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Abstract

Time dependent Schrödinger equations with conservative force field commonly
constitute a major challenge in the numerical approximation, especially when
they are analysed in the semiclassical regime. Extremely high oscillations orig-
inate from the semiclassical parameter, and call for appropriate methods. We
propose to employ a combination of asymptotic Zassenhaus splitting with time
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adaptivity. While the former turns the disadvantage of the semiclassical pa-
rameter into an advantage, leading to highly efficient methods with low error
constants, the latter enables to choose an optimal time step and to speed up
the calculations when the oscillations subside. We support the results with
numerical examples.

Keywords: Numerical time integration, time adaptivity, splitting schemes,
asymptotic splittings
2010 MSC: 65L05, 65L70, 81-08

1. Introduction

In this paper we are concerned with developing a time-adaptive method for
solving the Schrödinger equation in the semiclassical regime,

∂tψ(x, t) = i ε∂2xψ(x, t)− i ε−1V (x)ψ(x, t) =: Hψ(x, t), x ∈ I ⊆ R, t ≥ 0,

ψ(x, 0) = ψ0(x),
(1.1)

with periodic boundary conditions imposed on the interval I ⊆ R. The interac-
tion potential V (x) is a real and periodic function. The regularity required of
V and ψ depends on the desired order of the numerical method. For the sake
of simplicity, we assume V ∈ C∞p (I;R) and ψ ∈ C∞p (I;C), where the subscript
“p” denotes periodicity.

The semiclassical parameter ε induces oscillations of wavelength O(ε) in the
solution ψ, both in space and in time [1, 2, 3]. In this regime, finite differ-
ence schemes require an excessively fine spatial grid and very small time steps
[4]. Consequently, they are found to be ineffective in comparison with spectral
discretisation in space followed by exponential splittings for time-propagation
[1]. Methods based on Lanczos iterations [5], which are particularly effective
for problems in the atomic scaling (ε = 1), are also found to be ineffective in
the semiclassical regime, where the exponent involved is of huge spectral size,
scaling as O

(
ε−1
)
, see [6, 7]. Effective methods for highly oscillatory problems,

which have a Hamiltonian structure and are periodic in time, have been pro-
posed in [8] and are referred to as Hamiltonian boundary value methods. They
have been applied in the context of Schrödinger equations in [9].

In this regime the symmetric Zassenhaus splittings of [10] are found to be
very effective. These are asymptotic exponential splittings where exponents
scale with powers of the small parameter ε and, consequently, become progres-
sively small. The small size of these exponents allows a very effective approxi-
mation via Lanczos iterations despite reasonably large time steps [10].

Needless to say, the oscillations in the solution change in time. Higher oscilla-
tions require smaller time steps, which increases the computational cost. Thus,
we face the usual tradeoff between two competing concerns – smaller time steps
for higher accuracy and larger time steps for lower cost. Time adaptivity has
been a well developed approach to arrive at the optimal compromise by keeping
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the time steps as large as possible, so long as a prescribed error tolerance is not
exceeded. State-of-the-art step-size choice is based on firm theoretical ground
by recent investigations of digital filters from signal processing and control the-
ory [11, 12, 13], which have also been demonstrated to enhance computational
stability [14]. The advantages of adaptive selection of the time steps in the
context of splitting methods have been demonstrated for nonlinear Schrödinger
equations in [15], and for parabolic equations in [16]. It is found that in ad-
dition to a potential increase in the computational efficiency, the reliability of
the computations is enhanced. In an adaptive procedure, the step-sizes are not
guessed a priori but chosen automatically as mandated by the smoothness of
the solution, and the solution accuracy can be guaranteed.

The aim of this paper is thus to design a time-adaptive method for the
Schrödinger equation in the semiclassical regime. This is done by utilising the
defect based time adaptivity approach of [17, 18] for the symmetric Zassenhaus
splittings of [10]. These time adaptivity schemes, which are very effective for
classical splittings, turn out to be successful for the asymptotic splittings of [10]
as well.

In Section 2 we describe the defect-based time-adaptive approach. In Sec-
tion 3 we present a variant of the high-order Zassenhaus splittings of [10], which
turns out to be more conducive in a time-adaptive approach. The practical al-
gorithm used for the estimation of the local error for this highly efficient method
is derived in Section 4. In Section 5 we present numerical experiments which
demonstrate the efficacy of the time-adaptive scheme.

2. Defect-based time adaptivity

Time-adaptivity in numerical solutions of ODEs and PDEs involves adjust-
ing time step of a numerical scheme in order to keep the local error in a single
step below a specified error tolerance, tol. The local error in a single step of a
one-step integrator with step-size h, starting (without loss of generality) from
ψ0 at t = 0,

ψ1 = S(h)ψ0,

where S(h) is the numerical evolution operator, is given by

L(h)ψ0 = (S(h)− E(h))ψ0,

where
ψ(h) = E(h)ψ0

is the exact solution. Since the exact evolution operator for (1.1),

E(h) = eih(ε∂
2
x−ε−1V ),

and the exact solution are not available, practical time-adaptivity methods rely
on accurate a posteriori estimates of the local error, L̃(h)ψ0, that can be com-
puted along with the numerical solution. In this manuscript, we will focus on
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defect-based estimators of the local error, which are of the form

L̃(h)ψ0 =
h

p+ 1
D(h)ψ0 = O

(
hp+1

)
. (2.1)

Here, D(h)ψ0 is a computable defect term, measuring the local quality of the
approximation delivered by the numerical solution, S(h)ψ0. We will consider
two different versions of the defect D(h)ψ0, see Sections 2.1 and 2.2.

Once an estimate of the local error via (2.1) is available, a new step-size can
then be chosen as

hnew = (1− α)hold
p+1

√
tol

L̃(h)ψ0

, α > 0,

where tol is the local error tolerance and p+1 is the local order of the numerical
scheme, S(h) = E(h)+O

(
hp+1

)
. The factor of (1−α) ensures that we are more

conservative with the time step, always taking a slightly smaller time step than
predicted (α is usually taken to be a small positive number such as 0.1). When

the local error estimate in a step L̃(h)ψ0 exceeds the error tolerance (tol), the
numerical propagation is run again with the smaller step h = hnew, otherwise
the new time step is used for the next step.

2.1. Classical defect-based estimator

We briefly recall the idea underlying (2.1); see for instance [17]. Thinking of
the step-size h as a continuous variable and denoting it by t (somewhat more
intuitive), the discrete flow S(t)ψ0 is a well-defined, smooth function of t. We
call

Dc(t) := ∂tS(t)−HS(t) (2.2)

the classical defect (operator) associated with S, obtained by plugging in the
numerical flow into the given evolution equation (1.1) (which is satisfied exactly
by its exact flow E(t)). Due to the definition of Dc, the local error enjoys the
integral representation

L(h)ψ0 =

∫ h

0

E(h− t)Dc(t)ψ0 dt = O
(
hp+1

)
. (2.3a)

As argued in [17], this can be approximated in an asymptotically correct way
via its classical defect Dc(h)ψ0:

L̃c(h)ψ0 :=
h

p+ 1
Dc(h)ψ0 = L(h)ψ0 +O

(
hp+2

)
for h→ 0. (2.3b)

Evaluation of L̃c(h)ψ0 requires a single evaluation of the defect at t = h, the
step-size actually used in the computation of ψ1 = S(h)ψ0.1

1How to compute the defect at t = h, for the given step-size h used in the computation, in
the context of Zassenhaus splitting will be explained in Section 4.
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2.2. Symmetrized defect-based estimator

An alternative way of defining the defect was introduced in [18, 19]. It is
based on the fact that the exact evolution operator E(t) commutes with the
Hamiltionian H, whence

∂tE(t)ψ0 = HE(t)ψ0 = E(t)Hψ0 = 1
2{H, E(t)}ψ0,

with the anti-commutator {H,X} = HX +XH. This motivates the definition
of the symmetrized defect (operator)

Ds(t) := ∂tS(t)− 1
2{H,S(t)}. (2.4)

Then, the local error L enjoys the alternative integral representation

L(h)ψ0 =

∫ h

0

E(h−t2 )Ds(t)E(h−t2 )ψ0 dt, (2.5a)

and by the same reasoning as for the classical defect, this can be approximated
in an asymptotically correct way via the symmetrized defect Ds(h)ψ0 :

L̃s(h)ψ0 :=
h

p+ 1
Ds(h)ψ0 = L(h)ψ0 +O

(
hp+2

)
. (2.5b)

Now suppose that S is symmetric (time-reversible), i.e., it satisfies S(−t)S(t) =
I. Then, its order p is necessarily even, and moreover we even have

L̃s(h)ψ0 = L(h)ψ0 +O
(
hp+3

)
for h→ 0, (2.6)

see [18, 19]. This means that in the symmetric case the deviation (L̃s(h) −
L(h))ψ0 of the local error estimate based on the symmetrized defect is of a
better quality, asymptotically for h → 0, than that one based on the classical
defect.2 Moreover, evaluation of Ds(h)ψ0 is typically only slightly more expen-
sive compared to Dc(h)ψ0, see [18, 19] for the case of conventional splittings
and, in particular, Section 4 below.

3. Symmetric Zassenhaus splittings

Symmetric Zassenhaus splittings are asymptotic splittings introduced in [10]
for solving the Schrödinger equation in the semiclassical regime (1.1). These
splittings are derived by working in infinite dimensional space, prior to spatial
discretisation, which enables a more effective exploitation of commutators, since
some of them vanish, while the rest end up being much smaller (in a sense of
spectral radius) than generically expected.

To manage the O(ε) wavelength oscillations in space and time, which arise
due to the presence of the small semiclassical parameter ε, the following relations

2Note that Dc(h) = O(hp), Ds(h) = O(hp), and Ds(h)−Dc(h) = O
(
hp+1

)
.
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have been established to be useful for the spatio-temporal resolution in these
schemes.

∆x = O(ε) , h = O(εσ) , σ ∈ (0, 1]. (3.1)

The Zassenhaus splitting that we will consider in this paper is

S(h) = e
1
2W

[0]

e
1
2W

[1]

e
1
2W

[2]

eW
[3]

e
1
2W

[2]

e
1
2W

[1]

e
1
2W

[0]

= E(h) +O
(
ε7σ−1

)
, (3.2a)

where

W [0] = ih ε ∂2x = O
(
εσ−1

)
, (3.2b)

W [1] = −ih ε−1V = O
(
εσ−1

)
,

W [2] = 1
6 ih3ε−1(∂xV )2 − 1

24 ih3ε(∂4xV ) + 1
6 ih3ε

〈
∂2xV

〉
2

= O
(
ε3σ−1

)
,

W [3] = − 7
120 ih5ε−1(∂2xV )(∂xV )2 + 1

30 ih5ε
〈
(∂2xV )2 − 2(∂3xV )(∂xV )

〉
2

− 1
120 ih5ε3

〈
∂4xV

〉
4

= O
(
ε5σ−1

)
.

Here,
〈f〉k := 1

2

(
f ◦ ∂kx + ∂kx ◦ f

)
, k ≥ 0 (f ∈ C∞p (I;R)) (3.3)

are the symmetrized differential operators which first appeared in [10] and have
been studied in detail in [20, 3]. These operators are used for preservation of
stability under discretization after simplification of commutators.

Once a differential operator such as ∂2x is discretised to a symmetric differen-
tiation matrix K2 via spectral collocation, its spectral size grows as ∆x = O(ε)
decreases, since

‖Kk‖2 = O
(
(∆x)−k

)
= O

(
ε−k
)
.

Keeping eventual discretisation with the scaling (3.1) in mind, we use a short-
hand ∂kx = O

(
ε−k
)

for the undiscretised and unbounded operator as well. The
symmetrized differential operator 〈f〉k discretises to the form

〈̃f〉k = 1
2

(
DfKk +KkDf

)
,

where Df is a diagonal matrix with values of f at the grid points. Its spectral
radius grows as O

(
ε−k
)
, assuming that f is independent of ε, and we abuse

notations once more to say 〈f〉k = O
(
ε−k
)
, for short.

The splitting (3.2a) possesses several favorable features. First of all, the
critical quantities like time step h, spatial step ∆x and semiclassical parameter
ε are tied together by relation (3.1). As a consequence, the splitting error is
expressed via a universal quantity O(ε7σ−1), and the error constant does not
hide any critical quantities.

The exponentials involved in the splitting are easily computable after spatial
discretization. For example, spectral collocation transforms W [0] into a sym-
metric circulant matrix, whence its exponential may be computed by the Fast
Fourier Transform. The diagonal matrix W [1] can be exponentiated directly.
Neither W [2] nor W [3] are structured favourably, however their spectral radius
is small enough to exponentiate them with a small number (say, 3 or 4) of
Lanczos iterations.
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Remark 1. Since h = O(εσ) the splitting (3.2a) which features an error of
O
(
ε7σ−1

)
could loosely be considered a sixth-order splitting with an error con-

stant scaling as ε−1. This interpretation is not strictly correct, however, since
the error estimate holds for σ ∈ (0, 1] and ε → 0. For a finite ε = ε0 and
h → 0 (i.e. σ → ∞), the asymptotic Zassenhaus splitting (3.2a) is a highly
efficient fourth-order method with a very small error constant. This disparity in
the different asymptotic limits occurs because the derivation of (3.2a) involves
discarding terms of size O

(
h5ε
)
, for instance. These terms are O

(
ε7σ−1

)
under

the asymptotic scaling (3.1), ε → 0, h = O(εσ) , σ ≤ 1, but are O
(
h5
)

under a
fixed ε = ε0 and h→ 0. The consequence for the time-adaptivity algorithm (2.1)
is that we must use p = 4, not p = 6.

Remark 2. Many different variants of this splitting are possible (including, but
not limited to the case when we start with W [0] = −ih ε−1V ). Application of
these variants can just as easily be considered, however will not be the focus of
the present paper.

Remark 3. The exponents (3.2b) differ from the splitting described in [10] in
one minor aspect – the term − 1

24 ih3ε(∂4xV ) has been moved from W [3] to W [2].
This term is of size O

(
ε3σ+1

)
, which is smaller than O

(
ε3σ−1

)
and thus may

also be combined with W [2] = O
(
ε3σ−1

)
. In [10] this term is combined with

W [3] = O
(
ε5σ−1

)
working under the assumption σ ≤ 1 (time steps larger than

O(ε)) since O
(
ε3σ+1

)
is also smaller than O

(
ε5σ−1

)
under σ ≤ 1. Consequently,

all exponents feature a single power of h. This change makes no difference to
the overall order of the scheme but makes the computation of defect easier.

4. Local error estimator for Zassenhaus splitting

Remark 4. In the sequel, the argument (t) or (h), respectively, is suppressed
whenever the meaning is obvious.

4.1. Time derivative of the discrete evolution operator

The time-adaptivity algorithm is based on the estimation of the local error
in each step, which in turn requires the computation of the defect at discrete
time t = h, see Section 2. This requires the computation of ∂tS(h) = ∂tS(t)|t=h
For splitting schemes such as (3.2a), this boils down to an application of the
product rule, involving computation of the time derivative of each individual
exponential.

For exponentials such as

Sj(t) = exp(tnjR[j]), (4.1a)

where R[j] is independent of t, the time derivative is

∂tSj(t) = njt
nj−1R[j] exp(tnjR[j]). (4.1b)



Time adaptive Zassenhaus splittings 8

Now, consider the (modified) Zassenhaus splitting (3.2a) & (3.2b) for (1.1), with
the discrete evolution operator re-written in the form

S(t) = S0 S1 S2 S3 S2 S1 S0
= et

n0R[0]

et
n1R[1]

et
n2R[2]

et
n3R[3]

et
n2R[2]

et
n1R[1]

et
n0R[0]

,

where Sj = Sj(t), n0 = 1, n1 = 1, n2 = 3, n3 = 5, and

R[0] = 1
2 i ε ∂2x, (4.2)

R[1] = − 1
2 i ε−1V,

R[2] = 1
12 i ε−1(∂xV )2 − 1

48 i ε(∂4xV ) + 1
12 i ε

〈
∂2xV

〉
2
,

R[3] = − 7
120 i ε−1(∂2xV )(∂xV )2 + 1

30 i ε
〈
(∂2xV )2 − 2(∂3xV )(∂xV )

〉
2
− 1

120 i ε3
〈
∂4xV

〉
4
.

The derivative of the flow for a splitting scheme can be expressed via the product
rule,

∂tS(t) = n0t
n0−1S0 S1 S2 S3 S2 S1R[0] S0

+ n1t
n1−1S0 S1 S2 S3 S2 S1R[1] S0

+ n2t
n2−1S0 S1 S2 S3R[2] S2 S1 S0

+ n3t
n3−1S0 S1 S2 S3R[3] S2 S1 S0

+ n2t
n2−1S0 S1R[2] S2 S3 S2 S1 S0

+ n1t
n1−1S0 S1R[1] S2 S3 S2 S1 S0

+ n0t
n0−1R[0] S0 S1 S2 S3 S2 S1 S0

= S0 S1 S2 S3 S2 S1 (n0t
n0−1R[0] + n1t

n1−1R[1])S0
+ S0 S1 S2 S3 (n2t

n2−1R[2] + n3t
n3−1R[3])S2 S1 S0

+ S0 S1 (n2t
n2−1R[2] + n1t

n1−1R[1])S2 S3 S2 S1 S0
+ n0t

n0−1R[0]S0 S1 S2 S3 S2 S1 S0
= S0 S1

{
S2 S3

[
S2 S1(n0t

n0−1R[0] + n1t
n1−1R[1])S0

+(n2t
n2−1R[2] + n3t

n3−1R[3])S2 S1 S0
]

+ (n2t
n2−1R[2] + n1t

n1−1R[1])S2 S3 S2 S1 S0
}

+ n0t
n0−1R[0]S0 S1 S2 S3 S2 S1 S0.

Here the underlined exponentials are the ones that need to be computed freshly.
The rest can be dealt with by storing intermediate values from evaluation of the
splitting scheme: In order to compute ∂tS(h), we store

v1 = S0 ψ0, (4.3)

v2 = S2 S1 S0 ψ0 = S2 S1v1,
v3 = S2 S3 S2 S1 S0 ψ0 = S2 S3v2,

(ψ1 = ) v4 = S0 S1 S2 S3 S2 S1 S0 ψ0 = S0 S1v4,



Time adaptive Zassenhaus splittings 9

which are anyway computed during evaluation of the numerical scheme. In
addition, we compute and store

w1 = (n0h
n0−1R[0] + n1h

n1−1R[1])v1 = (R[0] +R[1])v1, (4.4)

w2 = (n2h
n2−1R[2] + n3h

n3−1R[3])v2 = (3h2R[2] + 5h4R[3])v2,

w3 = (n2h
n2−1R[2] + n1h

n1−1R[1])v3 = (3h2R[2] +R[1])v3,

w4 = n0h
n0−1R[0]v4 = R[0]v4.

Then,

∂tS(h)ψ0 = S0(h)S1(h) {S2(h)S3(h) [S2(h)S1(h)w1 + w2] + w3}+ w4. (4.5)

Thus, we need to compute six exponentials appearing in (4.5) in addition to the
seven exponentials required in the Zassenhaus splitting (3.2a). For a scheme of
order six, we need a total of 13 exponentials.

Remark 5. For the order four method

e
1
2W

[0]

e
1
2W

[1]

eW
[2]

e
1
2W

[1]

e
1
2W

[0]

= E(h) +O
(
ε5σ−1

)
,

five exponentials are required for the Zassenhaus splitting and we have verified
that four additional exponentials are required for time adaptivity, making for a
total of nine exponentials.

Remark 6. In a practical, memory-efficient implementation, the wj are com-
puted ‘on the fly’ along with the vj, via alternating updates of arrays v and
w.

Remark 7. In the above computations, the only feature specific to the Zassen-
haus splitting is the use of (4.1b) for the derivative of the exponential. Thus the
derivation and the combination of exponentials works in an analogous way for
other splittings, with different time derivatives.

4.2. Practical evaluation of the classical defect (2.2)

We need to compute the classical defect at discrete time t = h,

Dc(h)ψ0 = ∂tS(h)ψ0 −Hψ1. (4.6)

Here, ψ1 = S(h)ψ0, H = 2(R[0] +R[1]) is the Hamiltonian, and ∂tS(h)ψ0 is the
time derivative according to Section 4.1, see (4.5).

In addition, a small amount of work can be saved by exploiting the relation
w4 = R[0]v4 (see 4.4). Then, computation of Dc(h)ψ0 amounts to the evaluation
of

Dc(h)ψ0 = S0(h)S1(h) {S2(h)S3(h) [S2(h)S1(h)w1 + w2] + w3}−(R[0]+2R[1])v4.
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4.3. Practical evaluation of the symmetrized defect (2.4)

Instead of (4.6), we need to compute

Ds(h)ψ0 = ∂tS(h)ψ0 − 1
2

(
Hψ1 + S(h)Hψ0

)
. (4.7)

With (4.5), we have (again making use of w4 = R[0]v4)

Ds(t)ψ0 = S0 S1 {S2 S3 [S2 S1 w1 + w2] + w3}+ w4 − 1
2SHψ0 − 1

2HSψ0

= S0 S1 {S2 S3 [S2 S1 w1 + w2] + w3}+ w4

− 1
2S0 S1 S2 S3 S2 S1 S0Hψ0 − 1

2HSψ0

= S0 S1
{
S2 S3

[
S2 S1 (w1 − 1

2S0Hψ0) + w2

]
+ w3

}
+ w4 − 1

2HSψ0

= S0 S1
{
S2 S3

[
S2 S1 (w1 − 1

2S0Hψ0) + w2

]
+ w3

}
+ w4 − (R[0] +R[1])v4

= S0 S1
{
S2 S3

[
S2 S1 (w1 − 1

2S0Hψ0) + w2

]
+ w3

}
−R[1]v4

= S0 S1
{
S2 S3

[
S2 S1 (w1 − S0 (R[0] +R[1])ψ0) + w2

]
+ w3

}
−R[1]v4.

Here the underlined exponential is the one that needs to be computed in ad-
dition, compared to evaluation of Dc(h)ψ0. Of course, this additional effort is
marginal.

Thus, computation of the symmetrized defect at discrete time t = h amounts
to evaluation of

Ds(h)ψ0 =

S0(h)S1(h){S2(h)S3(h) [S2(h)S1(h)(w1 − S0(h)(R[0] +R[1])ψ0) + w2] + w3} −R[1]v4.

5. Numerical experiments

For our numerical experiments, we will use the wave-packets

ψL(x) = ϕ
(
x; ε4 ,−

3
4 ,

1
10

)
, ψM (x) = ϕ

(
x; ε, 92 , 0

)
,

as initial conditions for two experiments. Here

ϕ(x; δ, x0, k0) = (δπ)−1/4 exp

(
ik0

(x− x0)

δ
− (x− x0)2

2δ

)
,

is a wave-packet with a spread of δ, mean position x0 and mean momentum k0.
We will consider the evolution of ψL as it heads towards the lattice potential
VL and the evolution of ψM as it oscillates in the Morse potential VM , which
are given by

VL(x) = ρ(4x− 1) sin(20πx) + 1
10ρ(x/5) sin(4πx), VM (x) = (1− e−(x−5)/2)2,

respectively, where

ρ(x) =

{
exp

(
−1/(1− x2)

)
for |x| < 1,

0 otherwise,
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is a bump function.
We consider the behaviour at the final time TL = 1 for the first experiment

and TM = 20 for the second experiment under the choices of ε = 10−2, 10−3 and
10−4. The spatial domain is chosen as [−2, 2] for the lattice potential and [3, 10]
for the Morse potential, and we impose periodic boundary conditions. The
evolution of these wavepackets under the choice ε = 10−2 is shown in Fig. 1.

−2 −1 0 1 2

0

2

4

x

VL

|ψL(0)|
|ψL(TL)|

4 6 8 10
0

1

2

3

x

VM

|ψM (0)|
|ψM (TM )|

Figure 1: Initial wave-packet ψL(0) evolves to the final wave-packet ψL(TL) at time TL = 1
under VL and ε = 10−2 (left) and ψM (0) evolves to ψM (TM ) at TM = 20 under VM and
ε = 10−2 (right).

As one can observe in Figures 2 and 3, the procedure quickly adapts the
time step to ensure that the local accuracy is within the specified threshold,
which is taken to be tol = 10−7 here.

In the first experiment, we use M = 750, 1750 and 15000 equispaced points
for spatial discretization in the cases ε = 10−2, 10−3 and 10−4, respectively,
while M = 500, 1500 and 10000 are used for the three choices of ε in the second
experiment.

In Table 1, we show the total number of time steps required for maintaining
the local accuracy of 10−7 for three cases: ε = 10−2, 10−3 and 10−4. Also
presented are the global L2 accuracies of these solutions at the final time (TL =
1 and TM = 20) and the computational time. These are compared to the
(non-adaptive) case when the time step is fixed at (i) the finest value used by
the adaptive method (ii) the coarsest value used by the adaptive method (iii)
h = ε. The reference solutions for computing global errors are produced by using
Matlab’s expm function, while using a much finer spatial grid. The number of
Lanczos iterations are chosen automatically to meet the accuracy requirements
using the a priori error bounds of [21].

We find that for small ε, the asymptotic scaling h = ε yields the smallest
error, but the computational effort is prohibitive. The symmetrized error esti-
mate invariantly generates coarser time grids than the classical version, but the
additional computational effort implies that the picture is ambivalent in that
the computational effort is smaller in only about half of the cases. When the
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Figure 2: [Experiment 1: ψL under VL for t ∈ [0, 1]] (top row) Time step chosen by the
adaptive procedure in consecutive steps of the numerical procedure, starting from a highly
conservative initial guess of h0 = 10−9 and local error tolerance tol= 10−7; (bottom row)
Local error estimate in each step. The three columns show the behaviour in the regimes
ε = 10−2, 10−3 and 10−4. The classical defect is depicted with solid blue line and the
symmetric defect with dotted orange line.

largest step generated by the adaptive strategy ‘(c)’ is used in a uniform grid,
computations are fast but not sufficiently accurate, while use of the smallest
adaptive time step is prohibitively expensive in the case of the lattice potential
(for the Morse potential, the reduction in the number of time steps is outweighed
by the computational effort for the error estimate). Together, these two obser-
vations imply that adaptive step-size choice constitutes the appropriate means
to determine grids that reproduce the solution in a reliable and efficient way,
and excels over a priori choice of the step-size. In particular, the guess of an
optimal step-size is commonly not feasible, while the adaptive strategy finds the
time steps automatically and guarantees the desired level of accuracy.

6. Conclusions

We have investigated adaptive strategies used in conjunction with asymp-
totic Zassenhaus splitting for the solution of linear time-dependent Schrödinger
equations in the semiclassical regime. The local time-stepping is based on defect-
based error estimation strategies. We have demonstrated that adaptivity pro-
vides a means to reliably and efficiently achieve a desired level of accuracy espe-
cially for a small semiclassical parameter and thus excels over fixed time steps
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Figure 3: [Experiment 2: ψM under VM at TM = 20] (top row) Time step chosen by the
adaptive procedure in consecutive steps of the numerical procedure, starting from a highly
conservative initial guess of h0 = 10−9 and local error tolerance tol= 10−7; (bottom row)
Local error estimate in each step. The three columns show the behaviour in the regimes
ε = 10−2, 10−3 and 10−4. The classical defect is depicted with solid blue line and the
symmetric defect with dotted orange line.

in many cases. A major benefit is in addition that no near-optimal equidistant
step-size has to be guessed a priori.

References

[1] W. Bao, S. Jin, P. A. Markowich, On time-splitting spectral approximations
for the Schrödinger equation in the semiclassical regime, J. Comput. Phys.
175 (2002) 487–524. doi:10.1006/jcph.2001.6956.

[2] S. Jin, P. Markowich, C. Sparber, Mathematical and computational meth-
ods for semiclassical Schrödinger equations, Acta Numerica 20 (2011) 121–
210.

[3] P. Singh, High accuracy computational methods for the semiclassical
Schrödinger equation, Ph.D. thesis, University of Cambridge (2017).

[4] P. A. Markowich, P. Pietra, C. Pohl, Numerical approximation of quadratic
observables of Schrödinger-type equations in the semi-classical limit, Nu-
mer. Math. 81 (4) (1999) 595–630.

[5] Y. Saad, Analysis of some Krylov subspace approximations to the matrix
exponential operator, SIAM J. Numer. Anal. 29 (1) (1992) 209–228.

https://doi.org/10.1006/jcph.2001.6956


Time adaptive Zassenhaus splittings 14

ψL under lattice potential ψM under Morse potential

Global Time Run Global Time Run
ε h error steps time (s) error steps time (s)

adaptive (c) 1.29× 10−6 490 19.5 2.69× 10−4 7772 320.0

adaptive (s) 2.04× 10−5 394 18.7 2.94× 10−4 7448 316.0

10−2 smallest (c) 1.96× 10−7 746 11.9 1.92× 10−4 10102 191.5

largest (c) 5.53× 10−4 217 4.1 6.43× 10−4 5502 104.1

h = ε 1.81× 10−2 100 2.4 4.51× 10−3 2000 52.0

adaptive (c) 1.49× 10−7 216 12.9 9.19× 10−4 13249 955.1

adaptive (s) 1.53× 10−7 216 14.3 9.20× 10−4 13245 1021.5

10−3 smallest (c) 1.18× 10−8 587 14.4 5.00× 10−4 19841 572.8

largest (c) 1.62× 10−3 64 2.9 2.21× 10−3 9329 315.5

h = ε 3.96× 10−9 1000 20.4 4.92× 10−4 20000 601.4

adaptive (c) 9.70× 10−9 215 43.7 1.64× 10−3 27358 12029.7

adaptive (s) 9.75× 10−9 215 42.6 1.64× 10−3 27343 14237.4

10−4 smallest (c) 5.2× 10−10 925 80.2 1.02× 10−3 42555 11380.8

largest (c) 7.12× 10−4 90 12.0 3.20× 10−3 21307 6435.6

h = ε 8.7× 10−13 10000 659.8 4.95× 10−5 200000 60755.0

Table 1: Results of different time-stepping strategies with an imposed tolerance of 10−7

for the lattice potential (left part of the table) and the Morse potential (right), ε ∈
{10−2, 10−3, 10−4}. We compare the global errors with the computational effort (number
of time steps respectively computation time). Adaptive strategies based on either the clas-
sical defect ‘(c)’ or the symmetrized defect ‘(s)’ are compared with fixed time steps chosen
as either the smallest adaptively determined step-size, the largest adaptive step-size or the
asymptotic scaling h = ε.

[6] M. Hochbruck, C. Lubich, On Krylov subspace approximations to the ma-
trix exponential operator, SIAM J. Numer. Anal. 34 (1997) 1911–1925.

[7] C. Lubich, From Quantum to Classical Molecular Dynamics: Reduced
Models and Numerical Analysis, Zurich Lectures in Advanced Mathemat-
ics, European Mathematical Society, Zurich, 2008.

[8] L. Brugnano, J. Montijano, L. Randez, On the effectiveness of spectral
methods for the numerical solution of multi-frequency highly oscillatory
Hamiltonian problems, Numer. Algorithms 81 (2019) 345–376.

[9] L. Barletti, L. Brugnano, G. Frasca-Caccia, F. Iavernaro, Energy-
conserving methods for the nonlinear schrödinger equation, Appl. Math.
Comput. 318 (2018) 3–18.

[10] P. Bader, A. Iserles, K. Kropielnicka, P. Singh, Effective approximation for
the semiclassical Schrödinger equation, Found. Comput. Math. 14 (2014)
689–720.
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