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Abstract

The paper deals with modelling of acoustic waves which propagate in inviscid
fluids interacting with perforated elastic plates. The plate can be replaced
by an interface on which transmission conditions are derived by homogeniza-
tion of a problem describing vibroacoustic fluid-structure interactions in a
transmission layer in which the plate is embedded. The Reissner-Mindlin
theory of plates is adopted for periodic perforations designed by arbitrary
cylindrical holes with axes orthogonal to the plate midplane. The homoge-
nized model of the vibroacoustic transmission is obtained using the two-scale
asymptotic analysis with respect to the layer thickness which is proportional
to the plate thickness and to the perforation period. The nonlocal, im-
plicit transmission conditions involve a jump in the acoustic potential and
its normal one-side derivatives across the interface which represents the plate
with a given thickness. The homogenized model was implemented using the
finite element method and validated using direct numerical simulations of
the non-homogenized problem. Numerical illustrations of the vibroacoustic
transmission are presented.

Keywords: Vibro-acoustic transmission, perforated plate, thin layer, two
scale homogenization, Helmholtz equation, finite element method

1. Introduction

The noise and vibration reduction belongs to important issues in design
of structures used in the automotive industry, or civil engineering. The en-
gine silencer used to reduce the noise emitted by the exhaust gas presents
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an important and well known example. However, there are many similar
solid structures which can influence the acoustic wave propagation in fluid.
Usually they involve porous, or perforated plates, or panels, such that they
are permeable for the gas flow. The straightforward approach to modelling
the acoustic wave propagation through vibrating perforated plates consists
in solving directly the vibroacoustic problem with a 3D elastic structure de-
scribing the plate. However, its numerical treatment using the finite element
method can lead to an intractable problem because of the prohibitive number
of DOF's corresponding to the geometric complexity of the perforated struc-
ture. Therefore, it is reasonable to replace the elastic plate by an interface
on which coupling transmission conditions are prescribed.

In this paper, we consider the acoustic wave propagation in an inviscid
fluid interacting with elastic structures designed as periodically perforated
plates. The aim is to derive non-local vibro-acoustic transmission conditions
using the periodic homogenization method. Although similar problems have
been treated in the literature, cf. [6], in this context, the plate elasticity has
not been considered yet. As for the rigid structures, semi-empirical formu-
lae for the acoustic impedance exist which were tuned by experiments, or
developed using the electro-acoustic equivalent circuit theory [8| 19, 20], or
the Helmholtz-Kirchhoff integral theory [23]. During the last decade, a num-
ber of works appeared which are based on a homogenization strategy. For
a thin rigid perforated plate represented by interface I'y and characterized
by the thickness ~ § it has been shown in [II [6] that this interface is totally
transparent for the acoustic field at the zero order §° terms of the model
which describes the limit behaviour for § — 0, cf. [7]. For a higher order ap-
proximation, an approach based on the so-called inner and outer asymptotic
expansions has been developed, such that two associated acoustic fields are
coupled, one being relevant in the proximity of the perforations, the other at
a distance from the limit interface, see e.g. [5, 10, T1]. In contrast with [I]
dealing with thin perforated interfaces only, in [14] we were concerned with
homogenization of a fictitious layer in which rigid periodically distributed
obstacles were placed. In particular, a rigid plate perforated by arbitrary
shaped pores could be considered. Therein nonlocal transmission conditions
were obtained as the two-scale homogenization limit of a standard acoustic
problem imposed in the layer.

Here we follow the approach reported in [14] to develop vibroacoustic
transmission conditions which substitute the vibroacoustic interaction on an
elastic perforated plate immersed in the acoustic fluid. Up to our knowledge,
despite some numerical studies, see e.g. . [21], a rigorous treatment of such
a problem has not been treated using the homogenization method so far.
As the result we obtain vibroacoustic transmission conditions in a form of



an implicit Dirichlet-to-Neumann operator. Due to this operator, the elastic
perforated plate can be replaced by an interface on which a jump of the
global acoustic pressure is linked to the acoustic momenta associated with two
faces of the homogenized plate. It allows us to obtain an efficient numerical
model which takes into account geometrical details of the periodic perforation
without need of discretizing the vibroacoustic problem at the global level. In
other words, the homogenized interface provides a reduced model in which
a complex 3D elastic structure is replaced by a 2D perforated plate model
whose coefficients retain information about the perforation geometry. To
do so, we rely on the homogenized Reissner-Mindlin plate tailor-made for
the “simple” perforation represented by general cylindrical holes with axes
orthogonal to the mid-plane of the plate. Elastic strongly heterogeneous
plates were treated in [I7, [I8] where the framework of the Reissner-Mindlin
theory was used to derive a model of phononic plates, cf. [I3], but without
the interaction with an exterior acoustic field.

The proposed modelling conception based on the problem decomposition
and using the homogenization provides an alternative framework for mod-
elling of microporous panels which are known for their capabilities of acoustic
attenuation [22, 23, 9]. In [12] the so-called patch transfer functions were de-
veloped for numerical modelling of compliant micro-perforated panels.

The plan of the paper is as follows. In Section [2 the vibroacoustic prob-
lem of the wave propagation in a waveguide containing the perforated plate
is decomposed into the problem in a fictitious transmission layer (the “in-
layer” problem) and the “outer” problem governing the acoustic field out
of the layer. The “in-layer” vibroacoustic problem is treated using the ho-
mogenization method in Section |3 where the local problems imposed in the
representative periodic cell are introduced and formulae for the homogenized
coefficients are given. In Section[d] as the main result of this paper, the global
acoustic problem is established using the limit “in-layer” and the “outer”
problems which are coupled using additional conditions derived by an ad-
ditional integration and averaging procedure. The limit two-scale model of
the homogenized layer is validated in Section [5| using direct numerical sim-
ulations of the original problem. Finally, in Section [6] the proposed model
is employed to simulate wave propagation in a waveguide equipped with the
perforated plate. Some technical auxiliary derivations are presented in the
Appendix.

Notation.. In the paper, the mathematical models are formulated in a Carte-
sian coordinate system R(O; ey, es, e3) where O is the origin of the space
and (ej, ey, e3) is a orthonormal basis for this space. The spatial position
x in the medium is specified through the coordinates (z1,xs,z3) with re-



Figure 1: Left: The global domain decomposition into Q% and Q~ separated by the
homogenized perforated plate represented by the interface I'g. Center: detail of the layer
structure; the layer thickness is proportional to the plate thickness and to the perforation
period. Right: perforated interface and the representative periodic cell Y = Y* U S.

spect to a Cartesian reference frame R. The boldface notation for vectors,
a = (a;), and for tensors, b = (b;;), is used. The gradient and divergence
operators applied to a vector a are denoted by Va and V - a, respectively.
By V%u we denote the symmetrized gradient Vu, i.e. the strain tensor.
When these operators have a subscript which is space variable, it is for in-
dicating that the operator acts relatively at this space variable, for instance
V. = (7). The symbol dot ‘" denotes the scalar product between two vec-
tors and the symbol colon ‘:” stands for scalar (inner) product of two second-
order tensors. Throughout the paper, x denotes the global (“macroscopic”)
coordinates, while the “local” coordinates y describe positions within the
representative unit cell Y C R3 where R is the set of real numbers. By
latin subscripts ,7,k,l € {1,2,3} we refere to vectorial /tensorial compo-
nents in R3, whereas subscripts «, 3 € {1,2} are reserved for the tangen-
tial components with respect to the plate midsurface, i.e. coordinates x,
of vector represented by 2’ = (z1,22) = (z,) are associated with direc-
tions (e, ;). Moreover, V, = (J,) is the “in-plane” gradient. The gradi-
ent in the so-called dilated configuration with coordinates (z/, z) is denoted
by V = (V, é@z). We also use the jump w.r.t. the transversal coordinate,

la(,x3)]; = q(-7/2) — a(-,—7/2).

2. Formulation and decomposition of the vibroacoustic transmis-
sion problem

The aim of the paper is to find a representation of the vibro-acoustic
interaction on a perforated plate. For this, homogenized vibroacoustic trans-
mission conditions are derived using the asymptotisc analysis w.r.t. a scale



parameter ¢ which has a double role: on one hand it deals with the thick-
ness of an elastic plate when considered as a 3D object, on the other hand
it describes the size and spacing of holes periodically drilled in the plate
structure.

The flowchart of deriving the transmission conditions for a limit global
problem consists of the following steps:

e The vibro-acoustic problem (later called the “global problem”) is for-
mulated in a domain Q¢ C R? in which the perforated elastic plate is
embedded, being represented by a planar surface — the plate midsur-
face.

e A transmission layer {25 of the thickness ¢§ is introduced in terms of
['y which constitutes its midsurface. This will allow to decompose the
global problem into two subproblems: the vibroacoustic interaction in
the layer Qs and the outer acoustic problems in Q¢ \ Qs. The two
subproblems are coupled by natural transmission conditions on the
“fictitious” interfaces Ff.

e We consider the layer thickness being proportional to the scale param-
eter, thus, 6 = e, where s > 0 is fixed. The asymptotic analysis
0 ~ ¢ — 0 considered for the problem in )5 with the Neumann type
boundary conditions on T'f leads to the homogenized vibroacoustic
transmission problem defined on I'g. In this analysis, € has the double
role announced above and the plate is described using its 2D repre-
sentation in the framework of the Reissner-Mindlin plate theory. In
Remark [I] we explain the dual interpretation of the plate thickness
used in the asymptotic analysis of the vibro-acoustic problem.

e The final step is to derive the limit global problem for the acoustic
waves in the fluid interacting with the homogenized perforated plate
represented by ['y. For this, with a few modifications we follow the ap-
proach used in [I4], where the rigid plate was considered; a given plate
thickness h corresponds to given finite thickness dg of the transmission
layer. Then the continuity of the acoustic fields on interfaces tho yields

the homogenized vibroacoustic transmission conditions which hold on
[y.

2.1. Global problem with transmission layer

In this section, we introduce the problem of acoustic waves in a domain
Q¢ with embedded perforated elastic plate ¢, see Fig. 2| and Fig. . The



Figure 2: Left: Transmission layer Qs of thickness § embedded in the global domain Q€.
Right: Interface I'g representing the homogenized transmission layer.

acoustic fluid occupies the domain 2**. We consider a fictitious transimssion
layer €25 with a thickness 6 > 0, such that ¥° C Q5. The plate thickness is
he = eh, while the layer thickness § = sz for a given fixed 2 > 0.

For a fixed parameter ¢ > 0, correspondingly to 2*¢ and 3¢, we use a
simplified notation 2* and Y. The acoustic harmonic wave with the frequency
w is described by the acoustic potential p : Q* > z + R? in the fluid, the
corresponding wave in the elastic body is described by the displacement field
u : Y > 2z — R3 Assuming the body is fixed to a rigid frame on the
boundary 9, % and interacting with the fluid on 0,2 = 0%\ 9, %, these fields
satisfy the following equalities:

AEVip+wlp=0 inQ*,
V-o(u)+w’pu=0 inX,
acoustic transmission:
iwn-u = n~Vp. } on 9,3,
n-o(u) = b(p) =iwpepn
incident, or reflected acoustic waves in the fluid:

0
riwep + 028_p = s2lwep  on O 2 \ O,
n

clamped elastic structure:
u=0 ond,X.
(1)

Above, ¢ is the sound speed in the acoustic fluid, o(u) is the stress in the
lienar elastic solid, pg is reference fluid density, and by n = (n;) we denote
the normal vector. The constants 7, s € {0,1} and p are defined to describe
incident, reflected, or absorbed acoustic waves in the fluid, according to a
selected part of the boundary.



2.2. Geometry of the perforated layer

Given a bounded 2D manifold Ty C {z € Q%z3 = 0} representing the
plate mid-plane, we introduce €5 = Iyx] — §/2,/2[C Q¢ an open domain
representing the transmission layer. This enables to decompose Q¢ into three
nonoverlapping parts, as follows: Q¢ = QsUQFUQ; . Thus, the transmission
layer is bounded by 0€2s which splits into three parts:

)
0N =TFUT; U5, TF=To=+ 553 , OeaQs = OTox]| —0/2,6/2],

(2)

where 0 > 0 is the layer thickness and €3 = (0,0, 1), see Fig. . In the context
of the transmission layer definition, we consider the plate as a 3D domain
3¢ defined in terms of the perforated midsurface I'; the following definitions
are employed:

¥ =T°xeh|—1/2,+1/2[,
03° = 0,2 U0, X7 UO_X°U0,2°

where (3)

0o5° = 0,I° x eh] — 1/2,+1/2[,

0.3 =T +¢ch/2,

where 0,2 is the surface where the plate is clamped.
The midsurface I'® representing the perforated plate is generated using a
representative cell =g C R?, as a periodic lattice. Let = = ]0,£1[ x |0, 4y],

where /1, {5 > 0 are given (usually ¢; = ¢, = 1) and consider the hole Z* C =,
whereas its complement =g = =\ =* defines the solid plate segment. Then

I = U € (EK + Z kifie_{') NTly, (4)

kez? i=1,2

Further we introduce the representative periodic cell Y and define its solid
part S CY,

Y =EX]|—2x/2,4+x/2],

S =Zgxh]—1/2,+1/2[, (5)

so that Y* = Y\ S is the fluid part. Obviously, in the transmission layer Q,
the fluid occupies the part

kez? i=1,2

7



Figure 3: Scheme of the transmission layer Qs in which the perforated plate X5 (dark
gray) is embedded. The complementary domain €5 is occupied by the acoustic fluid (light

gray).

where €] = (1,0,0) and é; = (0, 1,0).

For completeness, by virtue of we can introduce the decomposition of
boundary 0S5 = 0,5 U 0.5 U 0xS. For this we need the boundary 0=¢ =
0,25 U 04Zg, where 04Z¢ = 0=, so that the closed curve d.2g = 0=*
generates the cylindrical boundary 9,5

0,8 = 0,25 x h] — 1/2,+1/2[,
0+S =Zg+e3h/2 , (7)

0uS = 0= x h] —1/2,+1/2[ .
For the sake of simplicity, by =g we shall refere to 0,=g.

2.3. Problem decomposition

The domain split allows us to decompose problem into three parts. By
P? we denote the acoustic potential in Qf and Q5 , whereas p° is the acoustic
potential in the transmission layer s, see Fig. [3l Further, by iwg** we
denote the acoustic fluid velocity projected into the normal of the interfaces
Ff;t. The following subproblems are considered:

1,2: Given p° on I'f, find P? defined in Q§ = Qf UQ;, such that
AVEPY + WP’ =0 inQf UQy,
interface condition:
PJ = ﬁe on F(:gt 5 (8)
other boundary conditions

P5
riweP® + *—— = s2iwep  on 0extQ§; ,

on



where 0 Q§ = 00 N (00F UOQ; ) is the “external” boundary. As in
problem ({1)),  and s are constants attaining values 0, or 1, whereas p
is the amplitude of an incident wave. In the context of a waveguide,
we consider 9q,€2§ to be decomposed into three parts, 3,25, Douf2§,
and 9,Q§, denoting the input, the output and walls, respectively. By
the constants r,s in (8))3 different conditions on 90§ are respected:
r = s = 0 on the walls (‘3ng, whereas r = s = 1 on &nQ(sG and r = 1,
s=0on 8othéG7 which accounts for the non-reflection condition.

3: Given ¢°F on I'f, find p° in QfF and »° in ¥, such that

AV 4wyt =0 in QF,
£
interface conditions P_ —iwg™  onTF,

on
V-o(u®) +wpu® =0 in X5,

acoustic transmission:

} on 0,25 ,

iwn-u® = n-Vp°
n-o(u®) = b(p°) =iwpopn
other boundary conditions

€

0
b _ s2iwep  on D Q°\ 0,55 ,
n

riwep® + ¢
clamped elastic structure:
u =0 on 0,%5.

(9)

where 0,35 = 0X5 N 005 is the surface of the elastic structure in
contact with the fluid, thus, 0X§ = 0,35 U 0,,25.

4. For a fixed ¢ and ¢, solutions to problems and @D are equivalent
to the solution of , if the coupling conditions hold:
P<5

: et
iwg =9 on I'y |

~ d +
p"=p"=PFP° only,

(10)

where n* referes to normals n* outer to domains Qdi.

2.4. Plate model

The 3D model of an elastic plate involved in problem can be replaced
by a plate model which describes a thin structure. We assume a small 5 > 0



for which the limit model of acoustic transmission can be interpreted. In
this paper we shall approximate behaviour of the thin elastic structure by
the Reissner-Mindlin (R-M) plate model, which allows us to consider the
effects related to shear stresses induced by rotations of the plate crossections
w.r.t. the mid-plane.

The R-M plate model can be obtained by the asymptotic analysis of the
corresponding 3D elastic structure while its thickness h — 0. However, the
obtained limit model is then interpreted in terms of a given thickness h > 0.
We shall discus this point in Remark [I}

The plate is represented by its perforated mean surface I'?, therefore all
involved variables depend on . However, for a while we drop the superscript
¢ related to these variables. The plate deflections are described by amplitude
of the membrane elastic wave u = (ug,us), of the transverse wave ug and
of the rotation wave 8 = (6;,65). Two linear constitutive laws are involved,
which depend upon the second order tensor S = (5;;) = <d;;, where ¢ > 0 is
the shear coefficient, and the fourth order elasticity tensor IE = () which
is given by the Hooke law adapted for the plane stress constraint; we define
(all indices i, 7, k,l = 1,2)

VVZ<’0) = l‘jklaﬂ)k = []Evs'v]ij, (11)
Zi<U3, 0) = Sij(ajU3 - 0J> = [S(VUg — 0)]1

The Reissner-Mindlin plate model is derived using the following kinematic
ansatz confining the displacement w = (w,ws) in a plate with the actual
thickness h,

w(r,2) =u(@)+h0(2"), ws(a,z) =uz(2’),z€[-1,1 ,2" € ",
(12)

where w = (u1,us) is “membrane-mode” displacements, i.e. vector u =
(@, u3) involves also the “transversal mode” (the deflection). The vector

10



fields (u, @) satisfy the following equations in I'¢,

Whpw+hV - W (@) =—f(p), inl<,
w?hp us +hV - Z(u3,0) = —f3(p), inT°,

o h3 h? — _ .
wﬁp0+ﬁV-W(9):—m, in T,
hw- W(u) = fa on 0,1"° | (13)
- Z(us,0) = f0  on 0,T°,
h3
1—2ﬁ- W(w)=m’ ond,I°,
u=0 on Oul”,
0=0 on Oul®,

where 0,1 = OI'*\ Oyt I'® describes the perforations. Above the applied forces

f= (f, f3), fa and moments 17, m° depend on the acoustic potential p. The
crucial step in deriving the model of vibroacoustic transmission consists in
describing these forces in terms of p imposed on surface 03¢ in the 3D plate
representation.

Remark 1. In our asymptotic analysis of the acoustic transmission layer,
we shall use the plate thickness in two contexts:

e The periodically perforated plate model defined in terms of the 2D
domain I'* C I'y representing the mid-plane and the thickness h = goh
with g9 > 0 being fixed. In fact, for a given thickness A and the

perforation design (a given size of the holes yielding £y) we can obtain
h.

e To describe the interaction between the 3D elastic structure and the
acoustic fluid, the thickness must be proportional to ¢ which is also
related to the transmission layer thickness § = e, thus, we consider
hf = eh and the elastic body occupying domain ¢, see .

Thus, the homogenization of the periodically perforated plate is done
by pursuing the asymptotic analysis ¢ — 0 applied to the 2D plate model
divided by h. Whereas h is fixed in the plate equation operator, beeing
independent of ¢, at the r.h.s. terms we get 1/(ch) which is coherent with the
dilation operation applied when dealing with fluid equation, see Section

A

11



2.5. Variational formulation of the vibroacoustic problem in the layer

In order to derive the homogenized model of the transmission layer, we
shall need the variational formulation of problem @D with the plate model

)
Find p° € H'(Q*) and (u®, 6°) € (H}(Q2))® such that

c? Vp® - V¢ — wz/ pPq = —iwc? (/ ¢"E¢F dT + / n - wq° dI‘> ,
QOxe *E T=*e oXe
(14)

for all ¢ € H'(2*¢), where m is outward normal to domain %, and
3
w2h/ pu’ - 'vaQ%/ pO° - P° — h/ []EEVSEE] VT
£ F€ 1
€(X7,,E € X7, € € h3 e pel . T, E
—h [ 18°(Vus = 0°)] - (Vo —97) — 5 | [EV 67]:V'9
£ FE

e( € € —€( € € I C R —0,(, € €

= [ @) v+ | me) v+ | Fp) v+ [ mEpf) -yt
Ie I OoI'¢ OoT'¢

(15)

for all test functions (v%,%°) € (H(R2))®. In (14), the displacements w?
defined on the surface 9%° are expressed using the mid-plane kinematic fields.
Due to , it holds that

(), a=1,2, (16)

where 2’ € T° 23 € eh] — 1/2,1/2[. In analogy, the test displacements
wi (2, x3) k =1,2,3 can bentroduced in terms of the test functions (v, 1)
involved in ; in this equation, the r.h.s. integrals express the virtual power

/ b (17)
04 2€

where the traction stress b = iwpynp® is induced by the acoustic pressure
in the fluid.

2.6. Fluid structure interaction on the plate surface 0%

The forces and moments involved in the r.h.s. of can be identified
using the 3D representation of the plate surface 0,%° decomposed according
to . The actual surface traction b = iwpyn;p°® is given by the acoustic

12



potential and by the surface normal n = (n;); note that n, =0, « = 1,2 on
0+, whereas ng = 0 on 0,%°. Hence, it can be shown that the followmg
expressions hold:

=€

fa=0, m,=0, f:?:[),
fa= Z bs(a', seh/2) = iwpo(p° (2, eh/2) — p*(2', —eh/2)) ,

S=+,—
5 he/2 he/2 (18)
foe = / b, )3 = icopo / o ()0 (&, )y
—he )2 —he)2

he /2 he /2
mde = —/ 13bo (', x3)das = —iwpo/ x3ng(x)p® (2, x3)das .
—he /2 —he /2
Then we consider the fluid equation. In , in the integral on 9%¢, the
displacement field w must be expressed in terms of the mid-plane displace-
ments and rotations u° and 6°, as introduced in . This yields

_ 2 _ _
/ n-wi = / I ()l + / e / T (ST S hOC
(19)

2.7. Dilated formulation

We can now state the vibro-acoustic problem in the dilated layer Q =
Lox] — 3¢/2,+3/2[, where the fluid occupies domain Q* = {(z/,e 'z3) €
R3|x € 0}, see @ Using z = ¢ ~lz3, while 2’ = (z,), with new coordinates
(2/, 2), the gradients are V = (9,,e718.), thus Vp(z) = Vp(za, 2); to simplify
the notation, we shall use the same notation for functions depending on x3,
but expressed in terms of z.

By virtue of the dilation and the periodic unfolding, the vibroacoustic
problem can be transformed in the domain which does not change with ¢.
Consequently the standard means of convergence can be used to obtain the
limit model.

Equation with the substitution can now be transformed by the
dilatation (the same notation for all variables is adhered, but should be
interpreted in this new context of this dilated formulation):

2 .
- A w iw )
/ Vo' Ve —-= | e =—— | ¢
C Oe g Jr+

. 1/2 ~
—% [/ug )]s /Oragh/m (@ — ehCO7) (-, 5h§)d§] .

(20)
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Further we employ . ) to rewrite which is divided by A%; by virtue of
Remark [1} I the plate thickness is given, i.e. h = goh, however, When dealing
with the r.h.s. interaction terms, h := h® = eh in accordance with the dilation
transformation. Thus we get

h2
w2/ pu’ - v+ w?— pBE-zbE
- 12

S S

- [ / 18755 =0 (75— )~ 1 [ 900 Ty

i _ 1/2 - )
(21)

It is worth noting that, in and , the r.h.s. integrals provide a sym-
metry of the following formulation.

The problem formulation. The vibroacoustic interaction in the dilated layer
Q is descrlbed by (p°, us, 6°) € H'(Q*) x (HL(I))® which satisfy equations
for any test fields (¢, v®,v¢°) € Hl(Q*E) x (H3(T¢))5.

Let go € L*(Ty) and ¢g'*(2', 1) € L*(Ty x R?), whereby ¢g'*(z2/,-) being
=-periodic in the second variable; we define

/

(@) =g"(@") +eg't (2

g (@) = —g°(a)) —eg" (a

)

ﬂf/

5.

For any € > 0 and §°* defined according to , the vibroacoustic interac-
tion problem constituted by equations — possesses a unique solution
(p°, u®,0%). As an essential step of the proof, the a priori estimates are

derived in the Appendix [A.T]

o |8

(22)

'~

3. Homogenization of the transmission layer

In this section, we introduce the convergence result which yields the limit
acoustic pressure and the plate displacements and rotations. These are in-
volved in the limit two-scale equations of the vibroacoustic problem imposed
in the transmission layer. The asymptotic analysis is based on the unfold-
ing method which was inaugurated in the seminal paper [4] and elaborated
further for thin structures in [3]. In our setting, the unfolding operator
T. : L*(Qs5;R) — L*(Ty x Y;R) transforms a function f(z) defined in €
into a function of two variables, 2’ € Ty and y € Y. For any f € L'(Y), the

14



cell average involved in all unfolding intergartion formulae will be abreviated

by
S kLot @

whatever the domain D C Y of the the integral is (i.e. volume, or surface).

3.1. The convergence results

Based on the a priori estimates derived in the Apendix A, the following
theorem holds.

Theorem 1. Let us assume

1P p2eey SC 5 MW | g2y < O

(24)
43l p2ey < C 5 N0 p2gey <O,
then the folloving estimates can be obtained:
=€ SNZTE
Lo ¢, IVE ey = C (25)
||Vu§H[L2(FE)]2 <0, \\V‘Fll[L2(rs)]4 <C.
Since Vp© = (Vp©,e710.p°), we have
VP gaeeye < C o 102 lpaareye < € (26)

Due to Theorem [1| providing the estimates - we obtain the conver-
gence of the unfolded functions(For the definition of the unfolding operator
we refere e.g. to [4]). First we observe (note (2€))s):

e p®  w.in L3(Q),
per ) (27)
9.p° =0 w.in L*(Q),
thus, 0,p° = 0. The classical results of the unfolding method of homogeniza-
tion yield
T.(p°) = p*  w.in L*(Ty x Y*),
ﬁ(vpg) — Vp' —i-vy/pl w. in L*(Ty x Y*) , (28)
(0

15



Above p” € H'(I'g) and p' € L*(To; Hy(Y™)), where Hj(Y™) is the subspace
of H'(Y) generated by Z-periodic functions (thus, the periodicity in y, holds,
but not in y3 = z), with vanishing average in Y.
For the plate responses we get
u® —u’ s in [L*(Tg))?,
T-(u®) =«  w.in [L*(Tg x Ex))?, (29)
T:(Vu') = Vpu’ + Vyu!  w.oin [L*(T x Zg)]°,
where u” € [H'(I'k)]® and u' € L*(Tx; [Hy(Ek)]?). Here Hy(Zk) is sub-
space of H!(Z) involving only Z-periodic functions with vanishing average in
=x. For the rotations we obtain
T.(6°) — 8°  w. in [L*(Ty x Z¢)]?,
T.(V6°) = V6" +V,0" w. in[L*(IxE)]*,
where 0" € [H'(I'k)]? and ' € L?(Ty; [H4(Z5)]%).
The limit vibro-acoustic problem can be derived by a formal approach
which relies on the recovery sequences (w.r.t. ) constructed in accordance
with the convergence result. Neglecting the higher order terms in e, the

following approximate expansions for unfolded vibroacoustic fields (p®, u¢, 6°)
are considered:

(30)

(31)

where 2’ € Ty, ¥ € Zand y = (v, 2) € Y; in (31)), all the two-scale functions
are =-periodic in the second variable. Analogous expansions involving two-
scale functions periodic in 3’ will be employed as the test functions involved

in (20)-(21),

(32)

T(¥%) = ¢°(a) + e’ (2, ) -
It is worth to note that the use of the recovery sequences simplifies the

derivation of limit equations of the vibro-acoustic model which, however, can
be obtained more rigorously using the asymptotic analysis applied directley

to equations —. We shall substitute the ansatz - in unfolded
equations — and explore the limit form for ¢ — 0.
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3.2. Limit fluid equation
The unfolded left hand side of yields the following limit form:

2
¢ [ @) @00+ 5 [ f omeote) - [ f TeITw)
o €% Jrg Jy+ AL
‘ / f (Vap” +Vyp)-(7zq0+qul)+02/f azplaqu—ﬁ/ f s
To * To * To *
(33)

The unfolded right hand side integrals can be written, as follows:

e [][ (6° +e9")(@" +eq )+][+(—g°—€gl‘)(q0+€q1)

3

Iy Iy

1/2 )
f_/QJ‘ ‘fMTWW(<W+w%%ywow4'
(34)

In the limit, the first integral related to the dilated fictitious interfaces I'*

yields
—iwc? /FO (qo ][E(g1+ -g7)+9° (ﬁ; q'— ][y_ ql)) : (35)

The second integral in can be rewritten, as follows (omitting the factor
o2
—iwc?)

1L£y@m@m%

/f'/ @+ ea — he(6° +<6Y) (¢ +2q))
Ty JOEg 71/2

where only ¢'(2', 3/, h¢) depends on ¢ €]—1/2, +1/2[. Hence, since f_IﬁQ (=0,
in the limit, the second integral in yields

_ (2 _
—ich/ ugf [[ql]]ﬁjE —i—ﬂo-f ﬁh/ q'd¢ + qohf n-u' | . (37)
Lo Es =5 —1/2 9Eg
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Now the limit fluid equation constituted using and attains the
following form:

02/ ][ (vxpOijypl)-(vxq()#—qul)%—cQ/ T/ Gzplaqu—wz/ ][ p°q°
1) * I'o * o *
:_MQ/ qong1+go (f ql_f q1>

To = I "

_ L2 _
+ul 4 (¢ + ﬂ“~f ﬁh/ ¢'d¢ + qohf - ﬂll
=g 0=g —-1/2 0=g

1—

(38)
where Agt = ¢!t — ¢

3.3. Limat plate equation
The unfolded left hand side of yields the following limit form:

_“’2/ Ps (“O v+ ) / ][ T+ _1)] (Vo +7§#)
To Lo JEs
Jr/ ][ S(Voul + Vyus — 6°) - (Vo + Vyuy — 9°)
Ty JEg
h? — — — _
+—2/ ][ E(VI6°+ V.6 : (Vg + Vo)
T'g JEg
(39)
The unfolded right hand side integrals can be written in analogy with the

ones involved in the fluid equation, see . Since the role of the solution
and the test function switches, the unfolded form of yields

1wp0/][ vg—i—evg ]]
To

Cu ) (40)
il / f / B+ eB' — ch( (4 + e9p)) (0° + ep')
ro Jozg 71/2

which, in the limit, yields an analogous expression as the one of . Thus,
the limit of the plate equation is constituted by which equals to

1 1/2
:iwpo/ <vgﬁ [[pl]]f+ﬁo-][ ﬁ/ pldC—I—pD][ ﬁ-ﬁl> .
o Es 0=g -1/2 O0=g
(41)
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Remark 2. Integrals over the plate surface involving ¢' and p' in and
, respectively, can be written in a more compact form; for any two-scale
function p(2',y', ) it holds that

1
03—][ rdy + 70 ][ / SDdC—=O-f ne . (42)
h Jzg 025 J-1/2 h as

A

3.4. Local problems in Y*

When testing the limit equation with ¢! # 0 while ¢° = 0, the local
problem in the fluid part is obtained which reveals linear dependence of p'
on the “macroscopic” functions u’,p® and ¢°. Therefore, we can introduce
the following split:

p'(a,y) = 7 () 5p° (') + iw€(y)g* (&) + iwn"(y)up (=), (43)
where y = (¢, z) € Y*, and introduce the following 3 autonomous problems

for 78, &, nk € Hy(Y™):

(Vyr”, Vi) == | O, Yo e Hy(Y"), B=1.2,

Y*

(V6. ¥ (/I / ) S VeeHL(Y), ()
(V" Vyw)y*:—/ b Ve Hy(Y*), k=1,23.
oS -

3.5. Local problems on =g

We consider the limit equation governing the plate response; its left and
right hand sides are constituted by and , respectively. Upon testing
there subsequently by ', ' and vi, whereas all ¥°, ©° and v§ vanish, the
following local “microscopic” equations are obtained,

h_;/ ][ [E(V56°+V,6")]: Vo' =0, Ve € L2(To; (H}(Es))?) .
To

| f e v v = om / 7[ mew, Vol e L3Ny (HL(29)))
[y JEg To O0=g

I'p JEg
(45)
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Due to the linearity of , the following split of the two-scale functions can
be introduced

@ = XV ) s + X iwpor® (46)
uy = X (Vuz)p — 0r) | (47)
0 = X9V 0.5, (48)

where X7, x* € HL(Zs), and x