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Abstract

During the last two decades, the model developed by Cancelo and Espasa (1991) [1] has been used for predicting

the Spanish electricity demand with good results. This paper proposes a new approach for estimating multiequation

models that extends the previous work in different and important ways. Primarily, 24-hour equations areassembled

to form a periodic autoregressive-moving-average model, which significantly improves the short-term predictions. To

reduce the computational problem, the full model is estimated in two steps, and a meticulous model of the nonlinear

temperature effect is included using regression spline techniques. The method is currently being used by the Spanish

Transmission System Operator (Red Eléctrica de España, REE) to make hourly forecasts of electricity demand from

one to ten days ahead.
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1. Introduction

Supplying energy to homes and businesses across any countryinvolves three key elements: generation, transporta-

tion and distribution. In most countries where the electricity market is liberalized, the management of the national

transmission network falls under an independent operator known as the Transmission System Operator (TSO). The

TSO is responsible for managing the transmission of electrical power from generation plants over the electrical grid

to regional or local electricity distribution operators. The TSO is also required to maintain a continuous (second-

by-second) balance between electricity supply from power stations and demand from consumers, which is achieved

by determining the optimal combination of generating stations and reserve providers for each market trading period,

1Corresponding Author. E-mail address: eduardo.caro@upm.es, C/ José Gutiérrez Abascal, 2, 28006 Madrid (Spain).
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instructing generators regarding when and how much electricity to generate, and managing any contingent events that

disrupt the balance between supply and demand. In addition to its roles regarding the real-time dispatch of generation

and security management, one of the main tasks assigned to the TSO is the daily scheduling of energy production

plants, adding ancillary service markets to the results of the spot electricity market. Each day, generation schedules

are drawn up for the next day based on hourly load forecasts, which means that hourly predictions are needed for a

time horizon 1 to 48 hours in advance. Often (e.g., when the period contains holidays), it is necessary to prolong the

prediction horizon by several days. This work describes a time-series model currently used by the Spanish TSO to

make hourly forecasts of electricity demand one to ten days ahead.

Electricity load forecasting has significant economic repercussions. It is important to provide accurate estimates

for operating the power system as a basis for energy transactions and decision making in energy markets. Thus,

electricity load forecasting has attracted the attention of leading statisticians all over the world during the last three

decades, to increase accuracy. From the mid 1980s, numerousarticles have been dedicated to methods and models

for hourly load forecasting. The main approaches are based on autoregressive-integrated-moving-average (ARIMA)

models, multiple regression models, exponential smoothing and structural models, or a mixture of types of models.

The collection of papers in [2] gives an indication of the methods that were used.

Univariate methods such as those based on ARIMA models or exponential smoothing can be found in [3]–[5].

These models focus on prediction up to one day ahead, but the authors mention their specific interest in predictions

for lead times less than six hours ahead. The results show a huge difference between the prediction errors in the first

six hours and those up to 24 hours. Additionally, it is worth noting that the prediction errors depend on the hour of

the day at which the predictions are made, and some hours are much more difficult to predict than others. Univariate

models are simple, robust and have advantages for very short-term predictions, but their errors are higher than those

of other models for lead times more than 12 hours ahead [6].

The desire to improve forecasting accuracy has led to extra incentives in the form of forecasting competitions with

numerous participants and a huge variety of proposals, someconventional and others innovative. In the first compe-

tition organized by the Puget Sound Power and Light Company in 1990, the winner was an outstanding regression

model [7]. The approach based on multiple regression modelswith separate equations for each hour of the day, has

inspired one of the main lines used at present [8]–[10].

Cancelo et al. [1] propose a reg-ARIMA model to predict the daily demand for electricity in Spain. The model in-

cludes an extensive set of dummy variables to capture the changes in demand for holidays, and the equation considers

the nonlinear relationship between demand and temperatureincluding several piecewise linear regressors. The total

number of parameters in the daily model is 185, of which 10 correspond to the moving average part (there are no AR
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parameters), 32 belong to climatological variables and theremaining 143 correspond to dummy variables related to

holidays and other calendar effects. The same model was estimated for each of the 24 hours andused for computing

hourly predictions for horizons up to three days at REE. A complete description of the model can be found in [9].

Dordonnat et al. [10] present a linear multivariate periodic state-space model for hourly electricity loads. The

model includes stochastic trend components together with fixed and time-varying regression effects. Each equation is

associated with a specific hour and has various coefficients and time-varying processes, which are possibly correlated

through the disturbances that drive them. The model provides evidence that temperature has a significant effect on

the load and that this effect is subject to yearly nonlinear behavior. Cottet and Smith [8] present a Bayesian approach

for estimating multiequation regression models coupled with estimation using MCMC. The results show that the

weekly, seasonal, meteorological, and dynamic effects differ substantially at different times of day, confirming the

basic precept of the multiequation model that is used in thiswork.

The effect of temperature on the use of electric power has been considered in multiple ways in electricity demand

prediction models. The relationship between temperature and demand is nonlinear because the consumption of electric

power increases at both low and high temperatures [11]. A simple and effective way to consider this nonlinearity is to

include the quadratic term of temperature in the regressionequation ([2], [12]). This solution has been improved with

many alternatives. Cancelo and Espasa ([1], [9]) propose a piecewise linear regression model: temperature range is

divided into four or five sections, thereby allowing a different relationship in each section. This approach has been used

by several authors, (e.g., [6]). Dordonnat et al. [10] simplifies this idea and considers only the heating effect within

a state space model. Generalized additive models (GAMs) were studied in [13] and [14], where the semiparametric

approaches were shown to be well-adapted to the nonlinear behaviors of the electricity load signal. Gaillard et al. [15]

introduce a new procedure for performing quantile regression using GAMs. In our article, an additive model based on

splines is introduced, and it includes nonlinear effects within the linear regression framework. To review the literature

on the effects of temperature and weather conditions on demand, it is necessary to consider that the relationship can

change enormously depending on the country in question. An acceptable solution for one electrical system may not

be valid for another. In France ([10]), the temperature effect is crucial because winter heating mainly uses electricity.

In Spain, the temperature effect is important in winter (for heating), but it is even more important during the summer

months (for cooling).

Holidays have a great impact on electricity demand, and theyare usually the hardest days to predict; therefore,

holidays are one of the main concerns of the system operator.The usual way to consider the effect of holidays on

demand is through the inclusion of dummy variables ([1], [9], [16]) in the regression term. Modeling is very complex

for many reasons: the demand profile of a holiday is different throughout the year and in turn changes depending on
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the day on which it is celebrated; in addition, a holiday in the middle of the week alters the demand of the adjoining

days. Ziel [16] presents state-of-the-art techniques to deal with public holidays and provides a large load forecasting

study for Germany. The number of holidays and their distribution throughout the year differs by country; thus, their

relevance for proper modeling may differ in each case, which explains why different approaches to the problem have

been used in the scientific literature. Some authors simply renounce predicting holidays by considering them atypical

days and removing them from the series [4], [17]. Smith [18] treats them as if they were Sundays. In some studies,

the effects of special days are considered random effects [10]. The most common treatment is to include them in the

dynamic model using dummy variables. The number of these variables can vary; some authors solve the problem

with tens of parameters, while others use several hundreds of parameters [1]. In this work, the characteristics of

each special day have been analyzed using dummy variables byconsidering the information collected over several

years. The procedure detects identifiable patterns of behavior that can be used to predict changes in demand for

future holidays, and it requires a large number of parameters to consider all the features described in the preceding

paragraphs. The method has been validated exhaustively: with several years of data, a model is estimated and its

performance is checked by predicting the entire following year. This procedure has been repeated several times, and

the prediction results obtained for holidays are highly accurate. This behavior agrees with the findings of Ziel [16] in

Germany.

Until now, some statistical models related to the proceduredescribed in this article have been introduced, but a

broader revision should include techniques associated with the area of artificial intelligence such as artificial neural

networks ([19] and [20]), support vector machines and modelhybrids ([21]–[23]). Neural networks have received

a great deal of attention in load forecasting literature, and many of the papers applying neural networks present

relatively small prediction errors that are comparable to those of time series approaches. Other standard procedures

include expert systems and fuzzy logic. The proposed algorithm in this paper is focused exclusively on time-series

models.

This work presents three contributions to the problem of predicting demand:

1. The periodic ARIMA model: This model includes a term that connects the 24 equations for each hour. The

model obtained is very competitive when compared with othermodels, for broad time horizons ranging from 1

to 48 hours. The effect of this term on prediction accuracy is meticulously analyzed and explained in Section 5.5.

2. Temperature effect: The nonlinear effect of temperature on demand is considered with a spline regression model.

This approach is very useful for adapting the temperature effect in each hour, and as a consequence, it improves

prediction accuracy.

3. Special day effect: A critical element in demand prediction is holiday modeling, especially in Spain, where
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there are many holidays that have very different effects on demand. This factor is addressed with a systematic

procedure that uses dummy variables in the regression model. This procedure could be easily adapted to other

electrical systems.

The rest of this paper is organized as follows: In Section 2, the notation is presented and a reg-ARIMA model

is implemented for computing electricity demand predictions. Sections 3 and 4 provide the mathematical models for

including the effects of temperature and special days, respectively. In Section 5, the developed algorithm is tested

using real data from the Spanish electricity system. Finally, conclusions are presented in Section 6.

2. Periodic reg-ARIMA model

Let Yd be a 24-dimensional vector that contains the (log) hourly energy demand for dayd. This vector series is

analyzed through 24 independent univariate models. DenotingYd,h the componenth of the vectorYd, each univariate

model explains the evolution of the seriesYd,h, where the hourh is fixed and the time index isd. These 24 models are

the starting points of the analysis, although the joint analysis requires working withyt(d,h), i.e., the complete univariate

hourly series. The time index inyt(d,h) is t, and the cumulative hourly index,t(d, h) = 24d+ h. This article uses either

Yd,h or yt(d,h) to denote the logarithm of the demand for hourh of dayd.

The electricity load series{yt(h,d)} exhibits strong daily, weekly and yearly seasonal cycles. The mean, variance

and correlation structure of the log of the electricity loaddepend on the hour of the day. The standard models based

on the assumption that the mean and autocovariance functionare time invariant are clearly inappropriate. In such

circumstances a convenient framework is the periodic autoregressive-moving-average (PARMA) model ([24]–[26]),

which is an extension of the commonly used ARMA models that allows seasonally dependent parameters. As the

seasonal variation is mainly due to the daily pattern, a periodic model withs= 24 periods is used.

The main seasonal effect corresponds to the period of the model; in this case,s1 = s= 24. Other seasonal effects

can be included, such as weekly and yearly effects, whose cycle lengths ares2 = 7× sands3 = 7×52× s, respectively.

All cycle lengths are multiples of the periodic orders = 24, which is a necessary condition for our approach. For

simplicity, the explanation is restricted to the case of double seasonality.

For each hourh, the periodic model is described using the following two equations:

yt(h,d) = βT
h xd + zt(h,d) (1a)

φh(B)∇D1
s1
∇D2

s2
zt(h,d) = θh(Bs1)Θh(Bs2)wt(h,d). (1b)

where (1a) represents a multiple linear regression model with non-stationary and correlated disturbanceszt(h,d). Note
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that the vector of explanatory variablesxd is constant for all hours of dayd and the vector of parametersβh correspond-

ing to hourh is varies by hour. The disturbanceszt(h,d) follow a periodic autoregressive-integrated-moving-average

process, as modeled in (1b):B is the backshift operator such thatBkzt(h,d) = zt(h,d)−k; ∇s1 and∇s2 are seasonal differ-

ence operators (e.g.,∇s1 = (1 − Bs1)); D1, andD2 are the orders of differencing for both seasonalities (there is no

regular difference in the model);φh(B), θh(Bs1),Θh(Bs2) are polynomials inB, Bs1 andBs2, of ordersp,Q1 andQ2,

respectively; andwt(h,d) are independent random variables with mean zero and varianceσ2
h that can be different for

each hourh.

The structure of Eq. (1b) is justified from empirical, theoretical, and computational points of view. First, from

an empirical perspective, the standard identification methodology, which is based on the analysis of the simple and

partial autocorrelation functions of the 24 daily series, suggests the two moving-average components of the right-hand

side and the autoregressive polynomial and the differences that appear on the left-hand side. Second, the modeltheo-

retically includes the three components required for explaining the main characteristics of electricity load dynamics:

the autoregressive component considers short-term effects, while the moving-average components collect the daily

and weekly cycles2. Finally, from the computational point of view, a model withsuch a structure can be estimated

very efficiently.

This approach can be seen as a generalization of other multiple regression models with autoregressive errors used

in the literature (e.g., [7] and [9]). The main novelty of theproposed model is the autoregressive polynomialφh(B)

that connects the 24 equations. It is important to realize that ass1 ands2 are multiples of the periodicity of the model

s, all terms that appear on the right-hand side for the hourh correspond to loads of the same hour but for different days

and, ifφh(B) = 1 for all h, then the 24 regression models would be decoupled and could be estimated independently.

Functionφh(B) is precisely the term that relates the demand of an hour withthe demands of the immediately preceding

hours, which may correspond to hours on the same day or to hours of the previous day. As discussed in Section 5,

this factor is key factor and substantially improves the accuracy of short-term predictions. However, the inclusion of

this factor in the model has the disadvantage that every houris nested with previous ones, which greatly complicates

estimation. To address this problem, an approximation to estimate the full model in two steps is proposed in this study.

If all the zeros ofφh(B) lay outside the unit circle (notice that there are no first-order differences in the model), it

is defined asvt(h,d) = φ
−1
h (B)wt(h,d) and (1b) can be written as:

∇D1
s1
∇D2

s2
zt(h,d) = θh(Bs1)Θh(Bs2)vt(h,d). (2)

2Any ARMA model can be written using the proposed model, possibly with a polynomial with infinite terms.
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Using the 24-dimensional vectorsZd andVd with elementsZh,d = zt(h,d) andVh,d = vt(h,d), respectively, the above

univariate hourly process can be written as a daily vector process:

Yd = GXd + Zd (3a)

∇D1∇D2
m Zd = θh(B̃)Θh(B̃m)Vd (3b)

whereG is a matrix whose rows contain the regression parametersβT
h ; operator̃B is the new backshift operator such

that B̃ Yd = Yd−1; the difference operators∇D1,∇
D2
m have been adapted in a vectoral form, andθh(B̃) andΘh(B̃m)

are matrix polynomials that contain the moving-average parameters of the model, wherem is an integer such that

s2 = m× s and s1 = s. The vector process∇D1∇
D2
m Zd is covariance stationary [24]. The important aspect of the

new vector model is that matrices in polynomialsθh(B̃) andΘh(B̃m) are diagonal and under some circumstances each

equation can be estimated separately. Note that, although vectorsVd andVd−1 are correlated, the autocorrelation

coefficients for the daily series corresponding to hourh, {Vh,d} can be zero; in that particular case, it is possible to

consistently estimate the parameters associated with an hour h using only the data corresponding to this hourh.

2.1. Estimation algorithm

In short, the proposed algorithm estimates the above model in two steps:

Step 1) The first step consists of estimating 24 univariate models, one for each hour of the day:

Yh,d = βT
h Xd + Zh,d (4a)

∇D1∇D2
m Zh,d = θh(B̃)Θh(B̃m)Vh,d. (4b)

Step 2) The errors of each model in (4) allow the multivariate errorVd or the univariate time seriesvt(h,d) of errors to

be built. The hourly seriesvt(h,d) is a periodic autoregression (PAR) of periods= 24,

φh(B)vt(h,d) = wt(h,d), h = 1, 2, ..., 24. (5)

The PAR model may be expressed in terms of an equivalent multivariate VAR model. One way to compute max-

imum likelihood estimates of the PAR model parameters wouldbe converting (5) to its equivalent multivariate

AR representation [25]–[26]. The computational difficulties associated with such an approach are excessive.

Pagano [25] proves that the minimum mean squared estimate ofeach hour produces consistent estimators of the

parameters. A noteworthy result by [25] is that, asymptotically the estimates obtained are independent.
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The idea of the aforementioned global procedure is first prewhitened with a reg-ARIMA filter for each hour, and

then a periodic autoregression is performed on the residuals.

2.2. Computation of predictions

In this section, the method of computing the predictions by employing the estimated two-step model described in

Section 2.1 is explained. The following reasons for using this method are of a practical nature: (i) it takes advantage

of the predictions provided by reg-ARIMA models; (ii) the 24-hour daily models are very complex and demanding

from a computational point of view; and (iii) it can be very beneficial to use some of the methods available in software

packages such as R and MATLAB.

Every time a new observation is obtained corresponding to hour h0 of dayd0, predictions for the next days corre-

sponding exclusively to theh0 series are updated using (4), and then, with the newly obtained residual, the prediction

of the next hours are updated using (5). This correction significantly improves the predictions up to a 48-hour horizon

(see Section 5).

In the hourly cumulative index, the last observation is obtained att0 = 24d0+h0. To simplify the explanation, only

the cumulative indext = 24d+ h is used, and when needed, the hourhk = h(tk) and the daydk = d(tk) corresponding

to tk are used. The residualvt0 is obtained by taking the observed load att0, yt0 and the one-step predictioñyt0 obtained

from the daily model of hourh0, as follows:

yt0 = ỹt0 + vt0. (6)

The same equation can be written for any of the next 24 hourst0+ k, 1 ≤ k ≤ 24, butvt0+k andyt0+k are unknowns:

yt0+k = ỹt0+k + vt0+k, (7)

wherẽyt0+k is the one-step prediction of the corresponding load using the daily model of hourhk = h(t0 + k).

The valuesvt0+k can be partially predicted bŷvt0+k for k = 1, 2, ..., 24 through iteration using the autoregressive

residual model:

v̂to+k =

pk∑

i=1

φhk, îvto+k−i , (8)

wherêvto+k−i = vto+k−i , i ≥ k, andpk is the order of the autoregressive model of hourhk. The updated prediction for

yt0+k using the residual information is

ŷt0+k = ỹt0+k +

pk∑

i=1

φhk, i v̂to+k−i . (9)

When the time horizon is longer than 24 hours, multiple step predictions of the daily models are used. For example,
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if k is between 25 and 48 hours, then

yt0+k = ỹt0+k + vt0+k + Ψhk,1vt0+k−24 (10)

whereΨhk,1 is the coefficient of the unit impulse response function of thehk-daily model. Applying (8), the predictions

for t0 + k, with 25≤ k ≤ 48, are obtained by

ŷt0+k = ỹt0+k +

pk∑

i=1

φhk, i v̂to+k−i +

pk∑

i=1

Ψhk,1φhk, i v̂to+k−24−i (11)

and in general, fort0 + k, with 24(r − 1)+ 1 ≤ k ≤ 24r andr > 1

ŷt0+k = ỹt0+k +

r∑

j=0

pk∑

i=1

Ψhk, jφhk, i v̂to+k−24j−i (12)

whereΨhk,0 = 1 for anyk.

Obviously, the effect of the correction is less useful when applied to large horizons. However, it has been found to

be highly effective for the first two days of prediction (as discussed in Section 5).

3. Influence of temperature

It is well-known that weather conditions have an impact on energy demand. However, there is not an established

method of modelling the relationship. The complexity of theproblem is due to the following:

• The effect of temperature in energy demand changes throughout the year: in cold seasons, the demand increases

as temperature drops; in hot seasons, the demand increases when temperature increases; and in seasons with

milder weather conditions, temperature changes do not significantly alter the energy demand.

• The effect of temperature on demand is not instantaneous. For example, a temperature drop in a single day in

winter produces an increase in demand for several consecutive days.

• In large systems, the weather usually varies considerably from one location to another in the grid, indicating

that it is necessary to consider the spatial nature of the problem.

In this work, regression-spline techniques [27] are proposed to model the nonlinear relationship between demand

and temperature, which basically involves dividing the temperature range into sections, as defined by a sequence of

nodes, and fitting each section to a polynomial. The employedprocedure ensures that the polynomials are joined

9



Caro, E., Juan, J., Cara, F.J./ Applied Mathematics and Computation00 (2019) 1–22 10

smoothly in the nodes and that the whole function and its firstand second derivatives are continuous. The positions

of the nodes are chosen depending on the shape of the curve to be adjusted, and the number of nodes is chosen using

cross-validation with out-of-sample predictions (in general, two or three sections are enough).

Given the nodes, denoted by
{
x∗i : i = 1, 2, ..., r

}
, there are many equivalent alternatives when choosing the spline

base functions; the following function has been chosen [28]–[29]:

b0(x) = 1 , b1(x) = x , bi+1(x) = R(x, x∗i ) i = 1, 2, ..., r (13)

R(x, x∗) =


(
x∗ −

1
2

)2

−
1
12



(
x−

1
2

)2

−
1
12


1
4
−


(
|x− x∗| −

1
2

)4

−
1
2

(
|x− x∗| −

1
2

)2

+
7

240


1
24
, (14)

wherex is a value between 0 and 1. The regression-spline model for variablex is built from (13) and (14).

As might be expected, if temperature observations are available from different locations, it is necessary to select

those locations that are considered most representative from the point of view of electricity demand. After analyzing

multiple options, the mean of the maximum daily temperaturefor the 10 most representative cities has been chosen as

the most convenient explanatory variable for weather. Using the minimum and maximum values from the historical

series (Tmin andTmax, respectively),x is defined asx = (T − Tmin)/(Tmax− Tmin), whereT is the maximum observed

temperature of the day.

As mentioned above, the demand of dayd depends not only on the temperature of that day but also on the

temperature of the previous days,d− 1, d− 2, ..., d− K; thus, the linear term of the model for hourh corresponding to

the temperature effectgh,d = α
T
h Xd can be written as:

gh,d = αh,0 +

r+1∑

i=1

α0
h,ibi(xd) +

r+1∑

i=1

α1
h,ibi(xd−1) + · · · +

r+1∑

i=1

αK
h,ibi(xd−K). (15)

The total number of parameters in this component of the modelis (r + 1)(K + 1) + 1, wherer is the number of

nodes andK is the number of lags.

4. Influence of special days

Public holidays have been classified asm types or groups, namedG1,G2, ...,Gm, and every dayd is identified using

thedummyvariableZdi. This variable is defined as follows: ifd ∈ Gi , thenZdi is set to one ; otherwise,Zdi = 0. The

variableId, j is defined as an indicator of the weekday, as follows: ifmod(d− j, 7) equals zero, thenId, j = 1; otherwise,

Id, j = 0.

The days before a holiday are considered with the dummy variablesUk
di, wherei is the type of day andk the
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number of days before the holiday. Their effect is modeled as: ifd+ k ∈ Gi , thenUk
di is set to one; otherwise,Uk

di = 0

∀k ∈ [1, · · · , kU ]. Similarly, variablesVk
di are employed for the days following a holiday, modeled as follows: if

d − k ∈ Gi , thenVk
di is set to one; otherwise,Vk

di = 0 ∀k ∈ [1, · · · , kV]. Finally, for regional and local holidays, letPd

be a number from 0 to 1 that represents the percentage of the total population affected by the regional holiday for day

d. For special days that affect the total population,Pd equals 1.

Using the above variables, the influence of the special days on demand can be written using the following linear

function:

fh,d =
m∑

i=1

7∑

j=1

βhi jZdiId jPd +

m∑

i=1

7∑

j=1

kU∑

k=1

γk
hi jU

k
diId jPd +

m∑

i=1

7∑

j=1

kV∑

k=1

δkhi jV
k
diId jPd (16)

This formulation contains three sets of parameters:βhi j , which measures the increase or decrease in the demand

of the hourh of a special day of groupGi that falls on the day of the weekj; γk
hi j , which measures the change in the

demand of the hourh, k days before a holiday groupGi that falls on the dayj; and in the same way,δkhi j for postholiday

days. The valueskU andkV indicate the number of affected days before and after the holiday, respectively. Thismodel

requires 7×m× (kU + kV + 1) parameters for each hour.

The valueskU andkV may depend on the type of holiday and especially on the day of the week; therefore, they can

be written askUi j andkVi j , respectively. We have used values equal to 0, 1, 2 or 3 depending mainly on the number of

previous/posterior days affected. In total, the number of parameters for this component, depending on the number of

groups, may be between 250 and 350.

5. Case study

5.1. Case study settings

In this section, the results for the Spanish mainland electric system are described. This subsection details the

settings employed for the case study.

5.1.1. Estimation settings

The time period considered for estimating the parameters isthe 12-year period from 2003 to 2014. Such a large

estimation period is required to allow for estimating the effects of all special day. Note that to properly estimate the

model in (16), each national holiday must fall on each day of the week. Using 12 years ensures that all national days

fall on all days of the week.

The demand data have been provided by the Spanish TSO (REE). This information is open-source and can be

publicly accessed throughhttps://demanda.ree.es/demanda.html.
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Concerning the temperature model, the weather information(both forecasted and observed) corresponds to the

average maximum daily temperature of the ten most representative locations in Spain. The model detailed in Section 3

uses three equidistant nodes (r = 3 andx∗i ∈ {11.6 oC, 21.3 oC, 31.0 oC}) and three delays (K = 3). Therefore, for each

hourly model, the total number of coefficients to be estimated in Eq. (15) is 16 (the intercept is not considered). The

weather information is modeled using 16 regressors.

Concerning the special days model, for each hourly model, 181 parameters are employed to model the eight groups

of national holidays using (16) withPd = 1, 13 parameters are employed to model the regional or local holidays

using (16) with 0< Pd < 1, 14 parameters are employed to model the Easter holidays, 25 parameters are employed

to model August, 17 parameters are employed to model daylight saving time clock changes, and 18 parameters are

employed to model other atypical days (e.g., strikes). Therefore, 268 regressors are employed to model special day

effects.

5.1.2. Forecasting settings

To evaluate the forecasting performance of the model, the proposed procedure is employed to compute one day-

ahead forecasts from January 1st, 2015 to December 31st, 2015. Thus, the performance of the method is tested using

the 365 days of the year 2015.

The model has been estimated using data until December 2014.Note that all information of national and regional

holidays is published by public administrations before theend of December, and no re-estimation has been computed

in the forecasting period (2015). The computation of forecasts for 2015 is completely automatic and does not require

any human intervention.

5.2. Estimation results: ARIMA component

Box and Jenkins [30] developed a practical approach for building ARIMA models with the best fit to a given

time series. Their methodology has had enormous successes in the field of time series analysis and forecasting. The

Box-Jenkins methodology uses a three-step iterative approach that include the following: (1) model identification,

(2) parameter estimation and (3) diagnostic checking to determine the best parsimonious model from a general class

of ARIMA models. This three-step process is repeated several times until a satisfactory model is selected. The

identification procedure is based on autocorrelation and partial autocorrelation functions (ACF and PACF). These

functions of the 24 series indicate a lack of stationarity that is corrected with a nonseasonal difference (D1 = 1)

and a weekly difference (D2 = 1) for all series. The patterns of the 24 autocorrelation functions of the doubly

12
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differentiated series are very similar and suggest pure moving average models with polynomials of degrees 3 and 2

for the nonseasonal and seasonal parts, respectively.

As shown in Section 2.1, model estimation (1) is done in two phases. In the first phase, the 24 reg-ARIMA models

corresponding to each of the hours of the day are estimated. This gives the polynomialsθh andΘh of model (1). This

phase is the most demanding from a computational point of view since it requires the joint estimation of the parameters

of the regression equation and the ARIMA component for each hour. Each model requires the estimation of hundreds

of regression parameters and a few more (less than ten) corresponding to the polynomials of the ARIMA model. Joint

estimation of the parameters is performed using the maximumlikelihood method by assuming a Gaussian distribution

of the white noise process. The solution is obtained with thesubroutines included in the MATLAB Econometrics

Toolbox. The nonlinear optimization problem is solved by sequential quadratic programming (SQP).

The last step of the Box-Jenkins methodology, i.e., diagnostic checking, examines the goodness-of-fit of the esti-

mated model. In this case, the residues obtained from the 24 estimated models do not show significant autocorrelation.

During this process, several alternative solutions can be obtained that are evaluated through goodness-of-fit measures

such as the Akaike Information Criterion (AIC) [31] or the Bayesian information criterion (BIC) of Schwarz [32].

When a sufficiently long time series is available, as in the case at hand,a usual way to check the validity of the model

is to evaluate the accuracy of its predictions with an out-of-sample procedure. Table 1 provides for each hour the three

parameters included in the moving average (MA) polynomialθh and the two parameters corresponding to the seasonal

polynomial (SMA)Θh. The root mean squared error (the estimated standard deviation of Vh,t) for each model is given

in the column labeled “RMSE(1)”.

In the second phase of model estimation, the residuals of the24-hour reg-ARIMA models are combined by means

of Eq. (5) to estimateφh, which completes the estimation of the periodic model (1). The estimation of these parameters

is performed by least squares, using a linear regression equation that relates the residuals of each hour with the

residuals of the immediately preceding hours. Three coefficients have been used in each regression equation. The

results of the estimation are shown in columns AR(k) of Table1. Although some coefficients are not significant, they

have been maintained in the models to keep the same structurefor each hour. In the last column of Table 1, the root

mean squared error of each model in (5) is provided (RMSE (2)). Table 1 shows how the prediction error is reduced

from RMSE(1) to RMSE(2) when the information from the previous hours is included. The explanation is simple

and logical: the first column corresponds to errors made in a 24-hours-in-advance prediction, and the second column

corresponds to errors made in a prediction for the next hour.

13
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hour Intercept MA(1) MA(2) MA(3) SMA(7) SMA(14) AR(1) AR(2) AR(3) RMSE(1) RMSE(2)
1 3,328 -0,288 -0,117 -0,054 -0,838 -0,048 0,672 -0,101 0,125 0,01432 0,01081
2 3,234 -0,309 -0,115 -0,043 -0,848 -0,063 0,954 -0,095 0,081 0,01464 0,00582
3 3,159 -0,298 -0,126 -0,035 -0,892 -0,043 0,960 -0,062 0,020 0,01472 0,00608
4 3,116 -0,290 -0,132 -0,038 -0,908 -0,019 0,911 0,053 -0,020 0,01493 0,00548
5 3,091 -0,294 -0,128 -0,049 -0,915 -0,008 0,955 -0,015 -0,003 0,01489 0,00501
6 3,077 -0,282 -0,150 -0,049 -0,917 -0,017 0,944 -0,054 0,013 0,01434 0,00491
7 3,077 -0,282 -0,166 -0,044 -0,893 -0,044 1,076 -0,124 -0,070 0,01426 0,00625
8 3,078 -0,245 -0,178 -0,023 -0,833 -0,110 1,190 -0,157 -0,089 0,01562 0,00699
9 3,098 -0,282 -0,201 -0,051 -0,796 -0,120 1,047 -0,112 -0,014 0,01671 0,00777
10 3,177 -0,346 -0,185 -0,060 -0,849 -0,053 0,980 -0,280 0,148 0,01587 0,00710
11 3,277 -0,394 -0,177 -0,061 -0,854 -0,031 1,200 -0,366 0,096 0,01609 0,00609
12 3,327 -0,409 -0,186 -0,066 -0,832 -0,021 1,233 -0,334 0,067 0,01672 0,00509
13 3,330 -0,436 -0,180 -0,072 -0,823 -0,020 1,202 -0,191 -0,048 0,01731 0,00492
14 3,337 -0,442 -0,183 -0,073 -0,835 -0,026 1,154 -0,101 -0,111 0,01749 0,00471
15 3,321 -0,446 -0,170 -0,098 -0,867 -0,049 1,218 -0,214 -0,064 0,01760 0,00514
16 3,268 -0,420 -0,165 -0,120 -0,871 -0,061 1,162 -0,178 0,002 0,01835 0,00539
17 3,240 -0,410 -0,184 -0,111 -0,857 -0,066 1,191 -0,240 0,028 0,01890 0,00472
18 3,237 -0,401 -0,178 -0,102 -0,826 -0,073 1,236 -0,230 -0,053 0,01920 0,00515
19 3,275 -0,355 -0,170 -0,064 -0,757 -0,055 1,345 -0,361 -0,099 0,01906 0,00686
20 3,346 -0,328 -0,197 -0,079 -0,725 -0,035 1,029 -0,257 0,060 0,01755 0,00704
21 3,432 -0,290 -0,185 -0,066 -0,713 -0,029 1,108 -0,306 0,040 0,01617 0,00633
22 3,509 -0,330 -0,193 -0,062 -0,771 -0,067 0,822 -0,179 0,131 0,01403 0,00654
23 3,466 -0,324 -0,187 -0,080 -0,889 -0,080 0,974 -0,297 0,098 0,01304 0,00708
24 3,391 -0,322 -0,163 -0,052 -0,842 -0,116 1,058 -0,260 0,117 0,01382 0,00666

Table 1. Two-stage estimates of the model using the Spanish mainland demand data.

5.3. Estimation results: the influence of temperature

The weather explanatory variable used in the model is the average value of the maximum temperatures recorded

every day in ten representative peninsula locations. Weather models predict these values with great accuracy from one

day to another.

The individual interpretation of each coefficient is not very informative. However, the joint interpretation of the

estimated functions is meaningful. Fig. 1 provides the estimated influence of temperature on demand for four different

hours. The effect of the day’s temperature and the two previous days are represented for each hour. For brevity, the

24 graphs are not included in the document.
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Figure 1. Influence of temperature on Spanish electricity demand: day’s temperature (solid line), the previous dayd − 1 (dashed line) and the day
d− 2 (dotted line).
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Comparing the four graphs, it is observed that the effect of temperature on demand differs greatly by the time

of day. The solid line in the four graphs shows the parabolic shape of the effect of the temperature of the current

day on electricity load. Temperature affects demand less at night than during the rest of the day. During the early

morning hours, the temperature of the previous day has the most significant effect. After examining the 24 graphs, it

is observed that the estimated coefficients vary by hour in a rather systematic fashion.

5.4. Estimation results: special days

A large number of dummy variables have been included in the model to study the effect of holidays and special

days using (16). The effect of a holiday with a fixed calendar date (e.g., December 25th) is difficult to measure

because it varies according to the day of the week on which it falls, and its estimate is usually based on only one or

two observations.

The model in (16) has been estimated by considering nine setsof holidays (m= 9), eight of which were determined

by the eight national holidays, and the ninth of which includes all regional holidays. The estimated parameters allow

for the interpretation of how electric demand is affected by public holidays.
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Figure 2. Influence of the public holiday on December 25th

For illustrative purposes, Fig. 2 shows the effect of the public holiday Christmas Day and the two adjacent days

(in columns) depending on the day of the week of Dec. 25th (in rows). Each point corresponds to a parameter, the

abscissa indicates the time of day, and the ordinate value represents the estimated value. Each value measures the load

reduction of the holiday compared with a normal day. When Christmas Day is celebrated on a weekday (Monday to

Friday), a significant decrease in demand occurs relative towhat would be expected for a working day. For example,
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the maximum reduction is observed at 9 am and 10 am, when demand may decrease by fifty percent. The variation is

much smaller if Dec 25th is celebrated on Saturday or Sunday.The reduction is somewhat smaller on Dec 24th, when

the biggest decline is approximately 20% and occurs at 10 pm and 11 pm from Monday to Friday. Dec 26th is also

affected but more modestly; the largest change takes place on Monday (Dec 25th is a Sunday).

This detailed analysis has been performed for each group of holidays. The parameter estimates are very different

for different groups. Behavioral differences are also observed depending on the day of the week, which means that

each hour modeled requires approximately 280 parameters. This particular parametrization is also recommended in

the original work of [1] and has provided excellent results in predictions of demand for holidays [9].

5.5. Forecasting results

The objective of this work is to obtain accurate forecasts for prediction horizons ranging from one hour to several

days. In this section, the results for horizons from 1 to 48 hours are analyzed. The prediction time interval corresponds

to the year 2015. A complete series of 365 days has been considered.
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Figure 3. Hourly RMSE for the prediction period (January 1st, 2015 until December 31st, 2015).

Fig. 3 shows the accuracy for the predictions computed at different instants for dayd and dayd+1. The forecasting

performance is assessed by means of the RMSE, as suggested in[33].

1. The top lineA∗ represents “uncorrected” predictionsỹt0+k (see Section 2.1) made with the information up to

midnight of the previous dayd−1. The predictions are made using the 24 daily models in (4) without considering
16
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the correction provided by the autoregressive component in(5). Dayd errors (left part of the graph) correspond

to one-step predictions, andd+ 1 day errors (right part of the graph) correspond to two-steppredictions.

2. Line B (marked with x) is similar to lineA∗ (predictions from midnight ofd − 1) but is updated with autore-

gressive terms. A significant reduction in error can be observed in the early hours, but the effect gradually

disappears until 5 pm on dayd, where the two lines overlap.

3. The prediction errors made on dayd at 10 am are shown in lineC (marked with diamonds). Logically, the

observed demand up to 10 am is very informative for predicting what will happen at 11 am and the hours that

follow. Thus, compared withB, a huge improvement can be seen in the predictions for the same dayd. However,

from a practical point of view, the reduction in errors that can be seen in the predictions of the dayd + 1 is far

more crucial. While comparingB andC in dayd+ 1, two different factors should be considered as follows: (a)

from 1 am to 10 am, the differences are mainly because lineC corresponds to one-step predictions and lineB

corresponds to two-step predictions; and (b) from 11 am to midnight, both linesB andC correspond to two-step

predictions (the reduction in this part is a direct consequence of the autoregressive component in (5)).

4. LineD corresponds to the errors for predictions made at 6 pm of dayd (solid circles). It is interesting to compare

curvesC andD. The new observations from 11 am to 6 pm do not greatly improvethe predictions from 1 am to

10 am. These observations significantly improve the predictions from 11 am to 6 pm (notice thatC represents

two-step predictions andD represents one-step predictions). Finally, predictions at 6 pm are improved from 7

pm to midnight; however, in this case, both are two-step predictions.

5. Line E has been included as a reference. LineE in d + 1 is exactly the same as lineB in dayd. A large gap

between one-step (lineE) and two-step predictions (lineB) for the 24 hours can be observed. During dayd, the

more updated information that is included, the it gets to curve E.

Concerning the computational specifications, these case studies have been implemented in MATLAB using a

64-bit eight-core i7 processor (3.6 GHz max.) with 16 GB of RAM. Model estimation requires about two hours of

computing CPU time, and the computing of one-day-ahead predictions requires less than 20 seconds. Note that model

estimation should be performed once a year, whereas forecasting computation should be performed hourly.

5.6. Benchmarking and performance comparison

To evaluate the accuracy improvement of the model for temperature and holiday effects, the performance of the

proposed method is compared with the following modifications:

• Proposed approach without the temperature effect, where the thermal information is not included in the model.
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• Proposed approach with a basic model for holiday effect, which considers only the influence of holidays on

demand depending on the day of the week from Monday to Saturday. Thus, six groups of 24 regressors have

been employed.

• Proposed approach using a piecewise linear temperature model ([34]).

Fig. 4 and Table 2 provide the hourly RMSE for the previous methods, using the same forecast settings described

in Section 5.1.2. It can be observed that:

• The model that does not consider the temperature effect provides a higher-error forecast, especially during sun

hours. The one-day-ahead prediction accuracy of this method is 41% worse at computing the forecasts at 10:00

am.

• The proposed modeling of holidays provides a 36% improvement compared with the forecaster with a basic

model for holidays.

• For temperature modeling, the proposed method based on spline-regression techniques provides an improve-

ment of 11% compared with a piecewise linear model ([34]).

Hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 TOTAL
Proposed 1.3 1.3 1.3 1.3 1.3 1.2 1.2 1.5 1.7 1.7 1.8 1.9 2.0 2.0 1.9 2.0 2.1 2.1 2.1 1.9 1.8 1.5 1.5 1.6 1.68
No temp. Effect 1.7 1.6 1.5 1.5 1.5 1.4 1.3 1.6 1.9 2.0 2.3 2.5 2.6 2.7 2.8 3.0 3.2 3.3 3.3 3.1 2.8 2.5 2.5 2.6 2.38
No holid. Effect 1.6 1.6 1.6 1.6 1.6 1.6 1.7 2.3 2.6 2.4 2.5 2.5 2.5 2.4 2.3 2.5 2.6 2.8 2.8 2.7 2.7 2.5 2.4 2.2 2.29
Temp. Linear 1.6 1.6 1.5 1.5 1.5 1.4 1.4 1.6 1.9 1.9 2.0 2.1 2.1 2.1 2.0 2.1 2.2 2.3 2.3 2.1 1.9 1.7 1.7 1.8 1.86

Table 2. Hourly RMSE for the prediction period, compared with alternative models.

5.6.1. Comparison with Cancelo et al. (2008)

To check the performance of the proposed method, it has been compared with the work by [9], which provides

the real results of the forecasting system implemented by the Spanish Transmission System Operator on that date. All

settings of the case study have been replicated: the methodology proposed in this paper has been applied to obtain a

one-day-ahead forecast for the Spanish electrical energy consumption, computed at 10 am the day before. The study

period is from January 1st until December 31th of 2016. The obtained results are provided in Table 3: the MAPE of

the method described in Section 2 is compared with the MAPE reported in [9] (indicated within parenthesis).

As in [9], the results detailed in Table 3 and Fig. 5 refer to 365 consecutive days, without exceptions or corrections

for vacation periods, public holidays, sudden weather changes, or unexpected events. From Table 3 and Fig. 5, it can
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Figure 4. Hourly RMSE for the prediction period, compared with alternative models.

be observed that the proposed method clearly outperforms the traditional one: for all days of the week and for all the

hours of the day.

6. Conclusions

Power system management needs short-term forecasts with horizons of one hour to one week to ensure system

stability and optimal dispatching; however, load forecasting is an essential part of day-to-day trading.

This article describes the model used by the Spanish TSO to make hourly forecasts up to 10 days ahead. The

model considers the hourly series as a periodically correlated process. It incorporates temperature as an explanatory

variable and considers the effect of holidays on demand. Direct estimation of the model by maximum likelihood is

complicated because it contains a large number of parameters. The problem is solved with the following estimation

procedure: first, an independent model is obtained for each hour, which is the usual strategy in most of the models

proposed in the literature, and second, the parameters are jointly estimated to relate each hour to the previous hours.

This article has applied the methodology of regression splines to the problem of estimating the functional rela-

tionship between weather and electricity demand. A nonlinear relationship is observed graphically. The results agree

with intuitive expectations, and the graphs clearly show how temperature influences demand changes throughout the

day. The dynamic effect of temperature on demand is incorporated by simply adding lagged temperature variables.

The number of nodes is chosen via cross-validation; in this implementation, 3 equidistant nodes are used. It has been

proven experimentally that the overall behavior of the method is quite robust.
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Hour
Type of day

All days
Sun Mon Tue Wed Thu Fri Sat

1 am 0.76 (1.55) 0.82 (1.28) 0.89 (1.47) 0.79 (1.36) 0.74 (1.47) 0.75 (1.04) 0.72 (1.23) 0.78 (1.34)
2 am 1.02 (1.70) 0.93 (1.05) 0.99 (1.52) 0.87 (1.33) 0.87 (1.45) 0.99 (1.17) 0.95 (1.37) 0.95 (1.37)
3 am 1.93 (1.78) 1.07 (1.08) 1.08 (1.66) 1.00 (1.33) 0.91 (1.33) 1.09 (1.06) 0.82 (1.23) 1.13 (1.35)
4 am 1.13 (1.80) 1.09 (1.19) 1.09 (1.61) 0.91 (1.23) 0.88 (1.28) 1.02 (1.02) 0.91 (1.32) 1.00 (1.35)
5 am 1.17 (1.80) 1.21 (1.22) 1.23 (1.69) 1.03 (1.41) 0.97 (1.26) 1.05 (0.99) 0.93 (1.34) 1.09 (1.39)
6 am 1.11 (1.61) 1.20 (1.17) 1.21 (1.51) 0.99 (1.34) 0.94 (1.30) 0.99 (0.99) 0.99 (1.25) 1.06 (1.31)
7 am 1.10 (1.47) 1.35 (1.24) 1.23 (1.53) 1.01 (1.33) 0.78 (1.22) 1.07 (1.18) 1.09 (1.33) 1.09 (1.33)
8 am 1.31 (1.64) 1.56 (1.56) 1.49 (1.52) 1.02 (1.39) 0.97 (1.30) 1.28 (1.28) 1.24 (1.46) 1.27 (1.45)
9 am 1.66 (2.03) 1.72 (1.87) 1.75 (1.78) 1.14 (1.66) 1.03 (1.42) 1.39 (1.31) 1.27 (1.52) 1.42 (1.66)
10 am 1.67 (2.08) 1.77 (2.14) 1.63 (1.57) 1.05 (1.60) 0.94 (1.43) 1.20 (1.32) 1.16 (1.26) 1.35 (1.63)
11 am 1.58 (2.06) 1.73 (2.01) 1.40 (1.46) 1.08 (1.55) 0.95 (1.45) 1.14 (1.40) 1.09 (1.24) 1.28 (1.60)
12 pm 1.48 (1.89) 1.73 (2.02) 1.31 (1.52) 0.97 (1.53) 0.86 (1.45) 1.22 (1.52) 1.07 (1.26) 1.23 (1.60)
13 pm 1.40 (1.80) 1.53 (1.86) 1.32 (1.52) 1.06 (1.59) 0.94 (1.49) 1.23 (1.58) 1.24 (1.41) 1.25 (1.61)
14 pm 1.48 (1.77) 1.48 (1.78) 1.30 (1.57) 1.18 (1.58) 1.05 (1.52) 1.28 (1.60) 1.39 (1.50) 1.31 (1.62)
15 pm 1.50 (1.79) 1.35 (1.75) 1.34 (1.54) 1.22 (1.57) 1.13 (1.65) 1.22 (1.55) 1.41 (1.53) 1.31 (1.63)
16 pm 1.56 (1.91) 1.40 (1.95) 1.29 (1.60) 1.31 (1.63) 1.24 (1.76) 1.42 (1.74) 1.53 (1.77) 1.39 (1.77)
17 pm 1.63 (1.97) 1.52 (1.97) 1.33 (1.68) 1.45 (1.88) 1.36 (1.72) 1.54 (2.05) 1.67 (2.09) 1.50 (1.91)
18 pm 1.58 (1.82) 1.63 (1.81) 1.34 (1.70) 1.58 (2.03) 1.33 (1.65) 1.54 (1.95) 1.78 (2.32) 1.54 (1.90)
19 pm 1.55 (1.91) 1.74 (1.66) 1.32 (1.66) 1.63 (2.08) 1.31 (1.56) 1.55 (1.69) 1.79 (2.39) 1.56 (1.85)
20 pm 1.55 (1.84) 1.70 (1.67) 1.32 (1.68) 1.57 (1.89) 1.44 (1.55) 1.46 (1.53) 1.48 (2.03) 1.50 (1.74)
21 pm 1.62 (1.93) 1.56 (1.70) 1.19 (1.49) 1.40 (1.81) 1.46 (1.36) 1.27 (1.39) 1.26 (1.72) 1.39 (1.63)
22 pm 1.33 (1.66) 1.41 (1.57) 0.94 (1.22) 1.12 (1.47) 1.14 (1.09) 1.18 (1.16) 1.32 (1.60) 1.20 (1.40)
23 pm 1.13 (1.40) 1.31 (1.59) 0.98 (1.21) 1.22 (1.62) 1.13 (1.21) 1.08 (1.15) 1.41 (1.57) 1.18 (1.39)
24 pm 1.38 (1.80) 1.27 (1.61) 1.07 (1.44) 1.35 (1.67) 1.24 (1.24) 1.16 (1.35) 1.55 (1.73) 1.29 (1.55)

All hours 1.40 (1.79) 1.42 (1.62) 1.25 (1.55) 1.16 (1.58) 1.07 (1.42) 1.21 (1.38) 1.25 (1.56) 1.25 (1.56)

Table 3. Errors for one-day-ahead hourly forecasts for the year 2006, compared with Cancelo et al. (2008).

Estimating changes in demand for holidays is very complex, and correct modeling is important when comparing

methods. The model incorporates a large number of dummy variables that consider all peculiarities of the problem.

Subsequently, the number of parameters is reduced using theusual regression model tests. The joint representation of

the 24-hour effects for a day shows consistent and interesting results.

The model has been adapted (with the supervision of the Spanish TSO, REE) to make real-time predictions for

12 smaller electrical systems in Spain (e.g., Balearic Islands, Canary Islands, Ceuta and Melilla). The results indicate

that the model can be used in other systems, with very satisfactory results.

Future work will focus on an enhanced temperature model, an alternative implementation for nonworking days,

and the inclusion of other weather variables (solar radiation, wind speed, etc.).
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(REE) as a R&D project.

20



Caro, E., Juan, J., Cara, F.J./ Applied Mathematics and Computation00 (2019) 1–22 21

6 12 18 24

hours

0.8

1

1.2

1.4

1.6

1.8

2

M
A

P
E

reference
proposed

S M T W T F S

days

0.8

1

1.2

1.4

1.6

1.8

2

M
A

P
E

reference
proposed

Figure 5. Hourly and daily errors for the reference [9] and proposed methods.
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