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Abstract

During the last two decades, the model developed by Cancel&apasa (1991) [1] has been used for predicting
the Spanish electricity demand with good results. This pppgposes a hew approach for estimating multiequation
models that extends the previous work iffglient and important ways. Primarily, 24-hour equationsaasembled
to form a periodic autoregressive-moving-average modeaichsignificantly improves the short-term predictions. To
reduce the computational problem, the full model is esttah two steps, and a meticulous model of the nonlinear
temperaturefect is included using regression spline techniques. Thaadds currently being used by the Spanish
Transmission System Operat®dd Eléctrica de Espafi®&EE) to make hourly forecasts of electricity demand from
one to ten days ahead.
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1. Introduction

Supplying energy to homes and businesses across any cowtiyes three key elements: generation, transporta-
tion and distribution. In most countries where the eletirimarket is liberalized, the management of the national
transmission network falls under an independent operatowk as the Transmission System Operator (TSO). The
TSO is responsible for managing the transmission of etedtpower from generation plants over the electrical grid
to regional or local electricity distribution operatorshe TSO is also required to maintain a continuous (second-
by-second) balance between electricity supply from pousgians and demand from consumers, which is achieved
by determining the optimal combination of generating etagiand reserve providers for each market trading period,

1Corresponding Author. E-mail address: eduardo.caro@emn. José Gutiérrez Abascal, 2, 28006 Madrid (Spain).
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instructing generators regarding when and how much ebitgtio generate, and managing any contingent events that
disrupt the balance between supply and demand. In add@iis toles regarding the real-time dispatch of generation
and security management, one of the main tasks assigned S is the daily scheduling of energy production
plants, adding ancillary service markets to the resulthiefspot electricity market. Each day, generation schedules
are drawn up for the next day based on hourly load forecastichameans that hourly predictions are needed for a
time horizon 1 to 48 hours in advance. Often (e.g., when thiegeontains holidays), it is necessary to prolong the
prediction horizon by several days. This work describesne{series model currently used by the Spanish TSO to
make hourly forecasts of electricity demand one to ten dagad.

Electricity load forecasting has significant economic repssions. It is important to provide accurate estimates
for operating the power system as a basis for energy traoeacind decision making in energy markets. Thus,
electricity load forecasting has attracted the attentibleading statisticians all over the world during the lageth
decades, to increase accuracy. From the mid 1980s, numanticies have been dedicated to methods and models
for hourly load forecasting. The main approaches are baseditoregressive-integrated-moving-average (ARIMA)
models, multiple regression models, exponential smogthimd structural models, or a mixture of types of models.
The collection of papers in [2] gives an indication of the haets that were used.

Univariate methods such as those based on ARIMA models arresqgial smoothing can be found in [3]-[5].
These models focus on prediction up to one day ahead, butithera mention their specific interest in predictions
for lead times less than six hours ahead. The results showeaditierence between the prediction errors in the first
six hours and those up to 24 hours. Additionally, it is wortting that the prediction errors depend on the hour of
the day at which the predictions are made, and some hoursiarie more dfficult to predict than others. Univariate
models are simple, robust and have advantages for very-&rartpredictions, but their errors are higher than those
of other models for lead times more than 12 hours ahead [6].

The desire to improve forecasting accuracy has led to exteniives in the form of forecasting competitions with
numerous participants and a huge variety of proposals, somentional and others innovative. In the first compe-
tition organized by the Puget Sound Power and Light Compary@dB0, the winner was an outstanding regression
model [7]. The approach based on multiple regression mad#isseparate equations for each hour of the day, has
inspired one of the main lines used at present [8]-[10].

Cancelo et al. [1] propose a reg-ARIMA model to predict thigyddemand for electricity in Spain. The model in-
cludes an extensive set of dummy variables to capture thegelsen demand for holidays, and the equation considers
the nonlinear relationship between demand and temperattitaling several piecewise linear regressors. The total

number of parameters in the daily model is 185, of which 1@aspond to the moving average part (there are no AR
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parameters), 32 belong to climatological variables andéhgaining 143 correspond to dummy variables related to
holidays and other calendaffects. The same model was estimated for each of the 24 hourssaddor computing
hourly predictions for horizons up to three days at REE. A plate description of the model can be found in [9].

Dordonnat et al. [10] present a linear multivariate peigcgtate-space model for hourly electricity loads. The
model includes stochastic trend components together wigl find time-varying regressioffects. Each equation is
associated with a specific hour and has variougfments and time-varying processes, which are possiblyetatad
through the disturbances that drive them. The model prevedddence that temperature has a significdii@ce on
the load and that thisfiect is subject to yearly nonlinear behavior. Cottet and Bf8it present a Bayesian approach
for estimating multiequation regression models coupletth wstimation using MCMC. The results show that the
weekly, seasonal, meteorological, and dynantieas difer substantially at dierent times of day, confirming the
basic precept of the multiequation model that is used inwioigk.

The dfect of temperature on the use of electric power has beendsmesi in multiple ways in electricity demand
prediction models. The relationship between temperatuwl@lamand is nonlinear because the consumption of electric
power increases at both low and high temperatures [11]. Alsigind &ective way to consider this nonlinearity is to
include the quadratic term of temperature in the regressipration ([2], [12]). This solution has been improved with
many alternatives. Cancelo and Espasa ([1], [9]) proposeaewise linear regression model: temperature range is
divided into four or five sections, thereby allowing &drent relationship in each section. This approach has kssseh u
by several authors, (e.g., [6]). Dordonnat et al. [10] sifigd this idea and considers only the heatifiget within
a state space model. Generalized additive models (GAMs} stedied in [13] and [14], where the semiparametric
approaches were shown to be well-adapted to the nonlinbavkms of the electricity load signal. Gaillard et al. [15]
introduce a new procedure for performing quantile regogsssing GAMS. In our article, an additive model based on
splines is introduced, and it includes nonlinefieets within the linear regression framework. To review ttegdture
on the dfects of temperature and weather conditions on demand, é#dsssary to consider that the relationship can
change enormously depending on the country in question.céamable solution for one electrical system may not
be valid for another. In France ([10]), the temperatufec is crucial because winter heating mainly uses elettrici
In Spain, the temperaturdfect is important in winter (for heating), but it is even mamgiortant during the summer
months (for cooling).

Holidays have a great impact on electricity demand, and &éreyusually the hardest days to predict; therefore,
holidays are one of the main concerns of the system operata.usual way to consider théect of holidays on
demand is through the inclusion of dummy variables ([1], [98]) in the regression term. Modeling is very complex

for many reasons: the demand profile of a holiday fEedént throughout the year and in turn changes depending on

3



Caro, E., Juan, J., Cara, F.J. Applied Mathematics and Computati®® (2019) 1-22 4

the day on which it is celebrated; in addition, a holiday ie thiddle of the week alters the demand of the adjoining
days. Ziel [16] presents state-of-the-art techniques & wéh public holidays and provides a large load forecagtin
study for Germany. The number of holidays and their distidmuthroughout the year fiers by country; thus, their
relevance for proper modeling mayfi#ir in each case, which explains whyfdrent approaches to the problem have
been used in the scientific literature. Some authors singpigunce predicting holidays by considering them atypical
days and removing them from the series [4], [17]. Smith [18hts them as if they were Sundays. In some studies,
the dtects of special days are considered randdliects [10]. The most common treatment is to include them in the
dynamic model using dummy variables. The number of thes@hlas can vary; some authors solve the problem
with tens of parameters, while others use several hundredarameters [1]. In this work, the characteristics of
each special day have been analyzed using dummy variablesrsjdering the information collected over several
years. The procedure detects identifiable patterns of @hthat can be used to predict changes in demand for
future holidays, and it requires a large number of pararedteconsider all the features described in the preceding
paragraphs. The method has been validated exhaustivelly:several years of data, a model is estimated and its
performance is checked by predicting the entire followiegty This procedure has been repeated several times, and
the prediction results obtained for holidays are highlyuaate. This behavior agrees with the findings of Ziel [16] in
Germany.

Until now, some statistical models related to the procedseribed in this article have been introduced, but a
broader revision should include techniques associateutivit area of artificial intelligence such as artificial néura
networks ([19] and [20]), support vector machines and maogékids ([21]-[23]). Neural networks have received
a great deal of attention in load forecasting literatured arany of the papers applying neural networks present
relatively small prediction errors that are comparablehtust of time series approaches. Other standard procedures
include expert systems and fuzzy logic. The proposed dlguarin this paper is focused exclusively on time-series
models.

This work presents three contributions to the problem ofljpteng demand:

1. The periodic ARIMA model: This model includes a term thahcects the 24 equations for each hour. The
model obtained is very competitive when compared with othedels, for broad time horizons ranging from 1
to 48 hours. Theféect of this term on prediction accuracy is meticulously gpedl and explained in Section 5.5.

2. Temperaturefect: The nonlinearféect of temperature on demand is considered with a splinessgim model.
This approach is very useful for adapting the temperatfieeein each hour, and as a consequence, it improves

prediction accuracy.

3. Special day fect: A critical element in demand prediction is holiday miattg especially in Spain, where
4
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there are many holidays that have verffelient éfects on demand. This factor is addressed with a systematic
procedure that uses dummy variables in the regression modisl procedure could be easily adapted to other

electrical systems.

The rest of this paper is organized as follows: In Sectiorh&,rotation is presented and a reg-ARIMA model
is implemented for computing electricity demand preditsioSections 3 and 4 provide the mathematical models for
including the &ects of temperature and special days, respectively. Inddebt the developed algorithm is tested

using real data from the Spanish electricity system. Rmaéinclusions are presented in Section 6.

2. Periodic reg-ARIMA model

Let Y4 be a 24-dimensional vector that contains the (log) hourgrgyndemand for dagl. This vector series is
analyzed through 24 independent univariate models. Den¥ti, the component of the vectorY 4, each univariate
model explains the evolution of the serig,, where the houn is fixed and the time index & These 24 models are
the starting points of the analysis, although the joint gsialrequires working witlyyq ), i.€., the complete univariate
hourly series. The time index ¥, is t, and the cumulative hourly inde(d, h) = 24d + h. This article uses either
Yu,h OF Yya,ny to denote the logarithm of the demand for howf dayd.

The electricity load serie§/ynq)} exhibits strong daily, weekly and yearly seasonal cycldse ean, variance
and correlation structure of the log of the electricity lababend on the hour of the day. The standard models based
on the assumption that the mean and autocovariance furat@time invariant are clearly inappropriate. In such
circumstances a convenient framework is the periodic agtessive-moving-average (PARMA) model ([24]-[26]),
which is an extension of the commonly used ARMA models thiana seasonally dependent parameters. As the
seasonal variation is mainly due to the daily pattern, aggécimodel withs = 24 periods is used.

The main seasonatfect corresponds to the period of the model; in this case, s = 24. Other seasonaffects
can be included, such as weekly and yeaffg@s, whose cycle lengths age= 7x sands; = 7x52x s, respectively.

All cycle lengths are multiples of the periodic order 24, which is a necessary condition for our approach. For
simplicity, the explanation is restricted to the case ofldeseasonality.

For each houh, the periodic model is described using the following twoatpns:

BXd + Zna) (1a)

Yi(h.d)

Pr(B) VI V22 g) 6n(B™)On(B>)Win,q)- (1b)

where (1a) represents a multiple linear regression modalwan-stationary and correlated disturbanggg). Note
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that the vector of explanatory variabbesis constant for all hours of dayand the vector of parametgfigcorrespond-
ing to hourh is varies by hour. The disturbanceg,q follow a periodic autoregressive-integrated-movingrage
process, as modeled in (11B:is the backshift operator such tHﬂtz((h,d) = Znd)-k; Vs, andVs, are seasonal fier-
ence operators (e.dvs, = (1 - B%)); D1, andD, are the orders of flierencing for both seasonalities (there is no
regular diference in the model}n(B), on(B*), ®n(B%) are polynomials irB, B and B%, of ordersp, Q; and Q,
respectively; andvg,q) are independent random variables with mean zero and vartﬁ'lthat can be dferent for
each houh.

The structure of Eq. (1b) is justified from empirical, thearal, and computational points of view. First, from
an empirical perspective, the standard identification wdtlogy, which is based on the analysis of the simple and
partial autocorrelation functions of the 24 daily seriegygests the two moving-average components of the right-han
side and the autoregressive polynomial and tifi@dinces that appear on the left-hand side. Second, the thedel
retically includes the three components required for @rpig the main characteristics of electricity load dynasnic
the autoregressive component considers short-téif@ats, while the moving-average components collect the dail
and weekly cyclés Finally, from the computational point of view, a model wihch a structure can be estimated
very dficiently.

This approach can be seen as a generalization of other teukigression models with autoregressive errors used
in the literature (e.g., [7] and [9]). The main novelty of theposed model is the autoregressive polynomiéB)
that connects the 24 equations. It is important to realiaedhks, ands, are multiples of the periodicity of the model
s, all terms that appear on the right-hand side for the Iauorrespond to loads of the same hour but féfestient days
and, if¢n(B) = 1 for all h, then the 24 regression models would be decoupled and cewddtbmated independently.
Functiongn(B) is precisely the term that relates the demand of an hourtivitidlemands of the immediately preceding
hours, which may correspond to hours on the same day or tsloduhe previous day. As discussed in Section 5,
this factor is key factor and substantially improves theuaacy of short-term predictions. However, the inclusion of
this factor in the model has the disadvantage that everyismested with previous ones, which greatly complicates
estimation. To address this problem, an approximationtimage the full model in two steps is proposed in this study.

If all the zeros ofp,(B) lay outside the unit circle (notice that there are no firsten diferences in the model), it

is defined asin,q) = ¢Hl(B)Wt(h,d) and (1b) can be written as:
VoIV Zha) = 6h(B™)On(B2)Vina)- ()

2Any ARMA model can be written using the proposed model, falgsiith a polynomial with infinite terms.
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Using the 24-dimensional vectoZy andVq with elementsZ,g = znqg) andVhg = Wna), respectively, the above

univariate hourly process can be written as a daily vectocgss:

Yyd GXg+ 24 (38)

vPiylez, = 6 (B)On(BMV4 (3b)

whereG is a matrix whose rows contain the regression paramﬁﬁersperato@ is the new backshift operator such
thatB Y4 = Y41, the diference operatorgP:, V22 have been adapted in a vectoral form, @¢B) and ©,(B™)

are matrix polynomials that contain the moving-averagepeaters of the model, whera is an integer such that

s, = mx sands, = s. The vector proces§P:V22Z is covariance stationary [24]. The important aspect of the
new vector model is that matrices in polynomia|éB) and®,(B™) are diagonal and under some circumstances each
equation can be estimated separately. Note that, althoegiorsVy andV4_1 are correlated, the autocorrelation
codficients for the daily series corresponding to hbutVy g} can be zero; in that particular case, it is possible to

consistently estimate the parameters associated witharhhgsing only the data corresponding to this hbur

2.1. Estimation algorithm

In short, the proposed algorithm estimates the above modefd steps:

Step 1) The first step consists of estimating 24 univariate modeis,for each hour of the day:

Yh.d

BaXd + Zng (4a)

VPV Zh g 6n(B)On(B™Vha. (4b)
Step 2) The errors of each model in (4) allow the multivariate eigror the univariate time seriegnq of errors to

be built. The hourly serieq) is a periodic autoregression (PAR) of perioe 24,

Sn(B)\iha) = Wena), h=1,2,...,24 )

The PAR model may be expressed in terms of an equivalentvarifite VAR model. One way to compute max-
imum likelihood estimates of the PAR model parameters wbeldonverting (5) to its equivalent multivariate
AR representation [25]-[26]. The computationafidulties associated with such an approach are excessive.
Pagano [25] proves that the minimum mean squared estimasebfhour produces consistent estimators of the

parameters. A noteworthy result by [25] is that, asymp#diyehe estimates obtained are independent.
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The idea of the aforementioned global procedure is first pitewed with a reg-ARIMA filter for each hour, and

then a periodic autoregression is performed on the residual

2.2. Computation of predictions

In this section, the method of computing the predictionstopleying the estimated two-step model described in
Section 2.1 is explained. The following reasons for using tilethod are of a practical nature: (i) it takes advantage
of the predictions provided by reg-ARIMA models; (ii) the-Béur daily models are very complex and demanding
from a computational point of view; and (iii) it can be verynedicial to use some of the methods available in software
packages such as R and MATLAB.

Every time a new observation is obtained corresponding tw hgof daydy, predictions for the next days corre-
sponding exclusively to thiey series are updated using (4), and then, with the newly obdaiesidual, the prediction
of the next hours are updated using (5). This correctionifsigimtly improves the predictions up to a 48-hour horizon
(see Section 5).

In the hourly cumulative index, the last observation is otetd atty = 24d, + hg. To simplify the explanation, only
the cumulative index = 24d + his used, and when needed, the hbue h(tk) and the daylk = d(tx) corresponding
toty are used. The residug) is obtained by taking the observed loadgi;, and the one-step predictigy obtained

from the daily model of houlny, as follows:

Yo = 710 + Vio- (6)

The same equation can be written for any of the next 24 higutk, 1 < k < 24, butw,,« andy;,.x are unknowns:

yt0+k = Sito+k + Vt0+k9 (7)

wherey;, .« is the one-step prediction of the corresponding load usieglaily model of houhy = h(ty + K).
The valuesy, .,k can be partially predicted by, .« for k = 1,2, ..., 24 through iteration using the autoregressive

residual model:

P
Vigrk = Z Ohy, (Ve +kis (8)
i=1
wherevi ,k-i = Vi+k-i» 1 =k, andpy is the order of the autoregressive model of hiourThe updated prediction for
Vio+k USINg the residual information is
P
Viork = Veork + Z B i Ve rk—i- 9)
i=1

When the time horizon is longer than 24 hours, multiple stegligtions of the daily models are used. For example,

8
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if kis between 25 and 48 hours, then
Yig+k = Yig+k + Vigrk + Phy.1Vtg+k-24 (10)

whereWy, 1 is the codicient of the unitimpulse response function of thedaily model. Applying (8), the predictions

for to + k, with 25 < k < 48, are obtained by

Pk Pk
Vig+k = Yig+k + Z Ohy, i Vigrk-i + Z Why 10, i Vg +k-24-i (11)
i=1 i=1

and in general, fofp + k, with 24 — 1)+ 1 < k < 24r andr > 1

ro P
Vio+k = Yig+k + Z Z Wh,jPhe, i Ve +k—24j—i (12)
20 71

where¥y, o = 1 for anyk.
Obviously, the &ect of the correction is less useful when applied to largézbos. However, it has been found to

be highly dfective for the first two days of prediction (as discussed ictiSa 5).

3. Influence of temperature

It is well-known that weather conditions have an impact oergn demand. However, there is not an established

method of modelling the relationship. The complexity of greblem is due to the following:

o The dfect of temperature in energy demand changes throughougtrein cold seasons, the demand increases
as temperature drops; in hot seasons, the demand increhsesemperature increases; and in seasons with

milder weather conditions, temperature changes do noffisigntly alter the energy demand.

e The dfect of temperature on demand is not instantaneous. For dgaafemperature drop in a single day in

winter produces an increase in demand for several consealsdys.

¢ In large systems, the weather usually varies considerabty bne location to another in the grid, indicating

that it is necessary to consider the spatial nature of thiel@no.

In this work, regression-spline techniques [27] are prepds model the nonlinear relationship between demand
and temperature, which basically involves dividing the penature range into sections, as defined by a sequence of

nodes, and fitting each section to a polynomial. The emplg@yededure ensures that the polynomials are joined

9
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smoothly in the nodes and that the whole function and its dinst second derivatives are continuous. The positions
of the nodes are chosen depending on the shape of the curgeatijusted, and the number of nodes is chosen using
cross-validation with out-of-sample predictions (in gexhetwo or three sections are enough).

Given the nodes, denoted l{))g* =12, r}, there are many equivalent alternatives when choosingpiirees

base functions; the following function has been chosen{23]:

bo() =1 , bi(Xx)=x , bi1(X¥)=R(XX) i=12..,r (13)

A 1\? 1)1 A S T A A G A I |
R(X,X):[(X _E) —1—2H(X—§) —TZ}Z—[(IX—XI—E) _E(lx_xl_i) +%}2—4» (14)

wherex is a value between 0 and 1. The regression-spline model f@blax is built from (13) and (14).

As might be expected, if temperature observations areablaifrom diferent locations, it is necessary to select
those locations that are considered most representatinetfre point of view of electricity demand. After analyzing
multiple options, the mean of the maximum daily temperafoiréhe 10 most representative cities has been chosen as
the most convenient explanatory variable for weather. fg#iie minimum and maximum values from the historical
series Tmin andTrmax respectively)xis defined ax = (T — Tmin)/(Tmax— Tmin), WhereT is the maximum observed
temperature of the day.

As mentioned above, the demand of daylepends not only on the temperature of that day but also on the
temperature of the previous dags; 1,d - 2, ...,d — K; thus, the linear term of the model for hducorresponding to

the temperatureffectgng = agxd can be written as:

r+1 r+1 r+1

Oha = ano+ ) ofbixa) + > afbi(xa1) + -+ ) ofibi(xax). (15)
i=1 i=1 i=1

The total number of parameters in this component of the misdel+ 1)(K + 1) + 1, wherer is the number of

nodes ank is the number of lags.

4. Influence of special days

Public holidays have been classifiechatyypes or groups, namésh, G,, ..., G, and every day is identified using
thedummyvariableZy;. This variable is defined as follows: dfe G;, thenZy; is set to one ; otherwis@y; = 0. The
variablely j is defined as an indicator of the weekday, as followsaid — j, 7) equals zero, thelp ; = 1; otherwise,
lgj =0.

The days before a holiday are considered with the dummy MaBaJ'gi, wherei is the type of day and the

10
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number of days before the holiday. Thefifext is modeled as: dl + k € G;, thenugi is set to one; otherwisdajgi =0
vk € [1,---,ky]. Similarly, variablesvgi are employed for the days following a holiday, modeled akfes: if
d-keG;, thenvgi is set to one; otherwis@/,gi =0Vke[1,---,ky]. Finally, for regional and local holidays, I&
be a number from 0 to 1 that represents the percentage ofti@apulation &ected by the regional holiday for day
d. For special days thattact the total populatior4 equals 1.

Using the above variables, the influence of the special daydemand can be written using the following linear
function:

m 7 ku
fh,dzz BrijdildajPa + yﬁijuéildjpd"'

m 7 m 7 ky
i=1 j=1 i=1 j=1 k=1 i=1 j=1 k=1

5EijV§i|ded (16)

This formulation contains three sets of parametgsg; which measures the increase or decrease in the demand
of the hourh of a special day of grou@; that falls on the day of the wegk yﬁij, which measures the change in the
demand of the hour, k days before a holiday grou that falls on the day; and in the same Waﬁﬁij for postholiday
days. The valueky, andky indicate the number ofttected days before and after the holiday, respectively. Mioidel
requires & mx (ky + ky + 1) parameters for each hour.

The valuegky andky may depend on the type of holiday and especially on the dayeofieek; therefore, they can
be written asky;; andkyij, respectively. We have used values equal to 0, 1, 2 or 3 dapgenshinly on the number of
previougposterior days féected. In total, the number of parameters for this compgmepending on the number of

groups, may be between 250 and 350.

5. Case study

5.1. Case study settings

In this section, the results for the Spanish mainland etesystem are described. This subsection details the

settings employed for the case study.

5.1.1. Estimation settings

The time period considered for estimating the parameteafseid 2-year period from 2003 to 2014. Such a large
estimation period is required to allow for estimating tlfieets of all special day. Note that to properly estimate the
model in (16), each national holiday must fall on each dayhefweek. Using 12 years ensures that all national days
fall on all days of the week.

The demand data have been provided by the Spanish TSO (REE)information is open-source and can be

publicly accessed througittps://demanda.ree.es/demanda.html.
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Concerning the temperature model, the weather informgboth forecasted and observed) corresponds to the
average maximum daily temperature of the ten most reprathemtocations in Spain. The model detailed in Section 3
uses three equidistant nodes«{3 andx’ € {11.6 °C, 21.3°C, 31.0°C}) and three delays{ = 3). Therefore, for each
hourly model, the total number of cfirients to be estimated in Eq. (15) is 16 (the intercept is nosidered). The
weather information is modeled using 16 regressors.

Concerning the special days model, for each hourly modélph8ameters are employed to model the eight groups
of national holidays using (16) witRy = 1, 13 parameters are employed to model the regional or ladalays
using (16) with O< Py4 < 1, 14 parameters are employed to model the Easter holidaysarameters are employed
to model August, 17 parameters are employed to model daydmling time clock changes, and 18 parameters are
employed to model other atypical days (e.g., strikes). @toee, 268 regressors are employed to model special day

effects.

5.1.2. Forecasting settings

To evaluate the forecasting performance of the model, thpgsed procedure is employed to compute one day-
ahead forecasts from January 1st, 2015 to December 31&, Z@us, the performance of the method is tested using
the 365 days of the year 2015.

The model has been estimated using data until December Rlitd that all information of national and regional
holidays is published by public administrations beforeghd of December, and no re-estimation has been computed
in the forecasting period (2015). The computation of fostefor 2015 is completely automatic and does not require

any human intervention.

5.2. Estimation results: ARIMA component

Box and Jenkins [30] developed a practical approach fodmgl ARIMA models with the best fit to a given
time series. Their methodology has had enormous succestesfield of time series analysis and forecasting. The
Box-Jenkins methodology uses a three-step iterative agprthat include the following: (1) model identification,
(2) parameter estimation and (3) diagnostic checking terdghe the best parsimonious model from a general class
of ARIMA models. This three-step process is repeated setienas until a satisfactory model is selected. The
identification procedure is based on autocorrelation amtigb@utocorrelation functions (ACF and PACF). These
functions of the 24 series indicate a lack of stationarigttis corrected with a honseasonaffeience D; = 1)

and a weekly dference D, = 1) for all series. The patterns of the 24 autocorrelatiorcfioms of the doubly
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differentiated series are very similar and suggest pure moviexgage models with polynomials of degrees 3 and 2
for the nonseasonal and seasonal parts, respectively.

As shown in Section 2.1, model estimation (1) is done in twaggls. In the first phase, the 24 reg-ARIMA models
corresponding to each of the hours of the day are estimatgd.gives the polynomialé, and®, of model (1). This
phase is the most demanding from a computational point @f siece it requires the joint estimation of the parameters
of the regression equation and the ARIMA component for eaeh.HEach model requires the estimation of hundreds
of regression parameters and a few more (less than tenspormding to the polynomials of the ARIMA model. Joint
estimation of the parameters is performed using the maxilikaefthood method by assuming a Gaussian distribution
of the white noise process. The solution is obtained withsthlgroutines included in the MATLAB Econometrics
Toolbox. The nonlinear optimization problem is solved bggntial quadratic programming (SQP).

The last step of the Box-Jenkins methodology, i.e., diatimokecking, examines the goodness-of-fit of the esti-
mated model. In this case, the residues obtained from thetfdated models do not show significant autocorrelation.
During this process, several alternative solutions candb@iimed that are evaluated through goodness-of-fit mesisure
such as the Akaike Information Criterion (AIC) [31] or the\Bmian information criterion (BIC) of Schwarz [32].
When a s#ficiently long time series is available, as in the case at handpal way to check the validity of the model
is to evaluate the accuracy of its predictions with an ousarhple procedure. Table 1 provides for each hour the three
parameters included in the moving average (MA) polynogjaind the two parameters corresponding to the seasonal
polynomial (SMA)®y. The root mean squared error (the estimated standard wevidtvy, ;) for each model is given
in the column labeled “RMSE(1)".

In the second phase of model estimation, the residuals @&Heour reg-ARIMA models are combined by means
of Eq. (5) to estimatey,, which completes the estimation of the periodic model (he €stimation of these parameters
is performed by least squares, using a linear regressioatieguthat relates the residuals of each hour with the
residuals of the immediately preceding hours. Thredfmients have been used in each regression equation. The
results of the estimation are shown in columns AR(k) of TdblAlthough some cd&cients are not significant, they
have been maintained in the models to keep the same strdotuegach hour. In the last column of Table 1, the root
mean squared error of each model in (5) is provided (RMSE [@ble 1 shows how the prediction error is reduced
from RMSE(1) to RMSE(2) when the information from the prexgchours is included. The explanation is simple
and logical: the first column corresponds to errors made ih-Bdurs-in-advance prediction, and the second column

corresponds to errors made in a prediction for the next hour.

13



Caro, E., Juan, J., Cara, F.J. Applied Mathematics and Computati®o (2019) 1-22 14

hour | Intercept MA(L) MA(2) MA@3) SMA(7) SMA(14)[ AR(L) AR(2) AR(@3) | RMSE(l) RMSE(2)

1 3,328 -0,288 -0,117 -0,054 -0,838 -0,04§ 0,672 -0,101 0,125| 0,01432 0,01081
2 3,234 -0,309 -0,115 -0,043 -0,848 -0,063 0,954 -0,095 0,081 0,01464 0,00582
3 3,159 -0,298 -0,126  -0,035 -0,892 -0,043 0,960 -0,062 0,020 | 0,01472 0,00608
4 3,116 -0,290 -0,132 -0,038 -0,908 -0,019 0,911 0,053 -0,020 | 0,01493 0,00548
5 3,001 -0,294  -0,128 -0,049 -0,915 -0,008 | 0,955 -0,015 -0,003| 0,01489 0,00501
6 3,077 -0,282  -0,150 -0,049 -0,917 -0,017 0,944 -0,054 0,013 | 0,01434 0,00491
7 3,077 -0,282 -0,166  -0,044 -0,893 -0,044 1,076 -0,124 -0,070] 0,01426 0,00625
8 3,078 -0,245 -0,178 -0,023  -0,833 -0,110 1,190 -0,157 -0,089 0,01562 0,00699
9 3,098 -0,282 -0,201  -0,051 -0,796 -0,12Q 1,047 -0,112 -0,014 | 0,01671 0,00777
10 3,177 -0,346  -0,185 -0,060 -0,849 -0,053 0,980 -0,280 0,148| 0,01587 0,00710

11 3,277 -0,394 -0,177 -0,061 -0,854 -0,031 1,200 -0,366 0,096| 0,01609 0,00609
12 3,327 -0,409 -0,186 -0,066 -0,832 -0,021 1,233 -0,334 0,067 0,01672 0,00509
13 3,330 -0,436  -0,180 -0,072 -0,823 -0,020 1,202 -0,191 -0,048 0,01731 0,00492
14 3,337 -0,442 -0,183 -0,073 -0,835 -0,026 1,154 -0,101 -0,111] 0,01749 0,00471

15 3,321 -0,446  -0,170 -0,098 -0,867 -0,049 1,218 -0,214 -0,064 0,01760 0,00514
16 3,268 -0,420 -0,165 -0,120 -0,871 -0,061 1,162 -0,178 0,002 | 0,01835 0,00539
17 3,240 -0,410 -0,184 -0,111 -0,857 -0,066 1,191 -0,240 0,028 | 0,01890 0,00472
18 3,237 -0,401 -0,178 -0,102 -0,826 -0,073 1,236 -0,230 -0,053 0,01920 0,00515
19 3,275 -0,355 -0,170  -0,064 -0,757 -0,055 1,345 -0,361 -0,099] 0,01906 0,00686

20 3,346 -0,328 -0,197 -0,079 -0,725 -0,035 1,029 -0,257 0,060{ 0,01755 0,00704
21 3,432 -0,290 -0,185 -0,066 -0,713 -0,029 1,108 -0,306 0,040, 0,01617 0,00633

22 3,509 -0,330 -0,193  -0,062 -0,771 -0,067 0,822 -0,179 0,131| 0,01403 0,00654
23 3,466 -0,324  -0,187  -0,080 -0,889 -0,08Q 0,974 -0,297 0,098 0,01304 0,00708
24 3,391 -0,322 -0,163  -0,052 -0,842 -0,114 1,058 -0,260 0,117| 0,01382 0,00666

Table 1. Two-stage estimates of the model using the Sparagtiand demand data.

5.3. Estimation results: the influence of temperature

The weather explanatory variable used in the model is theageevalue of the maximum temperatures recorded
every day in ten representative peninsula locations. Véeatiodels predict these values with great accuracy from one
day to another.

The individual interpretation of each déieient is not very informative. However, the joint inter@gon of the
estimated functions is meaningful. Fig. 1 provides thewsted influence of temperature on demand for foffedént
hours. The #ect of the day’s temperature and the two previous days aresepted for each hour. For brevity, the

24 graphs are not included in the document.

Hour 6 Hour 12 Hour 18 Hour 24

Influence of temperature

0 10 20 3 400 10 20 3 400 30 2 3 400 0 2 30 40
Temperature °C Temperature °C Temperature °C Temperature °C

Figure 1. Influence of temperature on Spanish electricitpated: day’s temperature (solid line), the previous dayl (dashed line) and the day
d - 2 (dotted line).
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Comparing the four graphs, it is observed that tifeat of temperature on demandfdrs greatly by the time
of day. The solid line in the four graphs shows the parabdiape of the fect of the temperature of the current
day on electricity load. Temperaturéects demand less at night than during the rest of the day.nDuhie early
morning hours, the temperature of the previous day has tst significant &ect. After examining the 24 graphs, it

is observed that the estimated ffogents vary by hour in a rather systematic fashion.

5.4. Estimation results: special days

A large number of dummy variables have been included in theehio study the #ect of holidays and special
days using (16). Thefkect of a holiday with a fixed calendar date (e.g., Decembehn)ZStdifficult to measure
because it varies according to the day of the week on whiall#, fand its estimate is usually based on only one or
two observations.

The model in (16) has been estimated by considering nin@sbtdidays (n= 9), eight of which were determined
by the eight national holidays, and the ninth of which ines@ll regional holidays. The estimated parameters allow

for the interpretation of how electric demand iBegted by public holidays.

Dec 24th Dec 25th Dec 26th
> 0
O [ R R Y I S S ‘SO (et ToeS o
2 -0,2
2 gl
= -04 = Dec 24th Dec 25th Dec 26th
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=
SO 5 e e I e gy o 7or o~y e
DL T e W e | | e%Peescd,  Lesettens 'g ......
4 .02 £ 02
= ©n )
H 04 0,4

6 12 18 6 12 18 6 12 18 6 12 18 6 12 18 6 12 18

hour hour

Figure 2. Influence of the public holiday on December 25th

For illustrative purposes, Fig. 2 shows thEeet of the public holiday Christmas Day and the two adjaceysd
(in columns) depending on the day of the week of Dec. 25thdims). Each point corresponds to a parameter, the
abscissa indicates the time of day, and the ordinate vapresents the estimated value. Each value measures the load
reduction of the holiday compared with a normal day. Wherigbimas Day is celebrated on a weekday (Monday to

Friday), a significant decrease in demand occurs relativehtt would be expected for a working day. For example,
15
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the maximum reduction is observed at 9 am and 10 am, when dkmay decrease by fifty percent. The variation is
much smaller if Dec 25th is celebrated on Saturday or Surida.reduction is somewhat smaller on Dec 24th, when
the biggest decline is approximately 20% and occurs at 10nquld pm from Monday to Friday. Dec 26th is also
affected but more modestly; the largest change takes place ad&ydDec 25th is a Sunday).

This detailed analysis has been performed for each grouplofdys. The parameter estimates are veffedent
for different groups. Behavioralftierences are also observed depending on the day of the wek mkans that
each hour modeled requires approximately 280 parametéis.particular parametrization is also recommended in

the original work of [1] and has provided excellent resuttpiedictions of demand for holidays [9].

5.5. Forecasting results
The objective of this work is to obtain accurate forecastpfediction horizons ranging from one hour to several
days. In this section, the results for horizons from 1 to 48&bkare analyzed. The prediction time interval corresponds

to the year 2015. A complete series of 365 days has been evadid

24 -

[0 A* (24)d-1) ——B (24[d-1) —o—C (10)d) D (18/d) & E (24/d) |

22

RMSE

0.8 -

| | | | | | | | | | | | | |
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
hours

0.6 —

Figure 3. Hourly RMSE for the prediction period (January, 265 until December 31st, 2015).

Fig. 3 shows the accuracy for the predictions computedigrdnt instants for dagand dayd+1. The forecasting

performance is assessed by means of the RMSE, as suggef8t in

1. The top lineAx represents “uncorrected” predictions,k (see Section 2.1) made with the information up to

midnight of the previous day—1. The predictions are made using the 24 daily models in (dioui considering
16
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the correction provided by the autoregressive compong®)irDayd errors (left part of the graph) correspond
to one-step predictions, amld+ 1 day errors (right part of the graph) correspond to two-preglictions.

. Line B (marked with x) is similar to lineA« (predictions from midnight ofl — 1) but is updated with autore-
gressive terms. A significant reduction in error can be olexkin the early hours, but thefect gradually
disappears until 5 pm on day where the two lines overlap.

. The prediction errors made on ddyat 10 am are shown in lin€ (marked with diamonds). Logically, the
observed demand up to 10 am is very informative for predjctvhat will happen at 11 am and the hours that
follow. Thus, compared witB, a huge improvement can be seen in the predictions for the dagu. However,
from a practical point of view, the reduction in errors thahde seen in the predictions of the dhy 1 is far
more crucial. While comparing andC in dayd + 1, two diferent factors should be considered as follows: (a)
from 1 am to 10 am, the fierences are mainly because l@eorresponds to one-step predictions and Bne
corresponds to two-step predictions; and (b) from 11 am tinight, both linedB andC correspond to two-step
predictions (the reduction in this part is a direct consegeef the autoregressive componentin (5)).

. LineD correspondsto the errors for predictions made at 6 pm ofidaglid circles). Itis interesting to compare
curvesC andD. The new observations from 11 am to 6 pm do not greatly imptiogg@redictions from 1 am to
10 am. These observations significantly improve the priedisttrom 11 am to 6 pm (notice th&trepresents
two-step predictions an represents one-step predictions). Finally, predictidré@m are improved from 7
pm to midnight; however, in this case, both are two-stepiptiens.

. Line E has been included as a reference. Lihian d + 1 is exactly the same as lirigin dayd. A large gap
between one-step (lin€) and two-step predictions (linB) for the 24 hours can be observed. During dathe

more updated information that is included, the it gets tve.

Concerning the computational specifications, these cagbest have been implemented in MATLAB using a

64-bit eight-core i7 processor (3.6 GHz max.) with 16 GB ofMRAModel estimation requires about two hours of

computing CPU time, and the computing of one-day-aheadgifeds requires less than 20 seconds. Note that model

estimation should be performed once a year, whereas fdilegasmputation should be performed hourly.

5.6. Benchmarking and performance comparison

To evaluate the accuracy improvement of the model for teatpeg and holidayféects, the performance of the

proposed method is compared with the following modificagion

e Proposed approach without the temperatdieot, where the thermal information is not included in the slod

17



Caro, E., Juan, J., Cara, F.J. Applied Mathematics and Computati®o (2019) 1-22 18

e Proposed approach with a basic model for holidfgat, which considers only the influence of holidays on
demand depending on the day of the week from Monday to Satufidaus, six groups of 24 regressors have

been employed.
e Proposed approach using a piecewise linear temperatureljdd]).

Fig. 4 and Table 2 provide the hourly RMSE for the previoushrods, using the same forecast settings described

in Section 5.1.2. It can be observed that:

e The model that does not consider the temperatfiezeprovides a higher-error forecast, especially during su
hours. The one-day-ahead prediction accuracy of this el % worse at computing the forecasts at 10:00

am.

e The proposed modeling of holidays provides a 36% improveémempared with the forecaster with a basic

model for holidays.

e For temperature modeling, the proposed method based ares@lgression techniques provides an improve-

ment of 11% compared with a piecewise linear model ([34]).

Hour 11234 |5|6|7|8]|9|10(11|12|13|14|15|16|17|18|19|20(21|22|23|24|TOTAL
Proposed 1.3/1.3|1.3(1.3(13|12|12|15|1.7|1.7/1.8|1.9|2.0|2.0{1.9|2.0(2121{2.1{1.9(1.8/15]|15|1.6| 1.68
No temp. Hect|1.7|1.6(1.5/15|/15|1.4|1.3|1.6|1.9|2.0|23|25|26|2.7|2.8{3.0{3.2|/3.3/3.3/3.1|2.8/25|25|2.6| 2.38
No holid. Htect| 1.6/ 1.6/ 1.6|/1.6(1.6|1.6|1.7|2.3|2.6|2.4|25(25|25|2.4|23|25(2.6|2.8|28|2.7|2.7(25|2.4|22| 229
Temp. Linear |16]16[/15(15/15/1.4|1.4|1.6/1.9|1.9|2.0|2.1|2.1{2.1{2.0{2.1{2.2(2.3/2.3|2.1|1.9|1.7|1.7|1.8| 1.86

Table 2. Hourly RMSE for the prediction period, comparechvélternative models.

5.6.1. Comparison with Cancelo et al. (2008)

To check the performance of the proposed method, it has lmapared with the work by [9], which provides
the real results of the forecasting system implementedégpanish Transmission System Operator on that date. All
settings of the case study have been replicated: the mdtwdproposed in this paper has been applied to obtain a
one-day-ahead forecast for the Spanish electrical enengguenption, computed at 10 am the day before. The study
period is from January 1st until December 31th of 2016. Thaiobd results are provided in Table 3: the MAPE of
the method described in Section 2 is compared with the MAREBrted in [9] (indicated within parenthesis).

As in [9], the results detailed in Table 3 and Fig. 5 refer t& 86nsecutive days, without exceptions or corrections

for vacation periods, public holidays, sudden weather ghanor unexpected events. From Table 3 and Fig. 5, it can
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Figure 4. Hourly RMSE for the prediction period, comparethveilternative models.

be observed that the proposed method clearly outperforensatitional one: for all days of the week and for all the
hours of the day.

6. Conclusions

Power system management needs short-term forecasts wi#oh® of one hour to one week to ensure system
stability and optimal dispatching; however, load foreirasis an essential part of day-to-day trading.

This article describes the model used by the Spanish TSO ke tmaurly forecasts up to 10 days ahead. The
model considers the hourly series as a periodically cagélprocess. It incorporates temperature as an explanatory
variable and considers th&ect of holidays on demand. Direct estimation of the model laximum likelihood is
complicated because it contains a large number of parasaéfibe problem is solved with the following estimation
procedure: first, an independent model is obtained for eaah, fvhich is the usual strategy in most of the models
proposed in the literature, and second, the parametersiatly jestimated to relate each hour to the previous hours.

This article has applied the methodology of regressiomsplito the problem of estimating the functional rela-
tionship between weather and electricity demand. A noalinelationship is observed graphically. The results agree
with intuitive expectations, and the graphs clearly show temperature influences demand changes throughout the
day. The dynamicfect of temperature on demand is incorporated by simply adidigged temperature variables.
The number of nodes is chosen via cross-validation; in thigémentation, 3 equidistant nodes are used. It has been

proven experimentally that the overall behavior of the rodtis quite robust.
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Type of day

Sun Mon Tue Wed Thu Fri Sat All days
1am 0.76 (1.55) 0.82(1.28) 0.89(1.47) 0.79(1.36) 0.74(1.47).75@1.04) 0.72(1.23)| 0.78 (1.34)
2am 1.02(1.70) 0.93(1.05) 0.99(1.52) 0.87(1.33) 0.87(1.45).99@1.17) 0.95(1.37)| 0.95(1.37)
3am 1.93(1.78) 1.07(1.08) 1.08(1.66) 1.00(1.33) 0.91(1.33).0911.06) 0.82(1.23) 1.13(1.35)
4 am 1.13(1.80) 1.09(1.19) 1.09(1.61) 0.91(1.23) 0.88(1.28).0211.02) 0.91(1.32)| 1.00(1.35)
5am 1.17(1.80) 1.21(1.22) 1.23(1.69) 1.03(1.41) 0.97(1.26).0510.99) 0.93(1.34) 1.09 (1.39)
6 am 1.11(1.61) 1.20(1.17) 1.21(1.51) 0.99(1.34) 0.94(1.30).99@¢0.99) 0.99(1.25)| 1.06(1.31)
7 am 1.10(1.47) 1.35(1.24) 1.23(1.53) 1.01(1.33) 0.78(1.22).0711.18) 1.09(1.33) 1.09 (1.33)
8am 1.31(1.64) 1.56(1.56) 1.49(1.52) 1.02(1.39) 0.97(1.30).2871.28) 1.24 (1.46) 1.27 (1.45)
9am 1.66 (2.03) 1.72(1.87) 1.75(1.78) 1.14(1.66) 1.03(1.42).3971.31) 1.27 (1.52) 1.42(1.66)
10 am 1.67(2.08) 1.77(2.14) 1.63(1.57) 1.05(1.60) 0.94(1.43).2011.32) 1.16(1.26) 1.35(1.63)
11am | 1.58(2.06) 1.73(2.01) 1.40(1.46) 1.08(1.55) 0.95(1.45).1411.40) 1.09 (1.24) 1.28(1.60)
12 pm 1.48(1.89) 1.73(2.02) 1.31(1.52) 0.97(1.53) 0.86(1.45).2211.52) 1.07 (1.26)| 1.23(1.60)
13pm | 1.40(1.80) 1.53(1.86) 1.32(1.52) 1.06(1.59) 0.94(1.49).2311.58) 1.24 (1.41)| 1.25(1.61)
14 pm 148 (1.77) 1.48(1.78) 1.30(1.57) 1.18(1.58) 1.05(1.52).2811.60) 1.39(1.50) 1.31(1.62)
15pm | 1.50(1.79) 1.35(1.75) 1.34(1.54) 1.22(1.57) 1.13(1.65).2211.55) 1.41 (1.53) 1.31(1.63)
16 pm 156(1.91) 140(1.95 1.29(1.60) 1.31(1.63) 1.24(1.76).4211.74) 1.53(1.77) 1.39 (1.77)
17 pm 1.63(1.97) 152(1.97) 1.33(1.68) 1.45(1.88) 1.36(1.72).5412.05) 1.67(2.09) 1.50(1.91)
18pm | 1.58(1.82) 1.63(1.81) 1.34(1.70) 1.58(2.03) 1.33(1.65).5411.95) 1.78(2.32)| 1.54 (1.90)
19 pm 155(1.91) 1.74(1.66) 1.32(1.66) 1.63(2.08) 1.31(1.56).5511.69) 1.79(2.39) 1.56 (1.85)
20pm | 1.55(1.84) 1.70(1.67) 1.32(1.68) 1.57(1.89) 1.44(1.55).46711.53) 1.48(2.03) 1.50 (1.74)
21 pm 1.62(1.93) 156(1.70) 1.19(1.49) 1.40(1.81) 1.46(1.36).2711.39) 1.26(1.72) 1.39(1.63)
22pm | 1.33(1.66) 1.41(1.57) 0.94(1.22) 1.12(1.47) 1.14(1.09).1871.16) 1.32(1.60) 1.20 (1.40)
23 pm 1.13(1.40) 1.31(1.59) 0.98(1.21) 1.22(1.62) 1.13(1.21).0811.15) 1.41(1.57) 1.18(1.39)
24pm | 1.38(1.80) 1.27(1.61) 1.07(1.44) 1.35(1.67) 1.24(1.24).1611.35) 1.55(1.73) 1.29 (1.55)
Allhours | 1.40(1.79) 1.42(1.62) 1.25(1.55) 1.16(1.58) 1.07 (1.42).2111.38) 1.25(1.56) 1.25 (1.56)

Hour

Table 3. Errors for one-day-ahead hourly forecasts for ga 2006, compared with Cancelo et al. (2008).

Estimating changes in demand for holidays is very compled,@rrect modeling is important when comparing
methods. The model incorporates a large number of dummghlas that consider all peculiarities of the problem.
Subsequently, the number of parameters is reduced usingstia regression model tests. The joint representation of
the 24-hour &ects for a day shows consistent and interesting results.

The model has been adapted (with the supervision of the Spd@i80, REE) to make real-time predictions for
12 smaller electrical systems in Spain (e.g., BalearimidaCanary Islands, Ceuta and Melilla). The results iridica
that the model can be used in other systems, with very setiisfaresults.

Future work will focus on an enhanced temperature modelJtamative implementation for nonworking days,

and the inclusion of other weather variables (solar raaliatvind speed, etc.).
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