor, if it holds that (x−y)⊤(Axm−1−Aym−1) > 0 for any x, y ∈ R
n with x 6= y.

From Definitions 2.1 and 2.2, it is easy to see that a strictly positive definite

tensor must be a strong P-tensor, and a strong P-tensor must be a P-tensor.

However, a strong P-tensor is not necessarily a strictly positive definite tensor,

which will be shown in the following example.

Example 2.1 Let A = (ai1i2i3i4) ∈ T4,2 with a1111 = a2222 = a1122 = 1, a1222 = −3

and all other ai1i2i3i4 = 0. For any x, y ∈ R
2 with x 6= y, it is easy to see that

(x1 − y1)(Ax3 −Ay3)1 = (x1 − y1)(x
3
1 − y31)− 3(x1 − y1)(x

3
2 − y32)

+ (x1 − y1)(x1x
2
2 − y1y

2
2) (2.1)

and

(x2 − y2)(Ax3 −Ay3)2 = (x2 − y2)(x
3
2 − y32). (2.2)

We now consider two cases:

Case (i). If x2 6= y2, it follows from (2.2) that

(x2 − y2)(Ax3 −Ay3)2 = (x2 − y2)
2(x2

2 + x2y2 + y22)
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≥ 1

4
(x2 − y2)

2(x2
2 − 2x2y2 + y22)

=
1

4
(x2 − y2)

4 > 0. (2.3)

Case (ii). If x2 = y2, it immediately follows from the fact x 6= y that x1 6= y1. In

this situation, equation (2.1) reduces to

(x1 − y1)(Ax3 −Ay3)1 = (x1 − y1)(x
3
1 − y31) + x2

2(x1 − y1)
2

≥ 1

4
(x1 − y1)

4 + x2
2(x1 − y1)

2 > 0,

where the first inequality can be derived by a similar technique used in (2.3). Hence,

we know that max
1≤i≤2

(xi − yi)(Ax3 − Ay3)i > 0 for any x, y ∈ R
2 with x 6= y, which

means that A is a strong P-tensor.

However, by taking x̄ = (1, 0)⊤ and ȳ = (0,−1)⊤, we know that (x̄− ȳ)⊤(Ax̄3 −
Aȳ3) = −1 < 0, which means that A is not a strictly positive definite tensor. Moreover,

the tensor A in this example is not an M-tensor (see [7]).

Definition 2.3 ([8]) A mapping Φ : Ω ⊆ R
n → R

n is said to be strictly monotone

on Ω if and only if (x− y)⊤(Φ(x)− Φ(y)) > 0 for all x, y ∈ Ω with x 6= y.

For given A ∈ Tm,n and b ∈ R
n, defined by Φ(x) = Axm−1+b. From Definitions

2.2 and 2.3, it is easy to see that Φ is strictly monotone on R
n if and only if the

tensor A is strictly positive definite.

Definition 2.4 ([36]) Let A ∈ Tm,n. We say that A is singular, if A satisfies

{x ∈ R
n\{0} | Axm−1 = 0} 6= ∅.

Otherwise, we say that A is nonsingular.

Now, we introduce a new class of structured tensors, which includes the set of

all P -tensors as its proper subset.

Definition 2.5 Let A ∈ Tm,n. We say that A is a Z+-tensor, if there exists no

(x, t) ∈ (Rn\{0}) × R+ such that

Axm−1 + tx = 0. (2.4)

It is obvious that, A is a Z+-tensor if and only if A has no non-positive Z-

eigenvalue (see [26]). Furthermore, it can also be seen that if A is a Z+-tensor,

then A is nonsingular.

Proposition 2.1 Let A ∈ Tm,n. If A is a P-tensor, then A is a Z+-tensor.
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Proof Suppose that A is not a Z+-tensor. Then, it follows from Definition 2.5 that

there exists (x̄, t̄) ∈ (Rn\{0}) × R+ such that (2.4) holds. Therefore, we have

x̄i(Ax̄m−1)i + t̄x̄2
i = 0, ∀ i ∈ [n],

which, together with t̄ ≥ 0, implies that

max
1≤i≤n

x̄i(Ax̄m−1)i = − min
1≤i≤n

t̄x̄2
i ≤ 0. (2.5)

Clearly, it contradicts to the given condition that A is a P-tensor. The proof is

completed. ⊓⊔

It was proved by Qi [26] that Z-eigenvalues exist for an even order real symmet-

ric tensor A, and A is positive definite (PD) if and only if all of its Z-eigenvalues are

positive, i.e., A is a Z+-tensor. Hence, in the symmetric tensor case, the concepts

of PD, P and Z+-tensors are identical. We also know that if A is an m-th order

P-tensor, then m must be even (see [37]). So, there does not exist an odd order

symmetric Z+-tensor. In the asymmetric tensor case, when m = 3, we also claim

that there does not exist a Z+-tensor. Indeed, for any A ∈ T3,n, we know that,

if λ is a Z-eigenvalue of A, then −λ is also a Z-eigenvalue of A, and A has odd

Z-eigenvalues in the complex field (see [10]). Consequently, we know that A al-

ways has a real non-positive Z-eigenvalue, which means that A is not a Z+-tensor.

So, even if in the asymmetric case, there does not exist a three order real Z+-

tensor. However, in the case where m ≥ 4, it is unclear that whether odd order

real asymmetric Z+-tensors exist or not?

As proved in Proposition 2.1, a P-tensor must be a Z+-tensor, but not con-

versely. The following example is to show that a Z+-tensor is not necessarily a

P-tensor.

Example 2.2 Let A = (ai1i2i3i4) ∈ T4,2 with a1111 = a1222 = a2111 = 10, a1112 =

a2122 = 1, a1122 = 2, a2112 = 20 and a2222 = −8. Then, for x ∈ R
2, we have

Ax3 =

(

10x3
1 + x2

1x2 + 2x1x
2
2 + 10x3

2

10x3
1 + 20x2

1x2 + x1x
2
2 − 8x3

2

)

.

We first claim that there is no (x, t) ∈ (R2\{0})×R+ such that (2.4) holds. Actually,

if there exists a pair of (x̄, t̄) ∈ (R2\{0}) × R+ such that (2.4) holds, then

{

10x̄3
1 + x̄2

1x̄2 + 2x̄1x̄
2
2 + 10x̄3

2 + t̄x̄1 = 0, (2.6a)

10x̄3
1 + 20x̄2

1x̄2 + x̄1x̄
2
2 − 8x̄3

2 + t̄x̄2 = 0. (2.6b)

Without loss of generality, we suppose x̄1 6= 0. It then follows from (2.6a) that

t̄ = −(10x̄3
1 + x̄2

1x̄2 + 2x̄1x̄
2
2 + 10x̄3

2)/x̄1. (2.7)
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Consequently, substituting (2.7) into (2.6b) immediately yields

10x̄4
2 + 10x̄3

1x̄2 − 10x̄1x̄
3
1x̄2 − 10x̄4

1 = 0,

which can be recast as

s̄4 + s̄3 − s̄− 1 = (s̄− 1)(s̄+ 1)(s̄2 + s̄+ 1) = 0, (2.8)

where s̄ = x̄2/x̄1 ∈ R. It is not difficult to observe that (2.8) has two different real

roots. Correspondingly, if s̄ = 1, then x̄2 = x̄1 and (2.7) reduces to t̄ = −23x̄2
1 < 0,

which contradicts to t̄ ∈ R+. If s̄ = −1, then x̄2 = −x̄1 and (2.7) can be specified as

t̄ = −x̄2
1 < 0, which also contradicts to t̄ ∈ R+. Hence, x̄1 = 0, which further implies

that x̄2 = 0 by (2.6a). Then, we have x̄ = (x̄1, x̄2)
⊤ = 0, which contradicts to x̄ 6= 0.

Therefore, we know that A is a Z+-tensor. However, by taking x̃ = (1,−2)⊤ ∈ R
2\{0},

we have

max
{

x̃1(Ax̃3)1, x̃2(Ax̃3)2
}

= −64 < 0,

which means that A is not a P-tensor.

Remark 2.1 Notice that Z+-tensor is a new concept introduced in this paper. As

showed in Proposition 2.1 and Example 2.2, Z+-tensor is a generalization of P-

tensor. Interestingly, the set of all P-tensors includes many class of important

structured tensors as its proper subset, for example, PD-tensors, even order strictly

diagonally dominated tensors ([37, Theorem 3.4]), strong P-tensors ([3]), even

order Hilbert tensors ([29, Theorem 1.1]), even order strongly doubly nonnegative

tensors ([24, Proposition 5.1]), even order strongly completely positive tensors ([5,

Definition 3.3]), even order nonsingular H-tensors with all positive diagonal entries

([5, Proposition 4.1]), even order Cauchy tensors with mutually distinct entries of

generating vector ([5, Corollary 4.4]) and so on. If an even order Z-tensor A is a

B-tensor [28], then A is also a P-tensor ([37, Theorem 3.6]). So, we believe that

Z+-tensor is also a class of interesting structured tensors for future tensor analysis.

3 Existence of solutions to (1.3)

In this section, we focus on studying the existence of solutions for (1.3) with

the help of topological degree theory. We begin this section with presenting the

following proposition of boundedness of the solution set of (1.3).

Proposition 3.1 Let Λ := (A1,A2, · · · ,Am−1) ∈ Tm,n × Tm−1,n × · · · × T2,n. If

the leading tensor A1 in Λ is nonsingular, then the solution set SOL(Λ, b) of (1.3) is

bounded for any b ∈ R
n.



8 Weijie Yan et al.

Proof Suppose that SOL(Λ, b) is unbounded for some b̄ ∈ R
n. Then there exists

a sequence {xr}∞r=1 ⊂ SOL(Λ, b) such that ‖xr‖ → ∞ as r → ∞. Since xr ∈
SOL(Λ, b), we have

m−1
∑

k=1

Ak

‖xr‖k−1

(

xr

‖xr‖

)m−k

=
b̄

‖xr‖m−1
. (3.1)

Without loss of generality, we assume that xr/‖xr‖ → x̄ as r → ∞. It is clear that

x̄ 6= 0. Consequently, by letting r → ∞ in (3.1), we know A1x̄
m−1 = 0, which

means that A1 is singular. It is a contradiction. Therefore, SOL(Λ, b) is bounded.

The proof is completed. ⊓⊔

When m = 2, the problem (1.3) reduces to a linear system Ax = b, where

A ∈ R
n×n and b ∈ R

n. It is well-known that Ax = b is solvable for any b ∈ R
n

if and only if A is nonsingular, in this case, the solution of Ax = b is unique.

However, when m ≥ 3, we could cannot ensure that Axm−1 = b is solvable for any

b ∈ R
n, even though A ∈ Tm,n is nonsingular. For example, for the unit tensor

I ∈ T3,n, it is clear that I is nonsingular, but Ix2 = −b has no real solution for

any b ∈ R
n
+\{0}.

To study the existence of solutions for nonlinear equations, nonlinear comple-

mentarity problems, and variational inequalities, a variety of concepts of excep-

tional families of elements for continuous functions were introduced in the litera-

ture (e.g., see, [14,16,27,39,40] and the references therein). Below, we introduce

the definition of exceptional family of elements for a function.

Definition 3.1 Let G : Rn → R
n be a continuous function. We say that a set of

elements {xr}r>0 ⊂ R
n is an exceptional family of elements (in short, EFE) for G,

if the following conditions are satisfied:

(1) ‖xr‖ → ∞ as r → ∞,

(2) for each real number r > 0, there exists a µr > 0 such that G(xr) = −µrx
r.

Let Ω be a bounded open set in R
n and ∂Ω represent the boundary of Ω.

For a continuous function U : Rn → R
n and a vector b 6∈ U(∂Ω), the degree of

U over Ω with respect to b is defined, which is an integer and will be denoted by

deg(U,Ω, b). Here, we refer the reader to [9,22] for more details on degree theory.

Now, we recall two fundamental theorems in the topological degree theory (e.g.,

see [15, p. 23] and also [22]), which play important roles in the proofs of our main

results on the existenceness of solutions of (1.3).

Theorem 3.1 (Poincaré-Bohl Theorem) Let Ω ⊂ R
n be a bounded open set, b ∈

R
n and U, V : Rn → R

n be two continuous functions. If for all x ∈ ∂Ω the line segment

[U(x), V (x)] does not contain b, then it holds that deg(U,Ω, b) = deg(V,Ω, b).
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Theorem 3.2 (Kronecker’s Theorem) Let Ω ⊂ R
n be a bounded open set, b ∈ R

n

and U : Rn → R
n be a continuous function. If deg(U,Ω, b) is defined and non-zero,

then the equation U(x) = b has a solution in Ω.

By using the concept of EFE and Theorems 3.1 and 3.2, we state and prove

the following theorem.

Theorem 3.3 For a continuous function F (x) : Rn → R
n, there exists either a solu-

tion to F (x) = 0 or an exceptional family of elements for F .

Proof For any real number r > 0, we consider the spheres and open ball with

radius r, respectively, i.e.,

Sr = {x ∈ R
n : ‖x‖ = r} and Br = {x ∈ R

n : ‖x‖ < r}.

Obviously, it can be seen that ∂Br = Sr. We now consider the homotopy between

the identity function G(x) = x and F , which is defined by

H(x, t) = tG(x) + (1− t)F (x), ∀ (x, t) ∈ Sr × [0, 1]. (3.2)

Applying Theorems 3.1 and 3.2 to H defined by (3.2), we have the following two

situations:

(i) There exist some r > 0 such that H(x, t) 6= 0 for any x ∈ Sr and t ∈ [0,1].

In this situation, Theorem 3.1 implies that deg(F,Br,0) = deg(G,Br,0). Because

deg(G,Br, 0) = 1, we know deg(F,Br, 0) = 1. Consequently, by Theorem 3.2, we

know that the ball Br contains at least one solution to the equation F (x) = 0.

(ii) For each r > 0, there exists a point xr ∈ Sr and a scalar tr ∈ [0,1] such

that H(xr, tr) = 0. If tr = 0, then xr is a solution of F (x) = 0. Secondly, if tr = 1,

it is clear from the definition of H(x, t) that trG(xr) + (1 − tr)F (xr) = xr = 0,

which contradicts the fact that ‖xr‖ = r > 0. Finally, if 0 < tr < 1, it then follows

from the definition of H(x, t) that

0 =
1

1− tr
[trG(xr) + (1− tr)F (xr)] =

tr
(1− tr)

G(xr) + F (xr).

Letting µr = tr
1−tr

, we have F (xr) = −µrG(xr) = −µrx
r. Due to the fact ‖xr‖ = r,

it holds that ‖xr‖ → ∞ as r → ∞. Thus, from Definition 3.1, we know that {xr}
is an exceptional family of elements for F . ⊓⊔

Throughout, for given Λ := (A1,A2, · · · ,Am−1) ∈ Tm,n × Tm−1,n × · · · × T2,n

and b ∈ R
n, we denote by SOL(Λ, b) the solution set of (1.3), i.e.,

SOL(Λ, b) := {x ∈ R
n : F (x) = 0}, (3.3)

where the function F : Rn → R
n is given by

F (x) = A1x
m−1 +A2x

m−2 + · · ·+Am−2x
2 +Am−1x− b. (3.4)

By Theorem 3.3, we have the solutions existence theorem for (1.3) as follows.
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Theorem 3.4 Let Λ := (A1,A2, · · · ,Am−1) ∈ Tm,n ×Tm−1,n × · · · ×T2,n. Suppose

that the leading tensor A1 in Λ is a Z+-tensor. Then, the solution set SOL(Λ, b) of

(1.3) is nonempty and compact for any b ∈ R
n.

Proof We first prove the nonemptyness of SOL(Λ, b). Suppose, on the contrary, that

SOL(Λ, b) = ∅. Then, by Theorem 3.3, we know that there exists an exceptional

family of elements {xr}r>0 for F defined in (3.4), i.e., {xr}r>0 satisfies ‖xr‖ → ∞
as r → ∞, and for each real number r > 0, there exists a scalar µr > 0 such that

m−1
∑

k=1

Ak(x
r)m−k − b = −µrx

r,

which implies

m−1
∑

k=1

Ak

‖xr‖k−1

(

xr

‖xr‖

)m−k

+
µr

‖xr‖m−2

xr

‖xr‖ =
b

‖xr‖m−1
. (3.5)

It can be easily seen from (3.5) that {µr/‖xr‖m−2} is bounded. Without loss of

generality, we assume that xr/‖xr‖ → x̄ and µr/‖xr‖m−2 → t̄ as r → ∞. It is clear

that x̄ 6= 0 and t̄ ≥ 0. Since ‖xr‖ → ∞ as r → ∞, by taking r → ∞ in (3.5), it

holds that A1x̄
m−1 + t̄x̄ = 0, which contradicts to the given condition that A1 is

a Z+-tensor. Therefore, SOL(Λ, b) is nonempty.

Now we prove the compactness of SOL(Λ, b). It is clear that SOL(Λ, b) is closed.

Moreover,A1 is nonsingular since it is a Z+-tensor. By Proposition 3.1, we conclude

that SOL(Λ, b) is bounded.

Hence, we obtain the desired result and complete the proof. ⊓⊔

As a byproduct of Theorem 3.4, we immediately obtain the existence of so-

lutions of (1.1), which can be viewed as an interesting complement to the result

discussed in [7].

Corollary 3.1 Suppose that the coefficient tensor A in (1.1) is a Z+-tensor. Then

the system of tensor equations (1.1) always has a solution for any b ∈ R
n.

Moreover, we have the following uniqueness result on solution of (1.1).

Theorem 3.5 Suppose that the coefficient tensor A in (1.1) is a strong P-tensor, then

the system of tensor equations (1.1) always has a unique solution for any b ∈ R
n.

Proof It first follows from Definition 2.1 and Proposition 2.1 that A is a Z+-tensor.

As a consequence of Corollary 3.1, we know that (1.1) has at least one solution for

any b ∈ R
n. Suppose that both x̄ and ȳ are different solutions of (1.1), i.e., x̄ 6= ȳ

and Ax̄m−1 = Aȳm−1 = b. It then can be easily seen that

max
1≤i≤n

(x̄i − ȳi)(Ax̄m−1 −Aȳm−1)i = 0,
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which contradicts the condition that A is a strong P-tensor. Hence, we prove the

desired result. ⊓⊔

From Example 2.1 and definitions of M-tensor (see [38]) and strong P-tensor,

we know that the set of all strong P-tensors and the set of all M-tensors do not

contain each other. Hence, the existence result obtained above is different from

Theorem 3.2 presented in [7]. Additionally, the following example will show that

the condition of A being a strong P-tensor in Theorem 3.5 can neither be removed

nor be replaced by the positive definiteness of tensor.

Example 3.1 Let A = (ai1i2i3i4) ∈ T4,2 with a1111 = 2, a1122 = −3/2, a1222 = 1

and a2222 = 5/2, and all others ai1i2i3i4 = 0. It is easy to see that for any x ∈ R
2\{0},

we have

Ax4 = 2x4
1 − (3/2)x2

1x
2
2 + x1x

3
2 + (5/2)x4

2

≥ 2x4
1 − (3/2)x2

1x
2
2 − (1/2)(x2

1 + x2
2)x

2
2 + (5/2)x4

2

= (x2
1 − x2

2)
2 + x4

1 + x4
2 > 0,

where the inequality comes from the fact that 2|x1x2| ≤ x2
1 + x2

2 for any x1, x2 ∈ R,

which means that A is a positive definite tensor. However, for b = (6,20)⊤, it is easy

to see that Ax3 = b can be specified as

{

2x3
1 − (3/2)x1x

2
2 + x3

2 = 6,

(5/2)x3
2 = 20,

which implies x2 = 2 and 2x3
1 − 6x1 + 2 = 0. Consequently, it is not difficult to

check that 2x3
1 − 6x1 + 2 = 0 has two different positive real roots (denoted by x̂1, x̃1)

and a negative real root x̄1, so all (x̄1, 2)
⊤, (x̂1, 2)

⊤ and (x̃1, 2)
⊤ are the solutions of

Ax3 = b. On the other hand, if we take b = (2,20)⊤, then it is easy to see that the

resulting tensor equations Ax3 = b has only one solution (x̃1, 2)
⊤ with x̃1 < 0.

As proved in [7], if the coefficient tensor A in (1.1) is a nonsingular M-tensor,

then (1.1) has a unique positive solution for any given positive vector b ∈ R
n.

However, this example shows that, even if A in (1.1) is a positive definite tensor,

we could not ensure that (1.1) has positive solutions for a positive vector b ∈ R
n.

4 Local error bound

In this section, we are going to study the local error bound condition that will play

an important role in the convergence analysis of Levenberg-Marquardt algorithm

presented in the next section. We begin this section by recalling the following

definitions.
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Definition 4.1 ([23,34]) Consider W (x) = 0, where W : Rn → R
n is a contin-

uous function. Let N be a subset of Rn such that N ∩ X 6= ∅, where X = {x ∈
R
n | W (x) = 0}. We say that ‖W (x)‖ provides a local error bound on N for

W (x) = 0, if there exists a positive constant c > 0 such that

‖W (x)‖ ≥ c dist(x,X)

holds for any x ∈ N , where dist(x,X) = infy∈X ‖y − x‖.

It is well-known that, if the Jacobian matrix W ′(x̄) of W at the solution x̄ of

W (x) = 0 is nonsingular, then x̄ is an isolated solution. Hence, ‖W (x)‖ provides

a local error bound on some neighborhood of x̄. However, the reverse claim is not

necessarily true. The reader is referred to [34] and the following example of tensor

version.

Example 4.1 Let A = (ai1i2i3i4) ∈ T4,2 with a1111 = a1222 = 1, a1112 = a1122 = 3,

a2111 = a2222 = 2, a2112 = a2122 = 6 and all other ai1i2i3i4 = 0, and b = (1,2)⊤. Let

W (x) = Ax3 − b. Then we have

W (x) =

[

(x1 + x2)
3 − 1

2(x1 + x2)
3 − 2

]

.

For x ∈ R
2, it holds that ‖W (x)‖ =

√
5|(x1 + x2)

3 − 1| and dist(x,X) = |x1 + x2 −
1|/

√
2, where X = {x ∈ R

2 : x1 + x2 = 1}. Since limα→1
α3−1
α−1 = 3, it is easy to see

that |(x1 + x2)
3 − 1|/|x1 +x2 − 1| ≥ 5/4 for any x ∈ N := {x ∈ R

2 : |x1 + x2 − 1| ≤
1/2}. Consequently, we obtain

‖W (x)‖ =
√
5 |(x1 + x2)

3 − 1| ≥ 5
√
5/4|x1 + x2 − 1| = 5

√
10/4 dist(x,X)

for any x ∈ N . By taking c = 5
√
10/4, we know that ‖W (x)‖ provides a local error

bound on N for W (x) = 0. However, it is clear that the Jacobian matrix W ′(x) of W

is singular for any x ∈ R
2.

We now study the condition under which the local error bound holds. To this

end, we make the following assumption on the function F defined by (3.4).

Assumption 4.1 For any given {xr} with xr → x̄ ∈ X := SOL(Λ, b), there exists a

subsequence {xrj} of {xr} and i0 ∈ [n] such that

lim
rj→∞

Fi0(x
rj )

‖xrj − x̄‖ 6= 0. (4.1)

Theorem 4.1 Let Λ := (A1,A2, · · · ,Am−1) ∈ Tm,n ×Tm−1,n × · · · ×T2,n. Suppose

that the leading tensor A1 is nonsingular and Assumption 4.1 holds. Then ‖F (x)‖
provides a local error bound for (1.3).
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Proof Suppose, on the contrary, that ‖F (x)‖ is not a local error bound for (1.3).

Then there exists a positive number ε and a sequence {xr} ⊂ R
n such that

‖F (xr)‖ ≤ ε and
‖F (xr)‖

dist(xr, X)
→ 0. (4.2)

We first claim that {xr} is bounded. Otherwise, without loss of generalization,

assume that ‖xr‖ → ∞ as r → ∞. Since ‖F (xr)‖ ≤ ε, we know that

∥

∥

∥

∥

∥

A1(x̄
r)m−1 +

m−1
∑

k=2

Ak(x̄
r)m−k

‖xr‖k−1
− b/‖xr‖m−1

∥

∥

∥

∥

∥

=
‖F (xr)‖
‖xr‖m−1

≤ ε

‖xr‖m−1
,

where x̄r = xr/‖xr‖. Without loss of generalization, we assume that x̄r → x̄

as r → ∞. It is clear that ‖x̄‖ = 1. Letting r → ∞ in the expression above

leads to ‖A1x̄
m−1‖ = 0, which contradicts the condition that A1 is nonsingular.

Since {xr} is bounded, we assume that xr → x∗ as r → ∞. Furthermore, it is

easy to see that x∗ ∈ X. By Assumption 4.1, there exists a subsequence {xrj} of

{xr} and i0 ∈ [n] such that (4.1) holds. Consequently, there exists a subsequence

{xrjl } of {xrj} and ε0 > 0, such that |Fi0(x
rjl )| ≥ ε0‖xrjl − x∗‖, which implies

‖F (xrjl )‖ ≥ ε0 dist(xrjl , X) contradicting to (4.2). ⊓⊔

To obtain a more checkable condition where the local error bound holds, we

further make the following assumption.

Assumption 4.2 Let A ∈ T2,n. For a given solution x̄ of F (x) = 0, there exists

a neighborhood N(x̄, r) of x̄ and c > 0 such that ‖A(x − x̄)‖ ≥ c‖x − x̄‖ for any

x ∈ N(x̄, r).

It is obvious that if the matrix A in Assumption 4.2 is nonsingular, then As-

sumption 4.2 holds.

Theorem 4.2 Let Λ := (A1,A2, · · · ,Am−1) ∈ Tm,n × Tm−1,n × · · · × T2,n. Sup-

pose that Am−1 satisfies Assumption 4.2 on some neighborhood N(x̄, r) of x̄ ∈ X :=

SOL(Λ, b) and G(x) :=
∑m−2

k=1 Akx
m−k − b satisfies ‖G(x)− G(x̄)‖ = o(‖x − x̄‖) as

x → x̄. Then ‖F (x)‖ provides a local error bound for (1.3) on N(x̄, r).

Proof Since ‖F (x)‖ = ‖F (x)−F (x̄)‖ ≥ ‖Am−1(x− x̄)‖−‖G(x)−G(x̄)‖, the desired
result is immediately obtained from the given conditions. ⊓⊔

5 Levenberg-Marquardt algorithm for (1.3)

Notice that the model under consideration (see (1.2) and (1.3)) indeed is a struc-

tured system of nonlinear equations. In the literature, it has been well documented
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that Levenberg-Marquardt methods are efficient solvers for nonlinear equations.

Therefore, in this section, we employ the most recent Levenberg-Marquardt algo-

rithm proposed in [1] for (1.3) with a small modification on the LM parameter.

With the notation of F (x) given by (3.4), we can describe the Levenberg-

Marquardt algorithm for (1.3) in Algorithm 1.

Algorithm 1 (Levenberg-Marquardt Algorithm for (1.3)).

1: Choose a positive integer N0, µ0 > µ̄ > 0, ǫ ∈ [1, 2] and 0 < p0 ≤ p1 ≤ p2 < 1. Let

x(0) ∈ R
n be starting points.

2: while ‖(F ′(x(k)))⊤F (x(k))‖ 6= 0 do

3: Let

λk =
µk‖F (x(k))‖ǫ

1 + ‖F (x(k))‖
. (5.1)

4: Compute dk by solving the following linear system of equations:

[F ′(x(k))⊤F ′(x(k)) + λkI]d = −F ′(x(k))⊤F (x(k)). (5.2)

5: Set

τk =
‖Fl(k)‖

2 − ‖F (x(k) + dk)‖
2

‖F (x(k))‖2 − ‖F (x(k)) + F ′(x(k))dk‖2
,

where Fl(k) = max0≤j≤χk
{‖F (xk−j)‖} and χk = min{k,N0}.

6: Update the next iterate x(k+1) by

x(k+1) :=

{

x(k) + dk, if τk ≥ p0,

x(k), otherwise.

7: Update the parameter µk+1 by

µk+1 :=











4µk , if τk < p1,

µk, if p1 ≤ τk ≤ p2,

max{µk/4, µ̄}, otherwise.

8: end while

Remark 5.1 Note that the practical stopping criterion in Algorithm 1 can be spec-

ified as ‖(F ′(x(k)))⊤F (x(k))‖ ≤ Tol, where ‘Tol’ is a tolerance. Generally speaking,

such a stopping criterion just leads to a stationary point of (1.3) with generic

tensors, which may not always be a solution to (1.3). Hence, in this paper, we use

‖F (x(k))‖ ≤ Tol in practice instead of the original one to ensure the obtained iter-

ate x(k) being a solution to (1.3), in addition to keeping the same stopping criterion

when comparing Algorithm 1 with the other methods. For the LM parameter λk

in (5.1), we attach a parameter ǫ to ‖F (x(k))‖ for the purpose of improving the

numerical performance of Algorithm 1.
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Below, we give the convergence results on Algorithm 1. First, it is obvious that

F (x) defined by (3.4) is continuously differentiable on R
n, and Lipschitz continuous

on any given bounded subset Ω in R
n, i.e., there exists a constant L > 0 such that

‖F (x)− F (y)‖ ≤ L‖x− y‖, ∀ x, y ∈ Ω.

Moreover, the Jocabian matrix function F ′(x) of F (x) is also Lipschitz continuous

on any given bounded subset Ω in R
n, i.e., there exists a constant L > 0 such that

‖F ′(x)− F ′(y)‖ ≤ L‖x − y‖, ∀ x, y ∈ Ω.

Consequently, it is easy to see that

‖F (y)− F (x)− F ′(x)(y − x)‖ ≤ L‖y − x‖2, ∀ x, y ∈ Ω.

When the leading tensor A1 in Λ is nonsingular, the solution set SOL(Λ, b)

is bounded for any b ∈ R
n. Consequently, for any x(0) ∈ R

n, there is a scalar

c0 > 0 such that the sequence {x(k)} generated by Algorithm 1 belongs to the set

Lev(c0) := {x ∈ R
n|‖F (x)‖ ≤ c0}, which is bounded, if A1 in Λ is nonsingular. As

a consequence, both F (x) and F ′(x) are Lipschitz continuous on the set Lev(c0),

which implies the following global convergence theorem for Algorithm 1. The proof

is skipped here for brevity and the reader is referred to [1, Theorem 2.4] for similar

details.

Theorem 5.1 Suppose that the leading tensor A1 in Λ is nonsingular. Then, Algo-

rithm 1 terminates in finite iterations or satisfies

lim inf
k→∞

‖(F ′(x(k)))⊤F (x(k))‖ = 0.

Furthermore, when we suppose that the sequence {x(k)} generated by Algo-

rithm 1 is convergent to x∗ ∈ SOL(Λ, b) and also lies in a neighborhood of x∗,

Algorithm 1 is then quadratically convergent (see [1, Theorem 3.5]).

Theorem 5.2 Suppose that ‖F (x)‖ provides a local error bound on N(x∗, ̺) for (1.3),

where 0 < ̺ < 1 and N(x∗, ̺) := {x ∈ R
n : ‖x−x∗‖ ≤ ̺}. Then the sequence {x(k)}

generated by Algorithm 1 converges quadratically to a solution of (1.3).

6 Numerical experiments

As shown in Section 5, Algorithm 1 (denoted by ‘LMA’ throughout) has promis-

ing convergence properties. In this section, we further investigate its numerical

behaviors on solving (1.3) with synthetic data. Due to the fact that for any

A ∈ Tm,n (m ≥ 3) there always exists a semi-symmetric tensor Ā ∈ Tm,n such
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that Axm−1 = Āxm−1 for any x ∈ R
n, throughout this section, we consider the

case where the coefficient tensors in (1.3) are semi-symmetric.

Note that the special case (1.1) of (1.3) with M-tensors and positive vector

b ∈ R
n has been well studied in the recent literature. Here, we first consider model

(1.1) with different kinds of tensors (e.g., M-tensors and general random tensors).

Besides, we compare the proposed LMA with three benchmark algorithms, includ-

ing the homotopy method [12] (HM for short), the Newton-Gauss-Seidel method

with one-step Gauss-Seidel iteration [17] (NGSM for short), and the quadratically

convergent algorithm [13] (QCA for short). Then, we consider the generic model

(1.3) and show the preliminary numerical results.

The code of the HM proposed by Han [12] was downloaded from Han’s home-

page1. The codes of the other three methods were written in Matlab 2014a.

Throughout, we employed the publicly shared tensor toolbox [2] to compute tensor-

vector products and semi-symmetrization of tensors. All experiments were con-

ducted on a DELL workstation computer with Intel(R) Xeon(R) CPU E5-2680

v3 @2.5GHz and 128G RAM running on Windows 7 Home Premium operating

system.

6.1 Solving tensor equations (1.1)

As aforementioned, the system of tensor equations (1.1) with M-tensors has been

studied in recent works, e.g., see [7,12,13,17,21]. However, the coefficient tensor

A may not be an M-tensor in some real-world problems (see [35]). Therefore, we

consider two cases where A is an M-tensor and a general tensor, respectively.

We first consider the system of tensor equations (1.1) with semi-symmetric M-

tensors. To generate an M-tensor A in (1.1), we follow the way used in [7], that is,

we randomly generate a nonnegative tensor B := (bi1i2···im) ∈ Tm,n, whose entries

are uniformly distributed in (0, 1), and set A := sI − B with

s = (1 + σ) · max
1≤i≤n





n
∑

i2,··· ,im=1

bii2···im



 and σ = 0.1.

Clearly, it follows from the fact

ρ(B) ≤ max
1≤i≤n





n
∑

i2,··· ,im=1

bii2···im





that s > ρ(B), which always ensures that A is a nonsingular M-tensor (see [4,26]).

Then, we randomly generate the vector b in (1.1), whose all entries are uniformly

1 http://homepages.umflint.edu/∼lxhan/software.html
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distributed in (0,1). In this situation, we know that (1.1) has an unique positive

solution [7]. For this case, we always take the starting point as x(0) = (1,1, ..., 1)⊤

for all methods.

Note that we have shown that (1.1) with a Z+-tensor has at least one so-

lution for any b ∈ R
n. From the definition of Z+-tensor, it is not easy to gen-

erate high-order and -dimensional Z+-tensors. Therefore, after the test of (1.1)

with M-tensors, we then consider a series of random semi-symmetric tensors,

which are not necessarily Z+-tensors. Specifically, we generate random tensors

A := (ai1i2···im) ∈ Tm,n, whose entries are uniformly distributed in (−5,5). To en-

sure the problem under test has at least one solution, we first randomly generate

a point x∗ ∈ R
n whose entries are uniformly distributed in (0,1), and then let

b = A(x∗)m−1. It is clear that x∗ is a solution of (1.1) with (A, b). For this case,

we choose the initial point x(0) = x∗ + (1,1, ..., 1)⊤ for all methods.

Observing that λk > 0 can lead to F ′(x(k))⊤F ′(x(k)) + λkI in (5.2) being a

positive definite matrix, we can gainfully compute the descent direction dk directly

by the ‘left matrix divide: \’, which is roughly same as the multiplication of the

inverse of a matrix and a vector. For the linear subproblem of QCA in [13], we

employ the solver ‘bicg’ to it as suggested by the authors.

As suggested in [12] and further verified in [13], we implement all methods to

solve the scaled system of (1.1) instead of the original one, i.e., solving

Âxm−1 = b̂ (6.1)

instead of directly finding solution to (1.1), where Â := A/ω and b̂ := b/ω with

ω being the largest value among the absolute values of components of A and the

entries of b. When ‖Âxm−1 − b̂‖2 ≤ 10−12 is satisfied or the number of iterations

exceeds 1000, we terminate the methods and return solutions.

As suggested in [1], we take p0 = 10−4, p1 = 0.25, p2 = 0.75, µ̄ = 10−8,

µ0 = 1, N0 = 5 for the proposed LMA. Additionally, note that ǫ ∈ [1,2] is a

flexible parameter for LMA. It is unknown which value is better for the problem

under consideration. Thus, we first investigate the numerical sensitivity of ǫ for our

problem. Here, we test four values of ǫ, i.e., ǫ = {1, 1, 25,1, 75,2}. Since all the data
is generated randomly, we test 100 groups of random data (A, b) for each pair of

(m,n) and report some numerical results. Throughout, ‘itr’ represents the average

number of iterations; ‘time’ denotes the average computing time in seconds; ‘resi’

represents the average residual ‖Âxm−1 − b̂‖ of the scaled system; and ‘sr’ denotes

the success rate in 100 groups of data sets (A, b) for each pair of (m,n). Here, we

think that the method is successful if the residual ‖Â(x(k))m−1 − b̂‖ ≤ 10−12 in

1000 iterations.
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Tables 1 and 2 summarize the sensitivity of ǫ for M-tensors and general random-

tensors, respectively. The results clearly show that LMA performs well for (1.1)

with M-tensors and positive vectors b. Especially, it seems from Table 1 that ǫ = 2

is the best value in terms of taking the least average iterations, which suggests

taking such a value for (1.1) with M-tensors. Even though we can not verify that

whether the coefficient tensors A are Z+-tensors, it can be seen from Table 2 that

the proposed LMA is also reliable with a high success rate for (1.1) with general

tensors. Moreover, it seems that ǫ = 1 is slightly better than the other three values

for general cases.

Table 1 Numerical sensitivity of ǫ to LMA for (6.1) with M-tensors.

ǫ = 1 ǫ = 1.25

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 9.07 / 0.05 / 1.00×10−13/ 1.00 9.00 / 0.05 / 8.46×10−15/ 1.00

(3, 50) 11.00 / 0.06 / 1.15×10−17/ 1.00 11.00 / 0.05 / 7.59×10−18/ 1.00

(3, 100) 12.00 / 0.13 / 5.10×10−17/ 1.00 12.00 / 0.12 / 5.50×10−18/ 1.00

(4, 50) 14.00 / 0.38 / 2.38×10−15/ 1.00 14.00 / 0.39 / 4.37×10−17/ 1.00

(4, 100) 16.00 / 5.70 / 3.76×10−17/ 1.00 16.00 / 5.77 / 1.16×10−18/ 1.00

(5, 20) 14.01 / 0.21 / 2.32×10−14/ 1.00 14.00 / 0.21 / 5.21×10−16/ 1.00

(5, 50) 17.01 / 19.67 / 1.73×10−13/ 1.00 17.00 / 19.74 / 1.10×10−14/ 1.00

ǫ = 1.75 ǫ = 2

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 9.00 / 0.05 / 3.46×10−17/ 1.00 8.94 / 0.04 / 2.76×10−14/ 1.00

(3, 50) 10.20 / 0.05 / 2.26×10−13/ 1.00 10.01 / 0.05 / 1.00×10−13/ 1.00

(3, 100) 12.00 / 0.11 / 4.03×10−18/ 1.00 11.98 / 0.10 / 1.71×10−14/ 1.00

(4, 50) 13.52 / 0.37 / 2.78×10−13/ 1.00 13.06 / 0.36 / 2.03×10−13/ 1.00

(4, 100) 15.01 / 5.38 / 2.94×10−13/ 1.00 15.00 / 5.36 / 9.46×10−14/ 1.00

(5, 20) 13.37 / 0.20 / 1.78×10−13/ 1.00 13.03 / 0.20 / 1.34×10−13/ 1.00

(5, 50) 17.00 / 19.60 / 7.95×10−17/ 1.00 16.91 / 19.50 / 6.40×10−14/ 1.00

To compare the proposed LMA with the state-of-the-art solvers HM, QCA,

and NGSM, we conduct seven pairs of (m,n) and also randomly generate 100

groups of (A, b) for every (m,n). The average performance of the four methods is

listed in Tables 3 and 4. To show the evolutions of the residual ‖Âxm−1 − b̂‖ with

respect to iterations, we present two plots in Fig. 1, which also shows the quadratic

convergence rate of LMA. Moreover, we can see from Fig. 1 that both LMA and

QCA are monotone algorithms, whereas both HM and NGSM are nonmonotone

versions. Such a monotone behavior potentially supports that both LMA and

QCA perform better than both HM and NGSM in many cases. Accordingly, we

can conclude from Table 3 and Fig. 1 that the proposed LMA is competitive to
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Table 2 Numerical sensitivity of ǫ to LMA for (6.1) with general random tensors.

ǫ = 1 ǫ = 1.25

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 10.02 / 0.05 / 8.08×10−14 / 0.93 10.14 / 0.05 / 3.14×10−14 / 0.92

(3, 50) 14.19 / 0.07 / 6.15×10−14 / 0.88 14.13 / 0.07 / 3.42×10−14 / 0.85

(3, 100) 16.57 / 2.78 / 3.97×10−14 / 0.74 17.93 / 2.91 / 8.06×10−14 / 0.75

(4, 50) 17.50 / 0.49 / 6.77×10−14 / 0.84 17.32 / 0.47 / 8.10×10−14 / 0.78

(4, 100) 20.71 / 149.76 / 4.30×10−14 / 0.66 22.42 / 158.99 / 9.51×10−14 / 0.74

(5, 20) 18.58 / 0.27 / 6.67×10−14 / 0.77 20.00 / 0.30 / 5.80×10−14 / 0.72

(5, 50) 33.75 / 38.23 / 5.33×10−14 / 0.65 33.42 / 37.78 / 6.46×10−14 / 0.55

ǫ = 1.75 ǫ = 2

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 11.06 / 0.05 / 5.07×10−14 / 0.94 11.45 / 0.06 / 6.67×10−14 / 0.95

(3, 50) 17.09 / 0.08 / 6.90×10−14 / 0.85 18.12 / 0.08 / 5.56×10−14 / 0.81

(3, 100) 22.31 / 3.60 / 5.60×10−14 / 0.75 29.54 / 4.73 / 6.01×10−14 / 0.70

(4, 50) 26.41 / 0.73 / 6.11×10−14 / 0.71 29.02 / 0.78 / 7.10×10−14 / 0.64

(4, 100) 32.95 / 236.37 / 5.86×10−14 / 0.63 40.88 / 293.57 / 7.20×10−14 / 0.57

(5, 20) 20.55 / 0.30 / 5.90×10−14 / 0.83 17.13 / 0.26 / 3.62×10−14 / 0.71

(5, 50) 39.41 / 44.63 / 6.62×10−14 / 0.63 44.64 / 50.20 / 4.97×10−14 / 0.58

the promising HM [12] and QCA [13] when dealing with (1.1) with M-tensors and

positive vectors b.

Table 3 Numerical comparison of the four algorithms for (6.1) with M-tensors.

LMA HM [12]

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 8.96 / 0.04 / 2.37×10−14/ 1.00 8.92 / 0.08 / 1.29×10−14/ 1.00

(3, 50) 10.00 / 0.05 / 8.00×10−14/ 1.00 9.00 / 0.08 / 2.29×10−14/ 1.00

(3, 100) 11.97 / 1.97 / 2.37×10−14/ 1.00 9.00 / 2.74 / 3.16×10−14/ 1.00

(4, 50) 13.05 / 0.36 / 2.18×10−13/ 1.00 9.00 / 0.44 / 4.30×10−13/ 1.00

(4, 100) 15.00 / 5.36 / 1.05×10−13/ 1.00 11.00 / 139.33 / 2.63×10−17/ 1.00

(5, 20) 13.09 / 0.19 / 9.58×10−14/ 1.00 10.00 / 0.26 / 7.57×10−14/ 1.00

(5, 50) 16.92 / 19.80 / 6.49×10−14/ 1.00 11.00 / 22.00 / 1.22×10−15/ 1.00

QCA [13] NGSM [17]

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 8.07 / 0.04 / 4.03×10−14/ 1.00 52.00 / 0.11 / 5.70×10−13/ 1.00

(3, 50) 9.07 / 0.05 / 8.21×10−14/ 1.00 56.41 / 0.13 / 5.66×10−13/ 1.00

(3, 100) 9.82 / 2.16 / 5.78×10−14/ 1.00 60.61 / 1.74 / 6.57×10−13/ 1.00

(4, 50) 10.68 / 0.31 / 8.46×10−14/ 1.00 73.28 / 0.97 / 4.19×10−13/ 1.00

(4, 100) 11.58 / 79.73 / 6.86×10−14/ 1.00 72.52 / 12.31 / 6.23×10−13/ 1.00

(5, 20) 10.51 / 0.17 / 1.09×10−13/ 1.00 80.78 / 0.59 / 4.34×10−13/ 1.00

(5, 50) 12.14 / 13.71 / 1.28×10−13/ 1.00 72.63 / 40.36 / 6.02×10−13/ 1.00
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Table 4 Numerical comparison of the four algorithms for (6.1) with general tensors.

LMA HM / QCA / NGSM

(m,n) itr / time / resi / sr itr / time / resi / sr

(3, 20) 11.28 / 0.06 / 6.64×10−14/ 0.94 – / – / – / –

(3, 50) 14.43 / 0.07 / 1.11×10−13/ 0.75 – / – / – / –

(3, 100) 15.90 / 1.09 / 4.82×10−14/ 0.81 – / – / – / –

(4, 50) 16.45 / 0.53 / 6.63×10−14/ 0.74 – / – / – / –

(4, 100) 23.27 / 9.66 / 7.25×10−14/ 0.83 – / – / – / –

(5, 20) 18.11 / 0.29 / 7.36×10−14/ 0.83 – / – / – / –

(5, 50) 29.89 / 39.25 / 6.05×10−14/ 0.53 – / – / – / –
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Fig. 1 Evolutions of the residual ‖Âxm−1 − b̂‖ with respect to iterations.

Notice that both HM [12] and QCA [13] are tailored for (1.1) with M-tensors

and positive vectors b, and the convergence of NGSM [17] relies on the positive

definiteness of Axm−2, which is a comparatively restrictive condition. Hence, it is

not clear that whether HM, QCA, and NGSM are still able to find solutions of

(1.1) with general tensors. It is noteworthy that, in our experiments, we will use

the symbol ‘–’ to denote ‘itr’, ‘time’, ‘resi’, ‘sr’ if the method can not get a solution

satisfying ‖Â(x(k))m−1 − b̂‖ ≤ 10−12 in 1000 iterations. From the data reported in

Table 4, we can see that HM, QCA, and NGSM fail to finding solutions of (1.1)

with generic random tensors under the preset tolerance. Actually, we have some

more results on lower dimensional cases, e.g., n = {5, 10,20}, which show that HM,

QCA, and NGSM usually obtain satisfactory solutions in a very low probability

(less than 10%). However, the proposed LMA can successfully find a solution with

a high probability, which is a good news for finding solutions to generalized tensor

equations.
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6.2 Solving generalized tensor equations (1.3)

In the last subsection, we can see that the proposed LMA is a probabilistic reliable

solver for (1.1) with M-tensors and general tensors. However, the theoretical and

algorithmic results are mainly devoted to the generalized tensor equations (1.3).

Hence, we are further concerned with the numerical performance of LMA for (1.3).

Specifically, we consider the case where Ai ∈ T(4−i+1),n, i = 1, 2, 3. As tested in

Section 6.1, we consider two scenarios where Ai, i = 1,2, 3 are M-tensors and

generic random tensors, respectively. Moreover, we follow the way used in Section

6.1 to generate Ai (i = 1, 2, 3) and b. Throughout, the initial point x(0) is taken as

x(0) = (1, 1, · · · , 1)⊤, and all parameters of LMA are taken as the values used in

Section 6.1. The stopping criterion for LMA is set as

‖A1(x
(k))3 +A2(x

(k))2 +A3(x
(k))− b‖ ≤ 10−6,

and the maximum iteration is taken as 1000. Denote the order of Ai by mi. In our

experiments, we conduct five groups of (m1,m2,m3, n) with randomly generated

100 groups of data sets (A1,A2,A3, b) for each scenario.

The results are listed in Table 5. For the case where Ai (i = 1, 2, 3) are M-

tensors, it is easy to see from Table 5 that LMA can always successfully find a

solution of (1.3). Even for the case where Ai (i = 1,2, 3) are generic random

tensors, the proposed LMA can also find a solution to (1.3) in a relatively high

probability.

Table 5 Numerical performances of LMA for (1.3) with M-tensors and general tensors.

M-tensors General tensors

(m1, m2,m3, n) itr / time / resi / sr itr / time / resi / sr

(4, 3, 2, 5) 6.75 / 0.07 / 8.10×10−8 / 1.00 9.39 / 0.09 / 8.13×10−8 / 0.90

(4, 3, 2, 10) 8.05 / 0.08 / 8.18×10−8 / 1.00 16.08 / 0.14 / 9.55×10−8 / 0.79

(4, 3, 2, 20) 9.90 / 0.09 / 6.13×10−8 / 1.00 29.52 / 0.27 / 1.10×10−7 / 0.50

(4, 3, 2, 50) 12.00 / 0.40 / 2.48×10−10 / 1.00 53.32 / 1.67 / 8.07×10−8 / 0.56

(4, 3, 2, 100) 13.61 / 4.94 / 2.84×10−7 / 1.00 66.26 / 23.10 / 1.22×10−7 / 0.42

7 Conclusion

In this paper, we considered a class of generalized tensor equations, which is an

extension of the newly introduced tensor equations in [7]. To study the existence-

ness of solutions, we first introduce a class of so-named Z+-tensors, which includes

many well-known structured tensors such as P-tensors as its special type. With
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the help of degree theory, we showed that the solution set of GTEs is nonempty

and compact when (1.3) has a leading Z+-tensor. Moreover, we established the

local error bounds under some appropriate conditions and proposed a Levenberg-

Marquardt algorithm to find a solution of (1.3) including its special case (1.1).

Computational results show that the proposed LMA performs well for (general-

ized) tensor equations with M-tensors and generic random tensors. However, our

algorithm still fails in some cases due to the starting point perhaps being far way

the true solution of the problem. So, can we design structure-exploiting algorithms

which are independent on the starting point? This is one of our future concerns.
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